Design and Analysis of Algorithms

Instructor: Sharma Thankachan

Lecture 6: Sorting in Linear Time

About this lecture

- · Sorting algorithms we studied so far
 - Insertion, Selection, Merge, Quicksort
 - determine sorted order by comparison
- · We will look at 3 new sorting algorithms
 - Counting Sort, Radix Sort, Bucket Sort
 - → assume some properties on the input, and determine the sorted order by distribution

Helping the Billionaire

- · Your boss, Bill, is a billionaire
- Inside his BIG wallet, there are a lot of bills, say, n bills
- Nine kinds of bills:
 \$1, \$5, \$10, \$20, \$50,
 \$100, \$200, \$500, \$1000

Helping the Billionaire

- He did not care about the ordering of the bills before
- But then, he has taken the Algorithm course, and learnt that if things are sorted, we can search faster

The horoscope says I should use only \$500 notes today ... Do I have enough in the wallet?

A Proposal

- · Create a bin for each kind of bill
- Look at his bill one by one, and place the bill in the corresponding bin
- Finally, collect bills in each bin, starting from \$1-bin, \$5-bin, ..., to \$1000-bin

A Proposal

- In the previous algorithm, there is no comparison between the items ...
 - · But we can still sort correctly... WHY?
- Each step looks at the value of an item, and distribute the item to the correct bin
 - So, in the end, when a bill is collected, its value must be larger than or equal to all bills collected before → sorted

Sorting by Distribution

- Previous algorithm sorts the bills based on distribution operations
- It works because:
 - we have information about the values of the input items → we can create bins
- We will look at more algorithms which are based on the same distribution idea

Counting Sort

Counting Sort

extra info on values

- Input: Array A[1..n] of n integers,
 each has value from [0,k]
- · Output: Sorted array of the n integers
- · Idea 1: Create B[1..n] to store the output
- Idea 2: Process A[1..n] from right to left
 - Use k + 2 counters:
 - · One for "which element to process"
 - · k + 1 for "where to place"

Before Running

Step 1: Set c[j] = location in B for placing the next element if it has value j

Step 2: Done when all elements of A are processed

Counting Sort (Step 1)

How can we perform Step 1 smartly?

- 1. Initialize c[0], c[1], ..., c[k] to 0
- 2. /* First, set c[j] = # elements with value j */ For x = 1,2,...,n, increase c[A[x]] by 1
- 3. /* Set c[j] = location in B to place next element whose value is j (iteratively) */

For
$$y = 1,2,...,k$$
, $c[y] = c[y-1] + c[y]$

Time for Step 1 = O(n + k)

Counting Sort (Step 2)

How can we perform Step 2?

```
/* Process A from right to left */
 For x = n, n-1, ..., 2, 1
  /* Process next element */
      B[c[A[x]]] = A[x];
     /* Update counter */
     Decrease c[A[x]] by 1;
         Time for Step 2 = O(n)
```

Counting Sort (Running Time)

Conclusion:

- Running time = O(n + k)
 - \rightarrow if k = O(n), time is (asymptotically) optimal
- Counting sort is also stable:
 - elements with same value appear in same order in before and after sorting

Stable Sort

Before Sorting 2 1 2 5 3 3 1 2

Radix Sort

Radix Sort

extra info on values

- Input: Array A[1..n] of n integers, each has d digits, and each digit has value from [0,k]
- · Output: Sorted array of the n integers
- Idea: Sort in d rounds
 - At Round j, stable sort A on digit j (where rightmost digit = digit 1)

Before Running

```
1904
2579
1874
6355
4432
8318
1304
4 digits
```

Round 1: Stable sort digit 1

 190 4
 4432

 257 9
 1904

 187 4
 187 4

 635 5
 1304

 443 2
 6355

 831 8
 831 8

 130 4
 257 9

Round 2: Stable sort digit 2

After Round 2, last 2 digits are sorted (why?)

Round 3: Stable sort digit 3

After Round 3, last 3 digits are sorted (why?)

Round 4: Stable sort digit 4

1	3 0 4	1304
8	3 1 8	1874
6	3 5 5	1904
4	4 3 2	2579
2	579	4432
1	874	6355
1	904	8 3 1 8

After Round 4, last 4 digits are sorted (why?)

Done when all digits are processed

```
1304
```

The array is sorted (why?)

Radix Sort (Correctness)

Question:

"After r rounds, last r digits are sorted" Why??

Answer:

This can be proved by induction: The statement is true for r=1Assume the statement is true for r=kThen ...

Radix Sort (Correctness)

At Round k+1,

- if two numbers differ in digit "k+1", their relative order [based on last k+1 digits] will be correct after sorting digit "k+1"
- if two numbers match in digit "k+1", their relative order [based on last k+1 digits] will be correct after stable sorting digit "k+1" (why?)
- → Last "k+1" digits sorted after Round "k+1"

Radix Sort (Summary)

Conclusion:

- After d rounds, last d digits are sorted, so that the numbers in A[1..n] are sorted
- There are d rounds of stable sort, each can be done in O(n + k) time
 - \rightarrow Running time = O(d(n+k))
 - if d=O(1) and k=O(n), asymptotically optimal

Bucket Sort

Bucket Sort

extra info on values

- Input: Array A[1..n] of n elements, each is drawn uniformly at random from the interval [0,1)
- · Output: Sorted array of the n elements
- · Idea:

Distribute elements into n buckets, so that each bucket is likely to have fewer elements \rightarrow easier to sort

Before Running 0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68

Step 1: Create n buckets

n = #buckets
= #elements

each bucket represents a subinterval of size 1/n

Step 2: Distribute each element to correct bucket

If Bucket j represents subinterval [j/n, (j+1)/n), element with value x should be in Bucket bxnc

Step 3: Sort each bucket (by insertion sort)

Step 4: Collect elements from Bucket 0 to Bucket n-1

Bucket Sort (Running Time)

- Let X = # comparisons in all insertion sort Running time = $\Theta(n + (X)) \rightarrow varies on input$
 - \rightarrow worst-case running time = $\Theta(n^2)$
- · How about average running time?

Finding average of X (i.e. #comparisons)
gives average running time

Average Running Time

```
Let n_j = # elements in Bucket j

X \cdot c(h_0^2 + h_1^2 + ... + h_{n-1}^2)
varies on input
```

So,
$$E[X] \cdot E[c(n_0^2 + n_1^2 + ... + n_{n-1}^2)]$$

= $c E[n_0^2 + n_1^2 + ... + n_{n-1}^2]$
= $c (E[n_0^2] + E[n_1^2] + ... + E[n_{n-1}^2])$
= $cn E[n_0^2]$ (by symmetry)

Average Running Time

Textbook (pages 175-176) shows that $E[n_0^2] = 2 - (1/n)$

- → $E[X] \cdot cn E[n_0^2] = 2cn c$
- In other words, E[X] = O(n)
- \rightarrow Average running time = $\Theta(n)$

For Interested Classmates

The following is how we can show

$$E[n_0^2] = 2 - (1/n)$$

Recall that n_0 = # elements in Bucket 0 So, suppose we set

 $Y_k = 1$ if element k is in Bucket 0

 $Y_k = 0$ if element k not in Bucket 0

Then,
$$n_0 = Y_1 + Y_2 + ... + Y_n$$

For Interested Classmates

Then,

$$E[n_0^2] = E[(Y_1 + Y_2 + ... + Y_n)^2]$$

$$= E[Y_1^2 + Y_2^2 + ... + Y_n^2 + Y_1Y_2 + Y_1Y_3 + ... + Y_1Y_n + Y_2Y_1 + Y_2Y_3 + ... + Y_2Y_n + ... + Y_nY_1 + Y_nY_2 + ... + Y_nY_{n-1}]$$

=
$$E[Y_1^2] + E[Y_2^2] + ... + E[Y_n^2]$$

+ $E[Y_1Y_2] + ... + E[Y_nY_{n-1}]$
= $n E[Y_1^2] + n(n-1) E[Y_1Y_2]$
(by symmetry)

The value of Y_1^2 is either 1 (when $Y_1 = 1$), or 0 (when $Y_1 = 0$)

The first case happens with 1/n chance (when element 1 is in Bucket 0), so

$$E[Y_1^2] = 1/n * 1 + (1-1/n) * 0 = 1/n$$

```
For Y_1Y_2, it is either 1 (when Y_1=1 and Y_2=1), or 0 (otherwise)
```

The first case happens with $1/n^2$ chance (when both element 1 and element 2 are in Bucket 0), so

$$E[Y_1Y_2] = 1/n^2 * 1 + (1-1/n^2) * 0 = 1/n^2$$

Thus,
$$E[n_0^2] = n E[Y_1^2] + n(n-1) E[Y_1Y_2]$$

= $n (1/n) + n(n-1) (1/n^2)$
= $2 - 1/n$