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Abstract

In this paper we introduce a novel method to detect and
localize abnormal behaviors in crowd videos using Social
Force model. For this purpose, a grid of particles is placed
over the image and it is advected with the space-time av-
erage of optical �ow. By treating the moving particles as
individuals, their interaction forces are estimated usingso-
cial force model. The interaction force is then mapped into
the image plane to obtain Force Flow for every pixel in ev-
ery frame. Randomly selected spatio-temporal volumes of
Force Flow are used to model the normal behavior of the
crowd. We classify frames as normal and abnormal by using
a bag of words approach. The regions of anomalies in the
abnormal frames are localized using interaction forces. The
experiments are conducted on a publicly available dataset
from University of Minnesota for escape panic scenarios
and a challenging dataset of crowd videos taken from the
web. The experiments show that the proposed method cap-
tures the dynamics of the crowd behavior successfully. In
addition, we have shown that the social force approach out-
performs similar approaches based on pure optical �ow.

1. Introduction

One of the most challenging tasks in computer vision is
analysis of human activity in crowded scenes. While under-
standing of actions performed by individuals is a problem
yet to be fully solved, crowd scene analysis faces even more
challenges like emergent behaviors and self-organizing ac-
tivities [11].

Crowd behavior analysis in computer vision is a new
area of interest in the research community which could po-
tentially lend itself to a host of new application domains,
such as automatic detection of riots or chaotic acts in crowds
and localization of the abnormal regions in scenes for high
resolution analysis.

Crowd behavior analysis is thoroughly studied in the
�eld of transportation and public safety where some well-
established models have been developed for describing the
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Figure 1. (a) The Optical �ow (yellow) and the computed inter-
action force (red) vectors of two sampled frames. Note that the
interaction force is computed accordingly for pedestrians who are
approaching each other (red box). (b) An example of detection
of escape panic using the proposed approach. Green denotes the
normal and red denotes the abnormal frame.

individual and group behaviors in crowded scenes [17][18].
At high level, there are three main approaches in model-
ing the crowds in this community. (1) Microscopic ap-
proach which de�nes pedestrians' motivation in movement
and treats crowd behaviors as a result of a self-organization
process. Social Force Model by Helbinget al. in [17] is
the best known example of this approach. (2) Macroscopic
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approach which focuses mainly on goal-oriented crowds.
In this approach, a set of group-habits is determined based
on the goals and destinations of the scene. Pedestrians are
then partitioned into different groups to follow the predeter-
mined habits. Therefore, instead of determining the motion
of individuals the group behaviors are modeled [18][13]. (3)
Hybrid methods which inherit from macroscopic models as
well as microscopic ones [28].

Based on socio-psychological studies, Helbinget al. in
[17] originally introduced Social Force model to investi-
gate the pedestrian movement dynamics. The social force
captures the effect of the neighboring pedestrians and the
environment on the movement of individuals in the crowd.
Later, Helbing published his popular [10] work in combin-
ing the collective model of social panic with social force
model to create a generalized model. In this model, both
psychological and physical effects are considered in formu-
lating the behavior of the crowd.

Recently, the computer vision community has focused
on crowd behavior analysis. In [6] a review of the latest re-
search trends and approaches from different research com-
munities is provided. There are two main approaches in
solving the problem of understanding crowd behaviors. In
the conventional approach, which we refer as the “object-
based” methods, a crowd is considered as a collection of
individuals [22][19]. Therefore, to understand the crowd
behavior it is necessary to perform segmentation or de-
tect objects to analyze group behaviors [7]. This approach
faces considerable complexity in detection of objects, track-
ing trajectories, and recognizing activities in dense crowds
where the whole process is affected by occlusions. On
the other hand, “holistic” approaches [15][2] consider the
crowd as a global entity in analysis of medium to high den-
sity scenes. In related works by Avidanet al. in [23] and
Chan and Vasconcelos in [8], instead of tracking individ-
ual objects, scene modeling techniques are used to capture
features for the crowd behavior and car traf�c respectively.
These are top-down approaches which directly tackle the
problem of dense occluded crowds in contrast to the object-
based methods. In addition, there are some works that mix
the bottom-up view of object-based methods with top-down
methods such as Ali and Shah's [3] for tracking humans in
very dense crowds.

Meanwhile, crowd behavior analysis has been an ac-
tive research topic in simulation and graphic �elds where
the main goal is to create realistic crowd motions. The
real crowd motion exhibits complex behaviors like line
forming [18], laminar and turbulent �ow [14][29], arch-
ing and clogging at exits, jams around obstacles [17], and
panic [10]. Exact simulation of a crowd using behav-
ior modeling leads to design of proper public environ-
ments that minimize the possibility of the hazardous events.
Furthermore, in the graphics community, accurate mod-
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Figure 2. The summary of the proposed approach for abnormal
behavior detection in the crowd videos.

eling of the crowd movements is used to create realis-
tic special effects of crowds without the need for human
actors[25][9][20][27].

1.1. Overview of the Method

In this paper, we introduce a computer vision method
to detect and localize abnormal crowd behavior using the
Social Forcemodel [17]. Social force model describes the
behavior of the crowd as the result of interaction of individ-
uals. Therefore, the abnormal crowd behavior is essentially
an eccentric state of the crowd interactions. Since social
force model in [17] emulates the crowd dynamics with a
high degree of accuracy, we conclude that abnormal social
forces in the crowd portray abnormal behaviors. We esti-
mate the social force parameters to create a model of likely
behaviors in the crowd.

Figure 2 summarizes the main steps of the algorithm. In
our method, we avoid tracking of objects to avert typical
problems in tracking of high density crowds such as exten-
sive clutter and dynamic occlusions. Instead, we incorpo-
rate a holistic approach to analyze videos of crowds using
the particle advection method similar to [2]. In this ap-
proach, we place a grid of particles over the image and move
them with the underlying �ow �eld. We compute the social
force between moving particles to extract interaction forces.
In a crowd scene, the change of interaction forces in time
determines the on going behavior of the crowd. We cap-
ture this by mapping the interaction forces to image frames.
The resulting vector �eld is denoted asforce �ow, which
is used to model the normal behaviors in a bag of words
approach [12].

Andradeet al. [15] proposed a method for event detec-
tion in the crowd scene using HMM. However, the princi-
pal contribution of our work is to capture dynamics of the
interaction forces in the crowd in addition to optical �ow.
Antonini et al. [16] reported a model for describing pedes-
trian behaviors to enhance tracking and detection. On the
contrary, our primary goal is to introduce a holistic method
independent of object tracking to detect abnormal crowd be-
haviors. Ali and Shah in [2] proposed a method for segmen-
tation of high density crowds by introducing a method based
on Coherent Structures from �uid dynamics and particle ad-



vection. Their method is capable of detecting instabilities
in the crowd by identifying changes in the segmentation.
Even though our work uses the same framework for particle
advection, we use a completely different course by estimat-
ing the interaction forces of people in the crowd and detect
anomalies directly without segmentation.

The organization of this paper is as follows. In the next
section we introduce Social Force model for modeling the
crowd movement. In Section 3 we introduce our method
to estimate the social forces in the crowd. Section 4 de-
scribes the proposed method to detect abnormal behaviors
in the crowd. Finally, in Section 5 we demonstrate abilities
of the approach to detect and localize abnormal behaviors
on a publicly available dataset.

2. Social Force Model

In the following, we describe social force model for
pedestrian motion dynamics by considering personal mo-
tivations and environmental constraints. In this model, each
of N pedestriansi with mass ofmi changes his/her velocity
vi as

mi
dvi

dt
= Fa = Fp + Fint ; (1)

as a result of actual forceFa , and due to individualistic
goals or environmental constraints. This force consists of
two main parts: (1) personal desire forceFp, and (2) inter-
action forceFint .

People in crowds generally seek certain goals and desti-
nations in the environment. Thus, it is reasonable to con-
sider each pedestrian to have a desired direction and veloc-
ity vp

i . However, the crowd limits individual movement and
the actual motion of pedestrianvi would differ from the de-
sired velocity. Furthermore, individuals tend to approach
their desired velocityvp

i based on the personal desire force

Fp =
1
�

(vp
i � vi ); (2)

where� is the relaxation parameter.
The interaction forceFint consists of the repulsive and

attraction forceFped based on psychological tendency to
keep a social distance between pedestrians and an environ-
ment forceFw to avoid hitting walls, buildings, and other
obstacles. Therefore, theinteraction forceis de�ned as

Fint = Fped + Fw : (3)

It is logical to model pedestrians such that they keep
small distances with people they are related or attracted to
and keep far distances from discomforting individuals or en-
vironments. In social force model, these forces are de�ned
based on potential �elds functions. Further elaboration of
this issue is not in the interest of this paper and readers
are referred to [17] and [10] for detailed discussion of these

functions. In this paper, we focus our attention to estimate
the interaction forceFint between pedestrians as a single
quantity.

Generalized social force model considers the effect of
panicwhere herding behaviors appear in event like escaping
from a hazardous incident. In this model, personal desire
velocity vp

i is replaced with

vq
i = (1 � pi )v

p
i + pi hvc

i i ; (4)

wherepi is the panic weight parameter andhvc
i i is the aver-

age velocity of the neighboring pedestrians. The pedestrian
i exhibits individualistic behaviors aspi ! 0 and herd-
ing behaviors aspi ! 1. Overall, generalized social force
model can be summarized as

mi
dvi

dt
= Fa =

1
�

(vq
i � vi ) + Fint : (5)

Generalized social force model is the cornerstone for
many studies in simulation of crowd behavior [14] [29][26]
in addition to the studies in computer graphics [21][5][25]
for creating realistic animations of the crowd. Furthermore,
estimation of parameters of the model provides valuable in-
formation about the governing dynamics of the crowd [4].

3. Estimation of Interaction Forces in Crowds

In this section, we describe the process of estimation of
interaction forcesFint from a video of a crowd using so-
cial force model. The ideal case for computing the social
force is to track all objects in the crowd and estimate the
parameters as in [4]. However, tracking of individuals in a
high density crowd is still a challenging problem in com-
puter vision [3]. In a nutshell, low resolution images of the
objects in the dense crowd, dynamic and static occlusions,
and similarity of the objects have made the tracking of in-
dividuals in the crowd a daunting task. Therefore, in the
crowded scenes, object-based methods fall short in accurate
estimation of social force parameters.

It has been observed that when people are densely
packed, individual movement is restricted and members of
the crowd can be considered granular particles [3]. Thus, in
the process of estimating the interaction forces, we treat the
crowd as a collection of interacting particles. Similar to [2],
we put a grid of particles over the image frame and move
them with the �ow �eld computed from the optical �ow. To
analyze the scene, we treat moving particles as the main cue
instead of tracking individual objects. As the outcome, the
proposed method does not depend on tracking of objects;
therefore, it is effective for the high density crowd scenesas
well as low density scenes. Furthermore, the particle advec-
tion captures the continuity of the crowd �ow which neither
optical �ow nor any instantaneous measure could capture
[24] [2].



Figure 3. An example of particle advection using the average opti-
cal �ow �eld and the corresponding interaction forces. (Left) The
trajectories of a small set of particles are depicted for demonstra-
tion. (Right) The set of computed interaction forces of particles.

In the next section we describe a modi�cation of social
force model to operate on moving particles instead of pedes-
trians and we discuss the advection of particles using the
optical �ow. In Section 3.2, we introduce the modi�cation
of the generalized social force model for particle advection.

3.1. Particle Advection

To advect particles, we compute the average optical �ow
�eld Oave , which is the average of the optical �ow over a
�xed window of time and as well as space. The spatial aver-
age is done by a weighted average using a gaussian kernel.
To start the particle advection process, we put a grid ofN
particles over the image and move the particles with the cor-
responding �ow �eld they overlay. The effective velocity of
particles is computed using a bilinear interpolation of the
neighboring �ow �eld vectors.

Using the described particle advection process, particles
move with the average velocity of their neighborhood. This
resembles the collective velocity of a group of people in the
crowd. Figure 3 illustrates a example of particle advection.

3.2. Computing the Social Force

As a tangible analogy, the particles moving by optical
�ow resemble the motion of the leaves over a �ow of water.
This notion helps in understanding the modi�cation of so-
cial force model for the particle grid. In the case of leaves,
wherever there is an obstacle, joining, or branching of the
�uid, the leaves have different velocities than the average
�ow. By analogy, we conclude that particles are also ca-
pable of revealing divergent �ows in the regions that their
desired movement is different from the average �ow.

We modify Equation 5 for particle advection by de�ning
the actual velocity of the particlevi as

vi = Oave (x i ; yi ); (6)

where Oave (x i ; yi ) is the effective spatio-temporal aver-
age of optical �ow for the particlei and in the coordinate
(x i ; yi ). We write the desired velocity of the particlevq

i as

vq
i = (1 � pi )O(x i ; yi ) + pi Oave (x i ; yi ); (7)

whereO(x i ; yi ) is the optical �ow of particlei in the co-
ordinate(x i ; yi ). The effective average �ow �eld and ef-
fective optical �ow of particles are computed using linear
interpolation.

Using the above modi�cation, particles move with the
collective velocity of the �ow of the crowd. Furthermore,
each particle has a desired velocity which depends on the
current optical �ow. Hence, any difference between the de-
sired velocity of the particle and its actual velocity relates to
interaction of the particle with the neighboring particlesor
the environment. Figure 3 demonstrates an example of the
computed interaction force for a sub-sample set of particles.

Without loss of generality, for a given scene or certain
type of crowd with consistently similar sizes of objects, we
assume thatmi = 1 . Hence, we can simply estimate inter-
action force,Fint , from equation 5 for every particle as

Fint =
1
�

(vq
i � vi ) �

dvi

dt
: (8)

4. Event Detection

The computed interaction forces determine the synergy
between advecting particles. However, discrete value of
forces is not a clear evidence of abnormal behaviors. For in-
stance, in a normal scene of a stock market, the interaction
force of stock brokers would be quite higher than the inter-
action forces of walking pedestrians in a street scene. In
other words, the instantaneous forces in a scene do not dis-
criminate the abnormalities but the pattern of forces over a
period of time does. In the following, we propose a method
to model the normal patterns of forces over time.

In this method, we map the magnitude of the interaction
force vectors to the image plane such that for every pixel in
the frame there is a corresponding force vector. As a result,
for a stream of image framesI (t) of m pixels, we construct
a feature matrix offorce �ow Sf (t) of the same resolution.
Figure 5 illustrates force �ow for a sample of frames of a
video stream.

The process of identifying the likely patterns in theSf (t)
is a special case of scene modeling which is considerably
studied in computer vision. The bag of words [12] method
is one of the typical candidates for such an analysis. In
this paper, we consider using bag of words method to esti-
mate the likelihood force �owSf (t) and we use only nor-
mal videos for training LDA.

To use LDA, we partition the force �ow into blocks ofT
frames which we refer asClips. Next, from each clipD j ,
K visual wordsZ j are extracted. We randomly pick visual
words of sizen � n � T from locations inforce �ow where
corresponding optical �ow is not zero. Finally, a code book
of size C is formed using K-means clustering. Figure 4
illustrates the process of computingforce �ow and the ex-
traction of visual words.
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Figure 4. The overall demonstration of the algorithm. Using the average optical �ow �eld, a grid of particles is updated and the interaction
forces between particles are computed. The forces are mapped backto the image space to construct the force �ow. Visual words are
randomly picked as 3D volumes of features from the force �ow to use in LDA model.

Figure 5. Examples of the computed force �eld for one example
video sequence. The image on the top left is the �rst frame, and
the rest are sample frames of the sequence with alpha channel of
forces overlayed. The color map Jet is used so red values represent
higher forces where as blue values represent low force �ow.

Therefore, for a set of normal force �ows of a given
scene or a group of similar scenes, we construct the cor-
pusD = f D1; D2; D3; :::; DM g and we use Latent Dirich-
let Allocation (LDA) [12] to discover the distribution ofL
topics for the normal crowd behavior. Using the modi�ed
Expectation Maximization (EM) algorithm in [12], we ap-
proximate the bag of words model to maximize the likeli-
hood of corpus as

`(�; � ) =
MX

j =1

logp(D j j�; � ); (9)

where� and � are the learned model parameters. By us-
ing the model, we estimate the likelihoodlogp(D j j�; � )
for every clip from the video sequence. Based on a �xed
threshold on the estimated likelihood, we label frames as

normal or as abnormal.

4.1. Localization of Abnormalities

Using LDA model with force �ows, we distinguish ab-
normal frames from the normal frames. Although it is really
helpful to localize regions in the frame that correspond to
the abnormalities, the bag of words method does not implic-
itly provide a method to localize the unlikely visual words.
As we discussed earlier, the force �ow reveals the interac-
tion forces in the scene, which correspond to the activities
in the scene. In an abnormal scene, we expect the anomalies
to occur in active regions or the regions with higher social
interactions. Therefore, we localize abnormalities in theab-
normal frame by locating the regions of high force �ow.

5. Experiments and Discussion

5.1. The UMN Dataset

The approach is tested on the publicly available dataset
of normal and abnormal crowd videos from University of
Minnesota [1]. The dataset comprises the videos of 11 dif-
ferent scenarios of an escape event in 3 different indoor and
outdoor scenes. Figure 6 shows sample frames of these
scenes. Each video consists of an initial part of normal be-
havior and ends with sequences of the abnormal behavior.

In the particle advection phase, the resolution of the par-
ticle grid is kept at25% of the number of pixels in the
�ow �eld for computational simplicity. For computation
of the interaction forces, the panic parameter is kept �xed
aspi = 0 . Therefore, the interaction forces are computed
by assuming that the crowd is not in panic in normal mo-
tion. As a result, any high magnitude interaction force re-
lates to activities different from the collective movementof
the crowd. The force �ow is computed by linear mapping
of the force �eld into an image of the same resolution as the
video frame. For construction of visual words, we used 3D
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Figure 6. Sample frames in three different scenes of the UMN
dataset: Normal (left) and abnormal (right).

volumes of5 � 5 � 10. K = 30 visual words are extracted
from block ofT = 10 frames of force �ow with one frame
overlap. The �nal codebook containsC = 10 clips. The
LDA is used to learnL = 30 latent topics.

To evaluate the approach, 5 different video sequences of
the �rst scene are selected and LDA model is created for
visual words from the frames with normal behavior. The
trained model is used to estimate the likelihood of being
normal for blocks ofT frames. Therefore, the method chops
any input video into clips ofT frames and labels all frames
in each clip as normal or abnormal. Figure 7 shows some
of the qualitative results for detection of abnormal scenes.
In each row, the �gure depicts the �rst frame of the se-
quence on the left and a detected abnormal frame on the
right. The black triangles on the horizontal bars identify
the timing of the shown abnormal frames. The false posi-
tive detections in Figure 7 are result of incorrect estimation
of social forces. Overall, these results show that estimated
social force model is capable of detecting the governing dy-
namics of the abnormal behavior, even in the scenes that it
is not trained. All videos in the dataset exhibit behavior of
escape panic and the proposed approach successfully mod-
els the dynamics of the abnormal behavior regardless of the
scene characteristics.

In addition, we demonstrate the power of the proposed
social force model in capturing the abnormal behaviors in
contrast to use of optical �ow. In this experiment, instead
of force �ow, we use spatio-temporal patches of optical �ow
as visual words. Thus, we create a codebook from optical
�ow information to learn a LDA model. We use the same
parameters for LDA training in the experiment with optical
�ow. Therefore, the blocks of10 frames of the magnitude
of the optical �ow are used as clips to learn the distribution
of latent topics and to compute the likelihood of frames. We
use the same dataset for this experiment with the same set
of parameters for learning LDA model. The ROC curves
in Figure 9 illustrate that the the proposed method outper-
forms the method based on pure optical �ow in detecting
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Detection Result

Ground Truth

Detection Result

Ground Truth

Detection Result
Frame # 186

Frame # 216

Frame # 473

216Frame # 

Figure 7. The qualitative results of the abnormal behavior detec-
tion for four sample videos of UMN dataset. Each row represents
the results for a video in the dataset. The ground truth bar and
the detection bar represent the labels of each frame for that video.
Green color represents the normal frames and red corresponds to
abnormal frames. The left column shows the �rst frame of the
video and the right column is the �rst frame of the detected abnor-
mal block (black triangles).

abnormalities, and Table 1 provides the quantitative results
of the comparison.

In Figure 8, we demonstrate the qualitative results of lo-
calization of abnormal behaviors in the crowd, where the
escaping individuals are highlighted as abnormal areas of
frames. The results show that the interaction forces are ca-



Method Area under ROC
Social Force 0.96
Pure Optical Flow 0.84

Table 1. The comparison of the use of the proposed social force
method and pure optical �ow for detection of the abnormal behav-
iors in the UMN dataset.

Figure 8. The localization of the abnormal behaviors in the frames
using the interaction force. Original frames (left), Localized ab-
normal behaviors(right). Red pixels correspond to the the highly
probable abnormal regions.
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Figure 9. The ROCs for detection of abnormal frames in the UMN
dataset. Proposed method (Red) outperforms use of pure optical
�ow (Blue).

pable of locating the abnormalities in the regions that are
occupied by the crowd. As the �gure shows, the proposed
method provides regions of abnormality and does not label
individuals.

5.2. The Web Dataset

To evaluate our method in practical applications, we con-
duct an experiment on a challenging set of videos which
has been collected from the sites like Getty Images and
ThoughtEquity.com which contain documentary and high

Figure 10. Sample frames of6 sequences of our web dataset. (Left
Column) Normal samples. (Right column) Abnormal samples.
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Figure 11. The ROCs of abnormal behavior detection in the web
dataset.

quality videos of crowds in different urban scenes. The
dataset comprises12 sequences of normal crowd scenes
such as pedestrian walking, marathon running, and8 scenes
of escape panics, protesters clashing, and crowd �ghting as
abnormal scenes. All the frames are resized to the �xed
width of 480pixels. Figure 10 shows sample frames of the
normal and abnormal sequences.

In this experiment, the resolution of the particle grid is
kept at10%of the number of original pixels. For construc-
tion of visual words, we extractedK = 30 similar5� 5� 10
volumes from a block ofT = 10 frames of force �ow. The
codebook for this experiment containsC = 30 clips and
the LDA is used to learnL = 50 latent topics. To learn the
LDA model, we used the normal sequences in a 2-fold fash-
ion. We randomly excluded2 sequences from the normal
set and trained on the rest. In the testing phase we added
the excluded sequences to the test set. We did this exper-
iment 10 times and constructed the ROC by averaging the
results of these experiments.

The ROC in Figure 11 demonstrates that the proposed
method outperforms optical �ow method to distinguish ab-
normal sequences.



6. Conclusion

Using social force model, we introduce a method to de-
tect abnormal behaviors in crowd scenes. We address the
ability of the method to capture the dynamic of crowd be-
havior based on the interaction forces of individuals without
the need to track objects individually or perform segmenta-
tion. The results of our method, indicates that the method
is effective in detection and localization of abnormal behav-
iors in the crowd.
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