# Design and Analysis of Algorithms

Instructor: Sharma Thankachan

Lecture 16: Single-Source Shortest-Path

### About this lecture

- What is the problem about?
- Dijkstra's Algorithm [1959]
  - ~ Prim's Algorithm [1957]
- Folklore Algorithm for DAG [???]
- · Bellman-Ford Algorithm
  - · Discovered by Bellman [1958], Ford [1962]
  - · Allowing negative edge weights

### Single-Source Shortest Path

- Let G = (V,E) be a weighted graph
  - the edges in G have weights
  - can be directed/undirected
  - · can be connected/disconnected
- · Let s be a special vertex, called source

Target: For each vertex v, compute the length of shortest path from s to v

### Single-Source Shortest Path

• E.g.,





### Relax

 A common operation that is used in the three algorithms is called Relax:
 when a vertex v can be reached from the source with a certain distance, we examine an outgoing edge, say (v,w), and check if

we can improve w

• E.g.,

\$ 0 11 7 ? 6 ? 1

Can we improve these?

Can we improve this?

# Dijkstra's Algorithm

```
Dijkstra(G, s)
  For each vertex v,
     Mark v as unvisited, and set d(v) = 1;
  Set d(s) = 0;
  while (there is unvisited vertex) {
    v = unvisited vertex with smallest d:
     Visit v, and Relax all its outgoing edges;
  return d:
```



















### Correctness

#### Theorem:

The  $k^{th}$  vertex closest to the source s is selected at the  $k^{th}$  step inside the while loop of Dijkstra's algorithm

Also, by the time a vertex v is selected, d(v) will store the length of the shortest path from s to v

How to prove? (By induction)

### Proof

- Both statements are true for k = 1;
- Let  $v_j = j^{th}$  closest vertex from s
- Now, suppose both statements are true for k = 1, 2, ..., r-1
- Consider the r<sup>th</sup> closest vertex v<sub>r</sub>
  - If there is no path from s to v<sub>r</sub>
    - $\rightarrow$  d( $v_r$ ) = 1 is never changed
  - Else, there must be a shortest path from s to  $v_r$ ; Let  $v_t$  be the vertex immediately before  $v_r$  in this path

### Proof (cont)

- Then, we have  $t \le r-1$  (why??)
- $\rightarrow$  d(v<sub>r</sub>) is set correctly once v<sub>t</sub> is selected, and the edge (v<sub>t</sub>,v<sub>r</sub>) is relaxed (why??)
- $\rightarrow$  After that,  $d(v_r)$  is fixed (why??)
- $\rightarrow$  d(v<sub>r</sub>) is correct when v<sub>r</sub> is selected; also, v<sub>r</sub> must be selected at the r<sup>th</sup> step, because no unvisited nodes can have a smaller d value at that time

Thus, the proof of inductive case completes

### Performance

- Dijkstra's algorithm is similar to Prim's
- · By using Fibonacci Heap,
  - Relax
     Decrease-Key
  - Pick vertex Extract-Min
- · Running Time:
  - O(V) Insert/Extract-Min
  - At most O(E) Decrease-Key
  - → Total Time: O(E + V log V)

### Finding Shortest Path in DAG

```
We have a faster algorithm for DAG:
DAG-Shortest-Path(G, s)
  Topological Sort G;
  For each v, set d(v) = 1; Set d(s) = 0;
  for (k = 1 to |V|) {
     v = k<sup>th</sup> vertex in topological order;
     Relax all outgoing edges of v;
  return d:
```















### Correctness

#### Theorem:

By the time a vertex v is selected, d(v) will store the length of the shortest path from s to v

How to prove? (By induction)

### Proof

- Let  $v_j = j^{th}$  vertex in the topological order
- We will show that  $d(v_k)$  is set correctly when  $v_k$  is selected, for k = 1, 2, ..., |V|
- When k = 1,

 $v_k = v_1 = leftmost vertex$ 

If it is the source,  $d(v_k) = 0$ 

If it is not the source,  $d(v_k) = 1$ 

- $\rightarrow$  In both cases,  $d(v_k)$  is correct (why?)
- → Base case is correct

### Proof (cont)

- Now, suppose the statement is true for k = 1, 2, ..., r-1
- Consider the vertex v<sub>r</sub>
  - If there is no path from s to v<sub>r</sub>
    - $\rightarrow$  d( $v_r$ ) = 1 is never changed
  - Else, we shall use similar arguments as proving the correctness of Dijkstra's algorithm ...

### Proof (cont)

- First, let  $v_t$  be the vertex immediately before  $v_r$  in the shortest path from s to  $v_r$ 
  - $\rightarrow$  t  $\leq$  r-1
  - $\rightarrow$  d(v<sub>r</sub>) is set correctly once v<sub>t</sub> is selected, and the edge (v<sub>t</sub>,v<sub>r</sub>) is relaxed
  - $\rightarrow$  After that,  $d(v_r)$  is fixed
  - $\rightarrow$  d(v<sub>r</sub>) is correct when v<sub>r</sub> is selected

Thus, the proof of inductive case completes

### Performance

- DAG-Shortest-Path selects vertex sequentially according to topological order
  - no need to perform Extract-Min
- We can store the d values of the vertices in a single array  $\rightarrow$  Relax takes O(1) time
- · Running Time:
  - Topological sort : O(V + E) time
  - · O(V) select, O(E) Relax: O(V + E) time
  - $\rightarrow$  Total Time: O(V + E)

# Handling Negative Weight Edges

 When a graph has negative weight edges, shortest path may not be well-defined



What is the shortest path from s to v?

# Handling Negative Weight Edges

- The problem is due to the presence of a cycle C, reachable by the source, whose total weight is negative
  - → C is called a negative-weight cycle
- How to handle negative-weight edges ??
  - → if input graph is known to be a DAG, DAG-Shortest-Path is still correct
  - → For the general case, we can use Bellman-Ford algorithm

### Bellman-Ford Algorithm

```
Bellman-Ford(G, s) // runs in O(VE) time
  For each v, set d(v) = 1; Set d(s) = 0;
  for (k = 1 \text{ to } |V|-1)
     Relax all edges in G in any order;
  /* check if s reaches a neg-weight cycle */
  for each edge (u,v),
     if (d(v) > d(u) + weight(u,v))
          return "something wrong !!";
  return d:
```



After the 4th Relax all



After checking, we found that there is nothing wrong → distances are correct



After the 4th Relax all



After checking, we found that something must be wrong → distances are incorrect

### Correctness (Part 1)

#### Theorem:

If the graph has no negative-weight cycle, then for any vertex v with shortest path from s consists of k edges, Bellman-Ford sets d(v) to the correct value after the  $k^{th}$  Relax all (for any ordering of edges in each Relax all )

How to prove? (By induction)

### Corollary

```
Corollary: If there is no negative-weight cycle, then when Bellman-Ford terminates, d(v) \leq d(u) + weight(u,v) for all edge (u,v)
```

Proof: By previous theorem, d(u) and d(v)
 are the length of shortest path from s to
 u and v, respectively. Thus, we must have
 d(v) ≤ length of any path from s to v
 d(v) ≤ d(u) + weight(u,v)

41

# "Something Wrong" Lemma

```
Lemma: If there is a negative-weight cycle, then when Bellman-Ford terminates, d(v) > d(u) + weight(u,v) for some edge (u,v)
```

How to prove? (By contradiction)

### Proof

• Firstly, we know that there is a cycle  $C = (v_1, v_2, ..., v_k, v_1)$  whose total weight is negative

- That is,  $\sum_{i=1 \text{ to } k} \text{weight}(v_i, v_{i+1}) < 0$
- Now, suppose on the contrary that  $d(v) \leq d(u) + weight(u,v)$  for all edge (u,v) at termination

### Proof (cont)

· Can we obtain another bound for

$$\sum_{i=1 \text{ to } k} \text{ weight}(v_i, v_{i+1}) ?$$

- By rearranging, for all edge (u,v) weight  $(u,v) \ge d(v) d(u)$ 
  - $\rightarrow \sum_{i=1 \text{ to } k} \text{ weight}(v_i, v_{i+1})$

$$\geq \sum_{i=1 \text{ to } k} (d(v_{i+1}) - d(v_i)) = 0$$
 (why?)

→ Contradiction occurs!!

### Correctness (Part 2)

 Combining the previous corollary and lemma, we have:

#### Theorem:

There is a negative-weight cycle in the input graph if and only if when Bellman-Ford terminates,

$$d(v) > d(u) + weight(u,v)$$

for some edge (u,v)