Design and Analysis of Algorithms
Instructor: Sharma Thankachan

Lecture 14:
Elementary Graph Algorithms IV

Slides modified from Dr. Hon, with permission
About this lecture

- Review of Strongly Connected Components (SCC) in a directed graph
- Finding all SCC (i.e., decompose a directed graph into SCC)
• Let G be a directed graph
• Let u and v be two vertices in G

Definition: If u can reach v (by a path) and v can reach u (by a path), then we say u and v are mutually reachable

We shall use the notation $u \leftrightarrow v$ to indicate u and v are mutually reachable

Also, we assume $u \leftrightarrow u$ for any node u
Mutually Reachable

Theorem: \leftrightarrow is an equivalence relation

Proof:

• By assumption $u \leftrightarrow u$, so \leftrightarrow is reflexive
• If $u \leftrightarrow v$, then $v \leftrightarrow u$, so \leftrightarrow is symmetric
• Also, if $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$, so \leftrightarrow is transitive

Thus, \leftrightarrow is an equivalence relation
Strongly Connected Components

- Thus, we can partition V based on \leftrightarrow
- Let V_1, V_2, \ldots, V_k denote the partition
- Each V_i is called a **strongly connected component (SCC)** of G

E.g.,
Property of SCC

- Let $G = (V, E)$ be a directed graph
- Let G^T be a graph obtained from G by reversing the direction of every edge in G

\Rightarrow Adjacency matrix of G^T

$= \text{transpose of adjacency matrix of } G$

Theorem:

G and G^T has the same set of SCC's
Property of SCC

- Let V_1, V_2, \ldots, V_k denote SCC of a graph G
- Let G^{SCC} be a simple graph obtained by contracting each V_i into a single vertex v_i
- We call G^{SCC} the component graph of G
Property of G^{scc}

Theorem: G^{scc} is acyclic

Proof: (By contradiction)
If G^{scc} has a cycle, then there are some vertices v_i and v_j with $v_i \leftrightarrow v_j$

By definition, v_i and v_j correspond to two distinct SCC V_i and V_j in G. However, we see that any pair of vertices in V_i and V_j are mutually reachable \Rightarrow contradiction
Property of G^{SCC}

• Suppose the DAG (directed acyclic graph) on the right side is the G^{SCC} of some graph G

• Now, suppose we perform DFS on G
 • let u = node with largest finishing time

Question: Which SCC can u be located?
Lemma:

Consider any graph G. Let G^{SCC} be its component graph. Suppose v is a vertex in G^{SCC} with at least one incoming edge. Then, the node finishing last in any DFS of G cannot be a vertex of the SCC corresponding to v.
Proof

• Let $SCC(v) = SCC$ corresponding to v
• Since v has incoming edge, there exists w such that (w,v) is an edge in G^{SCC}
• In the next two slides, we shall show that some node in $SCC(w)$ must finish later than any node in $SCC(v)$
• Consequently, u cannot be in $SCC(v)$
Proof

Let x = 1st node in $SCC(w)$ discovered by DFS

Let y = 1st node in $SCC(v)$ discovered by DFS

Let z = last node in $SCC(v)$ finished by DFS

By white-path theorem, we must have

$$d(y) \leq d(z) < f(z) \leq f(y)$$

// Note: z may be the same as y
Proof

If $d(x) < d(y)$

• then y becomes x’s descendant (by white-path)
 $\implies f(z) \leq f(y) < f(x)$

If $d(y) < d(x)$

• since x cannot be y’s descendant (otherwise, they are in the same SCC)
 $\implies d(y) < f(y) < d(x) < f(x)$
 $\implies f(z) \leq f(y) < f(x)$
Finding SCC

- So, we know that \(u \) (last finished node of \(G \)) must be in an SCC with no incoming edges.
- Let us reverse edge directions, and start DFS on \(G^T \) from \(u \).

Question: Who will be \(u \)'s descendants??
Finding SCC

• Note that nodes in the SCC containing \(u \) cannot connect to nodes in other SCCs in \(G^T \).

• By white-path theorem, the descendants of \(u \) in \(G^T \) must be exactly those nodes in the same SCC as \(u \).
Finding SCC

• Once DFS on u inside G^T has finished, all nodes in the same SCC as u are finished.
 ➔ Any subsequent DFS in G^T will be made as if this SCC was removed from G^T

• Now, let u' be the remaining node in G^T whose finishing time (in DFS in G) is latest.
 • Where can u' be located?
 • Who will be the descendents of u' if we perform DFS in G^T now?
Our observations lead to the following algorithm for finding all SCCs of G:

Finding-all-SCC(G) {

1. Perform DFS on G;
2. Construct G^T;
3. while (some node in G^T is undiscovered) {
 u = undiscovered node with latest finishing time**;
 Perform DFS on G^T from u;
} // nodes in the DFS tree from u forms an SCC
} // ** Finishing times always refer to Step 1’s DFS
Correctness & Performance

• The correctness of the algorithm can be proven by induction
 (Hint: Show that at each sub-search in Step 3, u is chosen from an SCC which has no
 outgoing edges to any nodes in an “unvisited” SCC of G^T.
 ➔ By white-path theorem, exactly all nodes in the same SCC become u’s descendants)

• Running Time: $O(|V|+|E|)$ (why?)