Design and Analysis of Algorithms
instructor: Sharma Thankachan

Lecture 11:
Elementary Graph Algorithms I
About this lecture

• Representation of Graph
 • Adjacency List, Adjacency Matrix

• Breadth First Search
Graph

undirected

directed
Adjacency List (1)

- For each vertex \(u \), store its neighbors in a linked list

![Graph representation](image-url)
Adjacency List (2)

- For each vertex u, store its neighbors in a linked list
Adjacency List (3)

• Let $G = (V, E)$ be an input graph
• Using Adjacency List representation:
 • Space: $O(|V| + |E|)$
 ➔ Excellent when $|E|$ is small
 • Easy to list all neighbors of a vertex
 • Takes $O(|V|)$ time to check if a vertex u is a neighbor of a vertex v
• can also represent weighted graph
Adjacency Matrix (1)

- Use a $|V| \times |V|$ matrix A such that

 $A(u,v) = 1$ if (u,v) is an edge

 $A(u,v) = 0$ otherwise
Adjacency Matrix (2)

- Use a $|V| \times |V|$ matrix A such that

 $A(u,v) = 1$ if (u,v) is an edge
 $A(u,v) = 0$ otherwise

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{pmatrix}
\]
Adjacency Matrix (3)

• Let $G = (V, E)$ be an input graph
• Using Adjacency Matrix representation:
 • Space: $O(|V|^2)$
 ➔ Bad when $|E|$ is small
 • $O(1)$ time to check if a vertex u is a neighbor of a vertex v
 • $\Theta(|V|)$ time to list all neighbors
• can also represent weighted graph
Transposing a Matrix

- Let A be an $n \times m$ matrix

Definition:

The transpose of A, denoted by A^T, is an $m \times n$ matrix such that

$$A^T(u,v) = A(v,u) \quad \text{for every } u, v$$

- If A is an adjacency matrix of an undirected graph, then $A = A^T$
Breadth First Search (BFS)

- A simple algorithm to find all vertices reachable from a particular vertex \(s \)
 - \(s \) is called source vertex

- Idea: Explore vertices in rounds
 - At Round \(k \), visit all vertices whose shortest distance \((\#\text{edges})\) from \(s \) is \(k-1 \)
 - Also, discover all vertices whose shortest distance from \(s \) is \(k \)
The BFS Algorithm

1. Mark s as discovered in Round 0

2. For Round $k = 1, 2, 3, \ldots$,
 For (each u discovered in Round $k-1$)
 \[
 \begin{align*}
 \{ & \text{ Mark } u \text{ as visited} ; \\
 & \text{ Visit each neighbor } v \text{ of } u ; \\
 & \text{ If (v not visited and not discovered) } \\
 & \quad \text{ Mark } v \text{ as discovered in Round } k ; \\
 \}
 \end{align*}
 \]
Stop if no vertices were discovered in Round $k-1$
Example \((s = \text{source})\)

- Visited nodes: \(r, s, t, u\)
- Discovered nodes: \(v, w, x, y\)
- Direction of edge when new node is discovered:
 - \(r\) to \(s\)
 - \(s\) to \(t\)
 - \(t\) to \(u\)
 - \(v\) to \(w\)
 - \(w\) to \(x\)
 - \(x\) to \(y\)

\(\text{visited} \quad (?= \text{discover time})\)

\(\text{discovered} \quad (?= \text{discover time})\)

\(\text{direction of edge when new node is discovered}\)
Example ($s = source$)

- Visited: v?
- Discovered: v?
- Direction of edge when new node is discovered: $
ightarrow$

Diagram:
- Nodes: s, r, t, u, v, w, x, y
- Edges:
 - s to r
 - s to v
 - r to v
 - r to s
 - t to x
 - t to w
 - u to v
 - u to w
 - u to x
 - u to y

Discover times:
- s: 0
- r: 1
- t: 2
- u: 1
- v: 1
- w: 1
- x: 2
- y: 1
Example \((s = \text{source})\)

- **Visited**: (\(\text{?} = \text{discover time}\))
- **Discovered**: (\(\text{?} = \text{discover time}\))
- **Direction of edge when new node is discovered**
Example \((s = \text{source})\)

The directed edges form a tree that contains all nodes reachable from \(s\)

Called \textit{BFS tree} of \(s\)

Done when no new node is discovered
Correctness

• The correctness of BFS follows from the following theorem:

Theorem: A vertex v is discovered in Round k if and only if shortest distance of v from source s is k

Proof: By induction
Performance

• BFS algorithm is easily done if we use
 • an $O(|V|)$-size array to store discovered/visited information
 • a separate list for each round to store the vertices discovered in that round

• Since no vertex is discovered twice, and each edge is visited at most twice (why?)

 ➔ Total time: $O(|V|+|E|)$
 ➔ Total space: $O(|V|+|E|)$
Performance (2)

- Instead of using a separate list for each round, we can use a common queue
 - When a vertex is discovered, we put it at the end of the queue
 - To pick a vertex to visit in Step 2, we pick the one at the front of the queue
 - Done when no vertex is in the queue

⇒ No improvement in time/space ...
⇒ But algorithm is simplified

Question: Can you prove the correctness of using queue?