Design and Analysis of Algorithms

Instructor: Sharma Thankachan

Lecture 1: Getting Started
About this lecture

• Study a few simple algorithms for sorting
 - Insertion Sort
 - Selection Sort
 - Merge Sort
• Show why these algorithms are correct
• Try to analyze the efficiency of these algorithms (how fast they run)
The Sorting Problem

Input: A list of \(n \) numbers
Output: Arrange the numbers in increasing order

Remark: Sorting has many applications. E.g., if the list is already sorted, we can search a number in the list faster
Insertion Sort

• Operates in n rounds
• At the k^{th} round,

Swap towards left side; Stop until seeing an item with a smaller value.

Question: Why is this algorithm correct?
Selection Sort

- Operates in n rounds
- At the k^{th} round,
 - Find minimum item after $(k-1)^{th}$ position
 - Let’s call this minimum item X
 - Insert X at k^{th} position in the list

Question: Why is this algorithm correct?
Divide and Conquer

• Divide a big problem into smaller problems
 ➔ solve smaller problems separately
 ➔ combine the results to solve original one

• This idea is called **Divide-and-Conquer**

• Smart idea to solve complex problems *(why?)*

• Can we apply this idea for sorting?
Divide-and-Conquer for Sorting

• What is a smaller problem?
 ➡ E.g., sorting fewer numbers
 ➡ Let’s divide the list to two shorter lists

• Next, solve smaller problems (how?)

• Finally, combine the results
 ➡ “merging” two sorted lists into a single sorted list (how?)
Merge Sort

• The previous algorithm, using divide-and-conquer approach, is called **Merge Sort**.

• The key steps are summarized as follows:
 Step 1. Divide list to two halves, A and B.
 Step 2. Sort A using Merge Sort.
 Step 4. Merge sorted lists of A and B.

Question: Why is this algorithm correct?
Analyzing the Running Times

• Which of previous algorithms is the best?

• Compare their running time on a computer
 – But there are many kinds of computers !!!

Standard assumption: Our computer is a RAM (Random Access Machine), so that
 – each arithmetic (such as $+$, $-$, \times, \div), memory access, and control (such as conditional jump, subroutine call, return) takes constant amount of time
Suppose that our algorithms are now described in terms of RAM operations:

- we can count # of each operation used
- we can measure the running time!

Running time is usually measured as a function of the input size:
- E.g., n in our sorting problem
Insertion Sort (Running Time)

The following is a pseudo-code for Insertion Sort. Each line requires constant RAM operations.

<table>
<thead>
<tr>
<th>INSERTION-SORT(A)</th>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 for (j \leftarrow 2) to length[A]</td>
<td>(c_1)</td>
<td>(n)</td>
</tr>
<tr>
<td>2 do key (\leftarrow A[j])</td>
<td>(c_2)</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>(\triangleright) Insert (A[j]) into the sorted sequence (A[1..j-1]).</td>
<td>(0)</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>4 (i \leftarrow j - 1)</td>
<td>(c_4)</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>5 while (i > 0) and (A[i] > key)</td>
<td>(c_5)</td>
<td>(\sum_{j=2}^{n} t_j)</td>
</tr>
<tr>
<td>6 do (A[i+1] \leftarrow A[i])</td>
<td>(c_6)</td>
<td>(\sum_{j=2}^{n} (t_j - 1))</td>
</tr>
<tr>
<td>7 (i \leftarrow i - 1)</td>
<td>(c_7)</td>
<td>(\sum_{j=2}^{n} (t_j - 1))</td>
</tr>
<tr>
<td>8 (A[i+1] \leftarrow key)</td>
<td>(c_8)</td>
<td>(n - 1)</td>
</tr>
</tbody>
</table>

\(t_j = \text{# of times key is compared at round } j \)
Insertion Sort (Running Time)

- Let $T(n)$ denote the running time of insertion sort, on an input of size n.
- By combining terms, we have

$$T(n) = c_1n + (c_2+c_4+c_8)(n-1) + c_5\sum t_j + (c_6+c_7)\sum (t_j - 1)$$

- The values of t_j are dependent on the input (not the input size).
Insertion Sort (Running Time)

• Best Case:
The input list is sorted, so that all $t_j = 1$
Then, $T(n) = c_1n + (c_2+c_4+c_5+c_8)(n-1)$
 $= Kn + c$ \Rightarrow linear function of n

• Worst Case:
The input list is sorted in decreasing order, so that all $t_j = j-1$
Then, $T(n) = K_1n^2 + K_2n + K_3$
 \Rightarrow quadratic function of n
Worst-Case Running Time

• In our course (and in most CS research), we concentrate on worst-case time

• Some reasons for this:
 1. Gives an upper bound of running time
 2. Worst case occurs fairly often

Remark: Some people also study average-case running time (they assume input is drawn randomly)
Try this at home

• Revisit pseudo-code for Insertion Sort
 - make sure you understand what’s going on

• Write pseudo-code for Selection Sort
Merge Sort (Running Time)

The following is a partial pseudo-code for Merge Sort.

```
MERGE-SORT(A, p, r)
1   if p < r
2      then q ← ⌊(p + r)/2⌋
3   MERGE-SORT(A, p, q)
4   MERGE-SORT(A, q + 1, r)
5   MERGE(A, p, q, r)
```

The subroutine MERGE(A,p,q,r) is missing. Can you complete it?

Hint: Create a temp array for merging
Merge Sort (Running Time)

• Let $T(n)$ denote the running time of merge sort, on an input of size n
• Suppose we know that Merge() of two lists of total size n runs in $c_1 n$ time
• Then, we can write $T(n)$ as:
 - $T(n) = 2T(n/2) + c_1 n + c_2$ when $n > 1$
 - $T(n) = c_3$ when $n = 1$
• Solving the recurrence, we have
• $T(n) = K_1 n \log n + K_2 n + K_3$
Which Algorithm is Faster?

• Unfortunately, we still cannot tell
 - since constants in running times are unknown

• But we do know that if \(n \) is VERY large, worst-case time of Merge Sort must be smaller than that of Insertion Sort

• Merge Sort is asymptotically faster than Insertion Sort