Design and Analysis of Algorithms

Instructor: Sharma Thankachan

Lecture 14: Elementary Graph Algorithms IV

About this lecture

 Review of Strongly Connected Components (SCC) in a directed graph

Finding all SCC
 (i.e., decompose a directed graph into SCC)

Mutually Reachable

- · Let G be a directed graph
- Let u and v be two vertices in G

Definition: If u can reach v (by a path) and v can reach u (by a path), then we say u and v are mutually reachable

We shall use the notation $u \leftrightarrow v$ to indicate u and v are mutually reachable

Also, we assume $u \leftrightarrow u$ for any node u

Mutually Reachable

Theorem: \leftrightarrow is an equivalence relation

Proof:

- By assumption $u \leftrightarrow u$, so \leftrightarrow is reflexive
- If $u \leftrightarrow v$, then $v \leftrightarrow u$, so \leftrightarrow is symmetric
- Also, if $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$, so \leftrightarrow is transitive

Thus, \leftrightarrow is an equivalence relation

Strongly Connected Components

- Thus, we can partition V based on \leftrightarrow
- Let $V_1, V_2, ..., V_k$ denote the partition
- Each V_i is called a strongly connected component (SCC) of G

E.g.,

Property of SCC

- Let G = (V, E) be a directed graph
- Let G^T be a graph obtained from G by reversing the direction of every edge in G
 - → Adjacency matrix of G^T
 - = transpose of adjacency matrix of G

Theorem:

G and G^T has the same set of SCC's

Property of SCC

- Let V_1 , V_2 , ..., V_k denote SCC of a graph G
- Let G^{SCC} be a simple graph obtained by contracting each V_i into a single vertex v_i
 - We call G^{SCC} the component graph of G

Property of GSCC

Theorem: GSCC is acyclic

Proof: (By contradiction)

If G^{SCC} has a cycle, then there are some vertices v_i and v_j with $v_i \leftrightarrow v_j$

By definition, v_i and v_j correspond to two distinct $SCC\ V_i$ and V_j in G. However, we see that any pair of vertices in V_i and V_j are mutually reachable \rightarrow contradiction

Property of GSCC

Suppose the DAG
 (directed acyclic graph) on
 the right side is the
 GSCC of some graph G

- Now, suppose we perform DFS on G
 - let u = node with largest finishing time

Question: Which SCC can u be located?

Property of GSCC

Lemma:

Consider any graph G.

Let G^{SCC} be its component graph.

Suppose v is a vertex in G^{SCC} with at least one incoming edge.

Then, the node finishing last in any DFS of G cannot be a vertex of the SCC corresponding to v

Proof

- Let SCC(v) = SCC corresponding to v
 - corresponding to v

 Since v has incomina edae.
- Inside GSCC
- Since v has incoming edge, there exists w such that (w,v) is an edge in G^{SCC}

- In the next two slides, we shall show that some node in SCC(w) must finish later than any node in SCC(v)
 - Consequently, u cannot be in SCC(v)

Proof

```
Let x = 1st node in SCC(w)
                              Inside G
             discovered by
  DFS
Let y = 1st node in SCC(v)
             discovered by
                                SCC(w)
                                           SCC(v)
  DFS
Let z = last node in SCC(v)
By white-pathinished entry, we must have DFS
           d(y) \le d(z) < f(z) \le f(y)
// Note: z may be the same as y
```

Proof

If
$$d(x) < d(y)$$

- then y becomes x's descendant (by white-path)
- · since x cannot be y's
 - descendant (otherwise, they are in the same SCC)
 - \rightarrow d(y) < f(y) < d(x) < f(x)
 - \rightarrow f(z) \leq f(y) < f(x)

Inside G

Finding SCC

- So, we know that u
 (last finished node of G) must
 be in an SCC with no
 incoming edges
- Let us reverse edge directions, and start DFS on G^T from u

Question: Who will be u's descendants?

Finding SCC

 Note that nodes in the SCC containing u cannot connect to nodes in other SCCs in G^T

 By white-path theorem, the descendants of u in G^T must be exactly those nodes in the same SCC as u

Finding SCC

- Once DFS on u inside G^T has finished, all nodes in the same SCC as u are finished
 - \rightarrow Any subsequent DFS in G^T will be made as if this SCC was removed from G^T
- Now, let u' be the remaining node in G^T whose finishing time (in DFS in G) is latest
 - Where can u' be located?
 - Who will be the descendents of u' if we perform DFS in G^T now?

 Our observations lead to the following algorithm for finding all SCCs of G: Finding-all-SCC(G) { 1. Perform DFS on G; 2. Construct G^{T} : 3. while (some node in G^{T} is undiscovered) { u = undiscovered node with latest finishing time**; Perform DFS on G^T from u; } // nodes in the DFS tree from u forms an SCC

// ** Finishing times always refer to Step 1's DFS

Correctness & Performance

 The correctness of the algorithm can be proven by induction

(Hint: Show that at each sub-search in Step 3, u is chosen from an SCC which has no outgoing edges to any nodes in an "unvisited" SCC of G^T .

→ By white-path theorem, exactly all nodes in the same SCC become u's descendants)

Running Time: O(|V|+|E|) (why?)