Data Structures

Instructor: Sharma Thankachan

Lecture 4: Heap
About this lecture

• Introduce **Heap**
 - Shape Property and Heap Property
 - Heap Operations
• **Heapsort**: Use Heap to Sort
• Fixing heap property for all nodes
• Use **Array** to represent Heap
• Introduce **Priority Queue**
A heap (or binary heap) is a binary tree that satisfies both:

(1) **Shape Property**
- All levels, except deepest, are fully filled
- Deepest level is filled from left to right

(2) **Heap Property**
- Value of a node ≥ Value of its children
Satisfying Shape Property

Example of a tree with shape property
Not Satisfying Shape Property

This level (not deepest) is NOT fully filled
Not Satisfying Shape Property

Deepest level NOT filled from left to right
Satisfying Heap Property
Not Satisfying Heap Property

Help!
Min Heap

Q. Given a heap, what is so special about the root’s value?
A. ... always the minimum

Because of this, the previous heap is also called a min heap
Heap Operations

- **Find-Min**: find the minimum value
 - $\Theta(1)$ time

- **Extract-Min**: delete the minimum value
 - $O(\log n)$ time (how??)

- **Insert**: insert a new value into heap
 - $O(\log n)$ time (how??)

$n = \# \text{ nodes in the heap}$
How to do Extract-Min?

Heap before Extract-Min
Step 1: Restore Shape Property

Copy value of last node to root.
Next, remove last node
Step 2: Restore Heap Property

Next, highlight the root
⇒ Only this node may violate heap property

If violates, swap highlighted node with “smaller” child (if not, everything done)
Step 2: Restore Heap Property

After swapping, only the highlighted node may violate heap property.

If violates, swap highlighted node with "smaller" child (if not, everything done)
Step 2: Restore Heap Property

As soon as the highlighted node satisfies the heap property

Everything done !!!
How to do Insert?

Heap before Insert
Step 1: Restore Shape Property

Create a new node with the new value. Next, add it to the heap at correct position.
Step 2: Restore Heap Property

Highlight the new node

⇒ Only this node’s parent may violate heap property

If violates, swap highlighted node with parent (if not, everything done)
Step 2: Restore Heap Property

After swapping, only highlighted node's parent may violate heap property.

If violates, swap highlighted node with parent (if not, everything done).
Step 2: Restore Heap Property

As soon as highlighted node’s parent satisfies heap property

Everything done !!!
Running Time

Let \(h = \text{node-height of heap} \)

- Both Extract-Min and Insert require \(O(h) \) time to perform

Since \(h = \theta(\log n) \) (why??)

\[\Rightarrow \text{Both require } O(\log n) \text{ time} \]

\(n = \# \text{nodes in the heap} \)
Q. Given \(n \) numbers, can we use heap to sort them, say, in ascending order?

A. Yes, and extremely easy !!!

1. Call Insert to insert \(n \) numbers into heap
2. Call Extract-Min \(n \) times

\[\text{numbers are output in sorted order} \]

Runtime: \(n \in \mathcal{O}(\log n) + n \in \mathcal{O}(\log n) = \mathcal{O}(n \log n) \)

This sorting algorithm is called heapsort
Challenge (Fixing heap property for all nodes)

Suppose that we are given a binary tree which satisfies the shape property however, the heap property of the nodes may not be satisfied ...

Question: Can we make the tree into a heap in $O(n)$ time?

$n = \# \text{ nodes in the tree}$
How to make it a heap?
Observation

\[u = \text{root of a binary tree} \]
\[L = \text{subtree rooted at } u's \text{ left child} \]
\[R = \text{subtree rooted at } u's \text{ right child} \]

Obs: If \(L \) and \(R \) satisfy heap property, we can make the tree rooted at \(u \) satisfy heap property in \(O(\max \{ \text{height}(L), \text{height}(R) \}) \) time.

We denote the above operation by \(\text{Heapify}(u) \)
Heapify

Then, for any tree T, we can make T satisfy the heap property as follows:

Step 1. $h = \text{node_height}(T)$;

Step 2. for $k = h, h-1, \ldots, 1$

 for each node u at level k

 $\text{Heapify}(u)$;

Why is the above algorithm correct?
Example Run

First, heapify this tree
Example Run

Next, heapify this tree
Example Run

Next, heapify this tree
Example Run

Next, heapify this tree
Next, heapify this tree
Example Run

Next, heapify this tree
Example Run

Next, heapify this tree
Example Run

Next, heapify this tree
Finally, heapify the whole tree
Example Run

Everything Done!
Suppose that we are given a binary tree which satisfies the shape property. However, the heap property of the nodes may not be satisfied …

Question: Can we make the tree into a heap in \(O(n)\) time?

\[n = \# \text{ nodes in the tree} \]
Back to the Challenge
(Fixing heap property for all nodes)

Let \(h \) = node-height of tree

So, \(2^{h-1} \cdot n \cdot 2^h - 1 \) (why??)

For a tree with shape property,
- at most \(2^{h-1} \) nodes at level \(h \),
- exactly \(2^{h-2} \) nodes at level \(h-1 \),
- exactly \(2^{h-3} \) nodes at level \(h-2 \), ...
Back to the Challenge
(Fixing heap property for all nodes)

Using the previous algorithm to solve the challenge, the total time is at most

\[2^{h-1}1 + 2^{h-2}2 + 2^{h-3}3 + \ldots + 1h \quad [\text{why??}] \]

\[= 2^h \left(1 \cdot \frac{1}{2} + 2 \cdot \left(\frac{1}{2} \right)^2 + 3 \cdot \left(\frac{1}{2} \right)^3 + \ldots + h \cdot \left(\frac{1}{2} \right)^h \right) \]

\[\cdot 2^h \sum_{k=1}^{h} k \cdot \left(\frac{1}{2} \right)^k = 2^h \cdot 2 \cdot 4n \]

\[\Rightarrow \quad \text{Thus, total time is } O(n) \]
Given a heap.
Suppose we mark the position of root as 1, and mark other nodes in a way as shown in the right figure. (BFS order)

Anything special about this marking?
Yes, something special:

1. If the heap has n nodes, the marks are from 1 to n
2. Children of x, if exist, are $2x$ and $2x+1$
3. Parent of x is $\lfloor x/2 \rfloor$
Array Representation of Heap

- The special properties of the marking allow us to use an array $A[1..n]$ to store a heap of size n

Advantage:
Avoid storing or using tree pointers !!

Try this at home:
Write codes for Insert and Extract-Min, assuming the heap is stored in an array
Max Heap

We can also define a max heap, by changing the heap property to:

Value of a node ≥ Value of its children

Max heap supports the following operations:
(1) Find Max, (2) Extract Max, (3) Insert

Do you know how to do these operations?
Priority Queue

Consider \(S \) = a set of items, each has a key

Priority queue on \(S \) supports:

\[
\text{Min()}: \quad \text{return item with min key}
\]

\[
\text{Extract-Min()}: \quad \text{remove item with min key}
\]

\[
\text{Insert}(x,k): \quad \text{insert item } x \text{ with key } k
\]

\[
\text{Decrease-Key}(x,k): \quad \text{decrease key of } x \text{ to } k
\]
Using Heap as Priority Queue

1. Store the items in an array
2. Use a heap to store keys of the items
3. Store links between an item and its key

E.g.,
Using Heap as Priority Queue

Previous scheme supports Min in $O(1)$ time, Extract-Min and Insert in $O(\log n)$ time.

It can support Decrease-Key in $O(\log n)$ time.

E.g.,

Node storing key value of item x

How do we decrease the key to k??
Other Schemes?

• In algorithm classes (or perhaps later lectures), we will look at other ways to implement a priority queue
 • with different time bounds for the operations

Remark: Priority Queue can be used for finding MST or shortest paths, and job scheduling