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Abstract— It is well known that a nonlinear optimal control
requires the solution to a two-point boundary value problem
or to a nonlinear partial differential equation and that such a
solution can only be obtained off line by numerical iteration. In
this paper, a new and near-optimal control design framework
is proposed for controlling any nonholonomic system in the
chained form. The proposed design is based upon thorough
study of uniform complete controllability of the corresponding
linear time varying nominal system. It is shown that, no matter
whether the first component u1d(t) of reference input vector
is uniformly nonvanishing or simply nonconvergent to zero or
vanishing or identically zero, uniform complete controllability
of the (nominal) system can be recovered by employing the
proposed time-folding/unfolding technique. Upon establishing
the common property of uniform complete controllability, the
proposed framework can be used to design both trajectory track-
ing control and regulation control in a systematic and unified
manner. Using duality, uniform complete observability can also be
established, a closed-form and exponentially convergent observer
can be synthesized, and the controls designed using the proposed
framework can be either state-feedback or output-feedback.The
tracking controls are designed using the same 3-step process. That
is, design of the proposed controls starts with optimal control
solutions to two linear nominal subsystems, one time-invariant
and the other time varying. The two solutions combined together
render a globally stabilizing suboptimal control for the overall
system. Then, the optimality condition is invoked to determine
the distance between the suboptimal control and the optimal
one. Consequently, an improved control can be obtained by
introducing a nonlinear additive control term in such a way that
the distance aforementioned is minimized as much as possible in
closed form. An example is used to show that regulation control
can be designed similarly. All the controls designed are in simple
closed forms and hence real-time implementable, they are time
varying and smooth, globally and exponentially/asymptotically
stabilizing, and they are near optimal since their closeness to
the optimal control (attainable only off-line) can be measured,
monitored on line, and has been minimized.

Index Terms— Nonholonomic chained systems, near-optimal
control, state feedback, output feedback, tracking control.

I. I NTRODUCTION

Control of nonholonomic systems has received a great deal
of attention [1], and many designs have been proposed. It has
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been shown in [2] that mechanical systems with nonholonomic
constraints can be either locally or globally converted to the
so-called chained form under a coordinate transformation and
a control mapping. As a result, the chained form has been
used as a canonical form in analysis and control design for
nonholonomic systems. The chained form is also equivalent to
the so-called power canonical form [3] and skew-symmetric
chained form [4], and their dynamic extension has been
explored in [5].

One of the main reasons of continuing research interests is
that, by Brockett’s theorem [6], nonholonomic systems cannot
be asymptotically stabilized around a fixed point under any
smooth (or even continuous) time-independent state feedback
control law. Consequently, there has been a divide between the
control design of making the system track a desired trajectory
and the design of stabilizing the system around a point, and
different approaches have been used to tackle each of the two
problems or their combination.

The problem of regulation control (or posture stabilization)
is to stabilize a constrained system at any given point in the
state space. One line of the research efforts is to devise time-
implicit but discontinuous feedback control laws, and the most
notable among them is the time-invariant coordinates and con-
trol transformations (also known as theσ-process) proposed in
[7]. The transformations are well defined everywhere excepton
the hyperplane ofx1 = 0 and, off the singularity hyperplane,
they map the chained form into a linear time-invariant system
by which stabilization can easily be achieved. If the initial
condition happens to be on the hyperplane, a separate control
law is designed to drive the state off the plane. Hence, the final
control contains two separate laws and is discontinuous. The
switching control guarantees exponential stability but, besides
being discontinuous, contains terms such asxi(t)/xi−2

1 (t)
which may be excessively large around the singularity hyper-
plane. In [8], the switching control law is re-designed using an
algebraic Riccati equation related to the time-invariant linear
system after the transformations. To avoid excessively large
value in the neighborhood of the singularity hyperplane, the
control law is revised in [9] to be explicitly bounded, and the
resulting stability becomes semi-global. Instead of usingtheσ-
process, discontinuous stabilizing control can also be designed
using invariant manifold and sliding mode techniques, with
acceleration feedback [10], for a third order system [11], and
for high-order systems [12].

Posture stabilization can also be achieved under time-
varying continuous controls. In particular, time-varyingcenter
manifold, averaging transformation, and control saturation are
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used in [3]; skew-symmetric chained form, Barbalat lemma
and Lyapunov-like argument are employed in [4]; periodic
systems and its Lyapunov argument are utilized in [13]; and a
system argumentation and a modifiedσ transformation are de-
veloped in [14]; all to achieve global asymptotic stabilization.
It is shown in [15], [16] that asymptotic stabilizing control
can be made to be so-calledρ-exponentially stabilizing. A
stabilizing control is also developed for a third-order model
of wheeled robots in [17]. In addition, hybrid designs of com-
bining time-varying and switching control laws are pursuedin
[18], [5], [19]. Recently, a robust control design is proposed
in [20] to ensure practical stability for perturbed systems
whose nominal systems are driftless. Besides its ability of
dealing with perturbation terms, the design in [20] is novel
and interesting because controllability is used to select the
so-called bounded transverse functions whose trajectories lie
in a neighborhood of the origin and to which the system
trajectory converges. In essence, the result in [20] bridges
tracking and stabilization problems by exploring controllability
and by choosing transverse functions (while adopting the
requirement of practical stability), and the general ideasof
exploring controllability and trajectory and of bridging the
design problems are very relevant to this paper.

The problem of trajectory tracking is generally different
from the regulation problem as the reference input vector (in
particular, its first elementu1d(t)) is not or does not converge
to zero in general. Most of the existing results explore this
property to avoid the loss of linear controllability at the origin,
and hence control design for the tracking problem is somewhat
less challenging than that for regulation. In [21], a locally
exponentially stabilizing control is proposed for trajectory
tracking using the standard linearization technique and un-
der the assumption that the linearized system is uniformly
completely controllable along the desired trajectory. Using
the backstepping method [22], trajectory tracking controlcan
be designed to ensure semi-global asymptotic stability by
employing a high-gain feedback [23], and stability can made
global for a 3-order model of wheeled robot [24] or for
line tracking [23]. Recently, tracking control designed using
the backstepping method is shown to also ensure global
asymptotic stability [25], whereas exponential stabilityis
established only for slowly-changing reference trajectories. It
is also shown in [26] that a linear time varying control can
ensure global exponential stability ifu1d(t) is continuously
differentiable, non-vanishing, and Lipschitz with respect to
time. For a third-order model of wheeled robot, local stability
is shown under persistent reference motion in bothx and
y directions [27]; global exponential stability is established
under the assumption that the reference trajectory satisfies a
persistent excitation like condition [28]; and global asymptotic
stability is obtained under three conditions on reference linear
and angular velocities [29].

In practice, output feedback control is preferred to state
feedback control, and there have been a few results available
so far. In [26], a linear time varying output feedback tracking
control is proposed to ensure global exponential stabilityagain
under the conditions that reference inputu1d(t) is continuously
differentiable, non-vanishing, and Lipschitz with respect to

time. In [30], [25], an output feedback tracking control is
designed under the conditions thatu1d(t) satisfies a persistent
excitation condition and is differentiable up to(n − 2) order,
the control becomes a switch control ifu1d(t) changes its sign,
and the stability is claimed to be almost everywhere. There is
no result available on time-varying smooth output-feedback
control for regulation.

The results aforementioned present significant advances,
but there are several fundamental issues that have not been
adequately addressed. First, several sufficient conditions have
been proposed for tracking control design, but there has not
been any report on thorough study of (uniform complete)
controllability for chained systems along a desired trajectory
or a system trajectory. It is necessary to determine whether
uniform complete controllability can be ensured for various
types of trajectories. The issue becomes much more acute
for the regulation control problem as it is well known that
chained systems are nonlinearly controllable but not linearly
controllable at the origin. The interesting question is whether
the intrinsic nonlinear controllability of chained systems can
be explicitly revealed and retained somehow in terms of
linear controllability (through transformation) in orderto make
regulation control design parallel to tracking control design.
Second, because of the lack of sufficient understanding in
controllability, there is no unifying framework by which vari-
ous controls (tracking and regulation controls as well as state
feedback and output feedback controls) can be designed in
a systematic manner in order to achieve asymptotic stability.
For observer-based output feedback control designs, uniform
complete observability is required, and little has been done to
analyze the property for chained systems. Third, for both the-
oretical and practical reasons, it is desirable to obtain controls
that are smooth, have simple closed-form expressions, and
ensure best performance possible. It follows from Brockett’s
theorem [6] that time varying smooth control laws would be
the only type of choices. It also well known that optimal
control laws are generally time varying and smooth. Thus,
it is fundamentally interesting to study whether closed-form
time varying smooth controls can be designed for chained
systems to yield the best performance achievable real time
for both tracking and regulation, which is the main thrust of
the proposed near optimal control design framework.

In this paper, a unifying design framework is proposed
based on both Lyapunov direct method and nonlinear optimal
control theory. In order to find an appropriate Lyapunov
function for both state and output feedback designs, uniform
complete controllability of chained systems along a desired
trajectory is investigated, and the simple condition ofu1d(t)
being uniformly nonvanishing (which by itself is already
less restrictive than those in the existing results such as
[26]) is found. More importantly, it is shown that, using the
so-called time-folding/unfolding technique, uniform complete
controllability can be retained by transformation ifu1d(t)
is merely nonconvergent to zero or even vanishing. For the
tracking problem, uniform complete controllability can always
be ensured, and hence a Lyapunov function is found in
terms of a differential Riccati equation and for both cases
of state feedback and output feedback. For the stabilization
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problem, while uniform complete controllability is inherently
absent for the original (linear time varying nominal) sys-
tem, intrinsic controllability of chained systems is exposed
by judiciously designing the input componentu1(t) and by
applying time/state transforms so that the transformed system
becomes uniformly completely controllable in order to proceed
with control design. This innovative transformation makesthe
proposed design framework applicable in a systematic and
parallel way to both tracking and stabilization problems. On
the other hand, the proposed design framework is to generate
time-varying smooth controls in simple closed forms and to
guarantee the so-called near optimal performance in addition
to global and asymptotic/exponential stability. The basicidea
of near-optimality is that, although optimal control for non-
linear systems such as those in the chained form can only
be solved iteratively and off-line, many suboptimal controls
can be found, that the standard optimality condition can be
restated as a distance measure (called the optimality residue)
between the suboptimal control and the (unattainable) optimal
one, and that the residue can be minimized. Specifically, the
framework applies to the tracking designs in three steps. First,
utilizing the structure of chained systems, two linear optimal
controls are designed for the two linear nominal subsystemsof
corresponding error dynamics. In the second step, it is shown
that combining the two individually-optimal controls yields a
globally stabilizing suboptimal control for the overall chained
system. In the third step, a nonlinear additive control termis
analytically synthesized so that the resulting control becomes
near optimal in the sense that the corresponding optimality
residue is minimized. In short, the proposed framework can be
used to design asymptotically stabilizing controls for tracking
and stabilization and for the cases of state feedback and output
feedback, and the resulting controls are in simple closed forms,
time varying and smooth, globally asymptotically stabilizing,
and of near-optimal performance.

The paper is organized as follows. In section II, the prob-
lems of tracking and regulation are formulated together, the
basic idea of near optimal control is motivated, necessary
properties such as structural property of chained systems,
uniform complete controllability, and uniform complete ob-
servability are discussed and established, and design steps
of the proposed near optimal framework are provided. An
example is used to show that, by designingu1(t) first and
then applying appropriate transformation to recover uniform
complete controllability, stabilization control design becomes
parallel to trajectory tracking control design. In sectionIII,
the framework is illustrated by the design of a state feedback
near optimal tracking control. In section IV, the frameworkis
applied to synthesize an output feedback near optimal control
by incorporating a closed-form exponentially convergent ob-
server. In section V, simulation results of a car-like mobile
robot are presented to illustrate the proposed near optimal
controls, and their superior performance is validated through
comparisons. In section VI, brief conclusions are drawn.

II. PROBLEM FORMULATION

The class of nonholonomic chained systems studied in this
paper are of form:

ẋ1 = u1, ẋ2 = x3u1, · · · ẋn−1 = xnu1, ẋn = u2, (1)

wherex = [x1, · · · , xn]T ∈ <n is the state,u = [u1, u2]
T ∈

<2 is the control input, andy = [x1, x2]
T ∈ <2 is the output.

For trajectory tracking, the desired trajectory to be followed
is given by:



























ẋ1d = u1d,
ẋ2d = x3du1d,
...
ẋ(n−1)d = xndu1d,
ẋnd = u2d,

(2)

wherexd = [x1d, · · · , xnd]
T ∈ <n, yd = [x1d, x2d]

T ∈ <2,
ud(t) = [u1d(t), u2d(t)]

T ∈ <2 is the time-varying reference
input (i.e., open-loop steering control) that is assumed tobe
uniformly bounded. In the tracking control design, property
of ud(t) is explored and utilized. For regulation/stabilization,
reference inputud is identically zero, and the corresponding
analysis and design can be done directly in terms ofu1(t) (as
will be shown by example 4 in section II-F).

Chained system (1) has the nice property that its vector
fields are left-invariant with respect to a Lie group operation. It
is given in [20] that, for any vectorsϑ, % ∈ <n, their operation
of Lie group product isϑ ∗ %, where(ϑ ∗ %) ∈ <n,

(ϑ ∗ %)1 = ϑ1 + %1, (ϑ ∗ %)n = ϑn + %n,

and, fori = n − 1, n − 2, · · · , 2,

(ϑ ∗ %)i = ϑi + %i +

n
∑

j=i+1

%j−i
1

(j − i)!
ϑj .

It is elementary to verify that the identity element in the Lie

group isø
4
= 0 ∈ <n in the sense thatø ∗ % = % ∗ ø holds

for all %. Accordingly, the group inverse ofxd, denoted by

x−1
d

4
=

[

x−1
1d x−1

2d · · · x−1
nd

]T
and defined byx−1

d ∗xd =
xd ∗ x−1

d = ø, is found to be

x−1
1d = −x1d, x−1

nd = −xnd,

and, fori = n − 1, · · · , 2,

x−1
id = −xid −

n
∑

j=i+1

xj−i
1d

(j − i)!
x−1

jd .

Using the group operation, we can define the state tracking

error between (1) and (2) asxe
4
= x−1

d ∗ x, that is, xe =
[x1e, · · · , xne]

T , x1e = −x1d +x1, xne = −xnd +xn, and for
i = n − 1, · · · , 2,

xie = −xid + xi +

n
∑

j=i+1

xj−i
1

(j − i)!
x−1

jd −
n

∑

j=i+1

xj−i
1d

(j − i)!
x−1

jd .

In addition, let’s denote the output tracking error byye =
[x1e, x2e]

T and the feedback control (to be designed) byv =
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[v1, v2]
T 4

= u − ud. Then, it is straightforward to verify that
the corresponding error system is

ẋe = A(u1d(t))xe + [B + G(xe)]v + F (x1e, u2d)x1e,
ye = Cxe,

(3)

where

A(u1d(t)) =



















0 0 0 · · · 0
0 0 u1d(t) 0 · · · 0
0 0 0 u1d(t) · · · 0
...

...
...

. ..
...

0 0 0 · · · u1d(t)
0 0 0 · · · 0



















,

B =















1 0
0 0
...

...
0 0
0 1















, G(xe) =















0 0
x3e 0
...

...
xne 0
0 0















,

and

F (x1e, u2d) =



















0
−(n − 2)!u2dx

n−3
1e

−(n − 3)!u2dx
n−4
1e

...
−u2d

0



















,

C =

[

1 0 0 · · · 0
0 1 0 · · · 0

]

.

In the paper, two types of controls will explicitly be con-
structed: state-feedback trajectory tracking control andoutput-
feedback tracking control. In addition, the design process
of regulation/stabilization control is outlined by an example.
The design objective is that, for system (3), all three control
strategies are in closed-form for real-time implementation,
achieve near optimality (the best achievable real-time), and
ensure global asymptotic stability ofxe. In short, a new near-
optimal control design framework is developed.

The technical development in the rest of this section is as
follows. In subsection II-A, several facts related to the chained
form and its error dynamics are summarized. In subsection
II-B, the basic idea of near-optimal control is introduced.
Structural properties of error system (3) are discussed in
subsection II-C to illustrate the main steps of near-optimal
control design. Controllability needed for the trajectorytrack-
ing control design is studied in subsection II-D. Observability
needed for the design of output feedback control design is
briefed in subsection II-E. In subsection II-F, the condition
for uniform complete controllability/observability is shown
to hold under various choices ofu1d(t) (or u1(t)) for both
trajectory tracking and stabilization problems.

A. Models of Nonholonomic Systems and Their Tracking Error
Dynamics

It is well known that many nonholonomic systems can be
transformed into the chained form by coordinate transforma-
tions [2]. In order to ensure wide applicability of our proposed

control design, we choose to demonstrate the proposed control
design framework using the(n, 2) chained form in (1). It is
straightforward to see that all the results apply directly to the
class of(n,m) chained systems:

ẋ1 = u1; ẋj,nj
= uj+1,

ẋj,i = u1xj,i+1, 2 ≤ i ≤ nj − 1, 1 ≤ j ≤ m − 1,

where [x1,X
T
2 , . . . ,XT

m]T ∈ <n with Xj =
[xj−1,2, . . . , xj−1,nj−1

]T are sub-states for2 ≤ j ≤ m,
and u = [u1, u2, . . . , um]T is the input vector. The only
difference is that, analogous to the decomposition into two
subsystems to be developed in subsection II-C, the resulting
error system (3) of the above(m,n) chained model contains
m subsystems.

Alternative models equivalent to the chained form can be
employed for nonholonomic systems. For instance, it is shown
in [3] that chained form (1) can be transformed to the so-called
power form:

ϕ̇1 = u1, ϕ̇2 = u2, ϕ̇3 = ϕ1u2, · · · ϕ̇n =
1

(n − 2)!
ϕn−2

1 u2,

which also has its own dynamic extensions [5].
If the definition of tracking error is properly modified,

the resulting error dynamics are different but retain all the
important properties so that the proposed design can be applied
successfully. Should the conventional choice of tracking error

xe
4
= x − xd is made, the error system would be the same as

(3) except thatF = 0 and

G =

[

0 x3e + x3d · · · xne + xnd 0
0 0 0 0 0

]T

.

Since the above matrixG explicitly depends onx3d up to
xnd, the subsequent control design and stability analysis would
require their uniform boundedness. The use of Lie group
operation removes this requirement.

Another advantage of using the group operation is that, for
left-invariant control systems, tracking error dynamics of form
(3) can be derived directly from their original equations and
that transformation to the chained form is not necessary [20].
This means that the proposed design is not confined to the
chained form and can be applied directly to nonholonomic
systems of left-invariant vector fields. Nonetheless, a transfor-
mation is generally needed to render error system (3) and, by
using the inverse of the transformation, performance measures
used in the control design (such as index (4) in subsection II-
B) can be expressed in terms of physical variables and hence
have explicit physical meanings.

In applications to robotic vehicles, both kinematic con-
straints and robotic dynamics need to be considered in the
control design. It is straightforward to show that, upon taking
care of nonholonomic constraints, dynamic equations can be
transferred into a reduced-order vector differential equation of
v and v̇. Then, the proposed near optimal design forv can be
extended to a torque-level control by using standard methods
such as backstepping design. Since those standard designs are
available and effective for dealing with unconstrained dynamic
equations as shown in [31] and references therein, we choose
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in this paper to focus upon the kinematic control problem of
constrained systems.

B. Necessity of Near-Optimal Control

To synthesize a performance-oriented control for chained
system (3), we can begin with the nonlinear optimal control
theory [32], [33]. Consider the following cost functional:

J(t, xe(t), v(t)) =
1

2

∫ ∞

t0

[xT
e CT Q(t)Cxe+vT R(t)v]dt, (4)

where matricesQ(t) and R(t) can be freely chosen by the
designer as long as they are uniformly bounded as0 < qI ≤
Q(t) ≤ qI and 0 < rI ≤ R(t) ≤ rI. Then, conditions for
optimality can be found using the calculus of variations. That
is, given HamiltonianH as

H =
1

2
xT

e CT Q(t)Cxe +
1

2
vT R(t)v

+λT {A(t)xe + [B + G(xe)]v + F (x1e, u2d)x1e},

whereλ ∈ <n is the Lagrangian multiplier, necessary condi-
tions for optimality are [32]:

ẋe =
∂H

∂λ
,

∂H

∂v
= 0, and λ̇ = − ∂H

∂xe
.

It follows that conditionẋe = ∂H/∂λ is always satisfied and
that condition∂H/∂v = 0 is guaranteed by the optimal control
candidate

v∗ = −R−1(t)[B + G(xe)]
T P ∗(t, xe)xe, (5)

where functionP ∗(t, xe) is a matrix parameterization of the
optimal Lagrangian multiplier asλ∗ = P ∗(t, xe)xe. Thus,
control (5) meets all first-order necessary conditions if matrix
P ∗(t, xe) is selected according to

dλ

dt

∣

∣

∣

∣

λ=λ∗

= − ∂H

∂xe

∣

∣

∣

∣

P=P∗

,

or simply,

E∗(xe)
4
= E(xe)

∣

∣

∣

P=P∗

= 0, (6)

where vec[ηi]
4
=

[

ηT
1 · · · ηT

n

]T
, and E(xe) is given by

the double-column formula (7). Consequently, equation (6)is
often referred to as the optimality condition, and‖E(xe)‖2

will be calledresiduefrom the optimality condition. Since the
optimal value of residue is zero (i.e.,E∗(xe) = 0), the optimal
control design can be interpreted as the problem of minimizing
the residue.

If optimal control (5) were pursued, matrixP ∗(t, xe) would
have to be solved from (nonlinear) differential equation (6)
with boundary conditionsxe(t0) and P (∞, xe(∞)) > 0,
which could be done only off-line through numerical itera-
tions. Thus, the resulting optimal control (5) is not solvable in
real time or practical for most applications. To overcome this
fundamental limitation of optimal control and to achieve better
performance, we propose a near-optimal control design which,
according to the aforementioned discussion on (6), can be
characterized as the problem of finding a closed-form control
similar to (5) such that its associated residue is minimized.

Steps of the proposed near-optimal control design will be
presented in section II-C by exploiting properties of the error
system.

C. Structural Properties of the Error System

It is obvious from (3) that

A = diag{A1, A2}, B = diag{B1, B2}, C = diag{C1, C2},

G =

[

0 0
G2 0

]

, andF =

[

0
F2

]

,

where

A1 = 0, B1 = 1, C1 = 1, B2 =
[

0 0 · · · 0 1
]T

,

C2 =
[

1 0 · · · 0
]

, A2(u1d(t)) = u1d(t)A
∗
2,

A∗
2

4
=















0 1 0 · · · 0
0 0 1 · · · 0
...

...
.. .

...
0 0 · · · 1
0 0 · · · 0















, G2(z) =















z2

z3

...
zn−1

0















,

and F2(x1e, u2d) =















−(n − 2)!u2dx
n−3
1e

−(n − 3)!u2dx
n−4
1e

...
−u2d

0















. (8)

Therefore, error dynamics in (3) can be partitioned into the
following two subsystems:

ẋ1e = A1x1e + B1v1, y1e = C1x1e, (9)

and
ż = A2(u1d(t))z + B2v2 + G2(z)v1

+F2(x1e, u2d)x1e,
y2e = C2z,

(10)

wherez = [z1, · · · , zn−1]
T 4

= [x2e, · · · , xne]
T ∈ <n−1. The

decomposition into subsystems (9) and (10) yields two useful
properties. First, subsystem (9) is of first order, linear, time-
invariant, and independent of subsystem (10). Subsystem (10)
is nonlinear but has a linear time varying nominal system
defined by

ż = A2(u1d(t))z + B2v2, y2e = C2z. (11)

Second, coupling from subsystems (9) to (10) is through
[G2(z)v1 + F2(x1e, u2d)x1e], the nonlinear terms in the sys-
tem. Utilizing these structural properties, the proposed near-
optimal control design will be carried out by the following
three steps:

Step 1: Determine closed-form optimal controlsv∗
l,1 andv∗

l,2

for linear subsystem (9) and linear time varying
nominal system (11), respectively.

Step 2: Design a sub-optimal controlvso to ensure exponen-
tial stability of the overall system (3). Specifically,
vso,1 = v∗

l,1 and vso,2 = v∗
l,2 are shown to be the

proper choices.
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E(xe)
4
=

dλ

dt
+

∂H

∂xe
=

∂P

∂t
xe + vec

[

xT
e

∂P

∂xie

]

{

[A − (B + G)R−1(B + G)T P ]xe + Fx1e

}

+[PT A + AT P − PT (B + G)R−1(B + G)T P + CT QC]xe + PFx1e

−vec

[

xT
e PT (B + G)(R−1)T ∂GT

∂xie
Pxe

]

+ vec

[

∂(Fx1e)
T

∂xie
Pxe

]

. (7)

Step 3: Synthesize a near-optimal control of formvno,i =
vso,i + vna,i, where i = 1, 2 and vna,i are closed-
form, nonlinear additive control terms chosen to min-
imize the corresponding residue from the optimality
condition and to ensure exponential stability of the
overall system.

In essence, the proposed near-optimal control design starts
with a linear optimal control for linear dynamics and then
chooses a nonlinear additive control to compensate for non-
linear dynamics, to minimize the optimality residue, and to
ensure exponential stability. A design of linear optimal control
v∗

l,2 calls for controllability and observability of linear time
varying nominal system (11), and these two fundamental
issues are the topics of subsections II-D and II-E, respectively.

D. Controllability of Linear Time Varying Nominal Subsystem

In order to solve an infinite-time state-feedback optimal
control problem for linear time-varying system (11), uniform
complete controllability of pair{A2(u1d(t)), B2} needs to
be established. Below is the standard definition adopted from
[34].

Definition 1: [34] Let Wc(t0, tf ) and Φ(t, t0) denote con-
trollability Grammian and open-loop state transition matrix of
system (11), i.e.,

Wc(t0, tf ) =
∫ tf

t0
Φ(t0, τ)B2B

T
2 ΦT (t0, τ)dτ,

Φ̇(t, t0) = A2(u1d(t))Φ(t, t0).
(12)

Then, system (11) is uniformly completely controllable if the
following two inequalities hold for allt:

0 < αc1(δ)I ≤ Wc(t, t+δ) ≤ αc2(δ)I, ‖Φ(t, t+δ)‖ ≤ αc3(δ),

whereδ > 0 is a fixed constant, andαci(·) are fixed positively
valued functions.

The following simple assumption is introduced to establish
all of the properties needed in the tracking control designs
(including controllability and observability properties, solution
of Lyapunov function, and global exponential stability). It
should be noted that, for the trajectory tracking problem
in general, the assumption can be made without loss of
any generality and that, ifu1d(t) vanishes over time, the
tracking problem reduces to the regulation problem for which
a smooth time varying control can be designed without any
assumption (as will be illustrated by an example in section
II-F). Should an open-loop reference inputud(t) be selected
to be discontinuous, right continuous steering time functions
are typical choices. It is straightforward to see that lemma1
also holds if right continuity in assumption 1 is replaced by

either left continuity or semi-continuity (either upper orlower).
However, lemma 1 no longer holds ifu1d(t) is piecewise
continuous, uniformly bounded, and uniformly nonvanishing.
For example, consideru1d(t) =

∑

i δ(t− iTs), whereTs > 0
is a constant,δ(t − Ts) = 1 at t = Ts, andδ(t − Ts) = 0 at
t 6= Ts. In this case, it follows from the proof of lemma 1 that
Wc(t0, tf ) = B2B

T
2 (tf − t0) is singular.

Definition 2: A time functionw(t) : [t0,∞) → R is said to
be uniformly right continuous if, for everyε > 0, there exists
η > 0 such thatt ≤ s ≤ t + η implies |w(s) − w(t)| < ε for
all t ∈ [t0,∞).

Definition 3: A time function w(t) : [t0,∞) → R is said
to be uniformly nonvanishing if there exist constantsδ > 0
and w > 0 such that, for any value oft, |w(s)| ≥ w holds
somewhere within the interval[t, t + δ].

Assumption 1:Desired reference control input,u1d(t) :
[t0,∞) → R, is uniformly right continuous, uniformly
bounded, and uniformly nonvanishing.

Lemma 1:Under assumption 1, system (11) is uniformly
completely controllable (i.e., there exists a constantδ∗c > 0
such that definition 1 holds for all choices of constantδ
satisfyingδ ≥ δ∗c ).
Proof: It is straightforward to show that the state transition
matrix is

Φ(t, τ) = e

∫

t

τ
A2(s)ds

= e
A∗

2

∫

t

τ
u1d(s)ds

=
n−2
∑

k=0

1

k!
(A∗

2)
kβk(t, τ), (13)

whereβ(t, τ) =
∫ t

τ
u1d(s)ds. In deriving the last equation of

(13), the property that(A∗
2)

(n−1) = 0 is used.
It follows from assumption 1 that there exists constantu1

such that|u1d(t)| ≤ u1 for all t. Thus, we know from (13)
that

‖Φ(t, t + δ)‖ ≤ e‖A∗

2‖·|β(t,t+δ)| ≤ eu1‖A∗

2‖δ 4
= α3(δ).

Similarly, we have that, for any unit vectorc,

cT Wc(t, t + δ)c ≤
∫ t+δ

t

‖Φ(t, τ)‖2dτ

≤
∫ t+δ

t

e2u1‖A∗

2‖(τ−t)dτ

≤
∫ δ

0

e2u1‖A∗

2‖sds
4
= α2(δ).

On the other hand, according to assumption 1, there exist
constantsδ > 0 andu1 > 0 such that, for anyt, |u1d(s)| ≥ u1

holds for somes(t) ∈ [t, t + δ]. In addition, by uniform
right continuity and uniform boundedness,u1d(τ) is uniformly
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bounded in magnitude, has a fixed sign, and is uniformly
bounded away from zero within the subintervals[s(t), s(t) +
σ(δ, u1)] ⊂ [t, t + δ], where functionσ(·) is independent oft.
It follows from (13) that, for any unit vectorc,

cT Wc(t, t + δ)c ≥ cT Wc(s(t), s(t) + σ(δ, u1))c

=

∫ s(t)+σ(δ,u
1
)

s(t)

∣

∣

∣

∣

cT e
A∗

2

∫

τ

s(t)
u1d(η)dη

B2

∣

∣

∣

∣

2

dτ

=

∫ σ(δ,u
1
)

0

∣

∣

∣

∣

cT e
A∗

2

∫

s(t)+φ

s(t)
u1d(η)dη

B2

∣

∣

∣

∣

2

dφ

=

∫ σ(δ,u
1
)

0

∣

∣

∣

∣

cT e
A∗

2

∫

φ

0
u1d(s(t)+%)d%

B2

∣

∣

∣

∣

2

dφ. (14)

Now, let θ(φ) =
∫ φ

0
|u1d(s(t) + %)|d% for φ ∈ [0, σ(δ, u1)]. It

follows from |u1d(s(t)+%)| ≥ u1 that functionθ(φ) is strictly
monotonically increasing over[0, σ(δ, u1)] and uniformly for
all t, that

θ(φ) =

{

∫ φ

0
u1d(s(t) + %)d% if u1d(s(t)) > 0

−
∫ φ

0
u1d(s(t) + %)d% if u1d(s(t)) < 0

,

and that, sincedθ/dφ 6= 0, function θ(φ) has a well defined
inverse with

dφ =
dθ

|u1d(s(t) + φ)| ≥
dθ

u1
> 0.

Therefore, we know that there exists a positive constantα1

such that
∫ σ(δ,u1)

0

∣

∣

∣

∣

cT e
A∗

2

∫

φ

0
u1d(s(t)+%)d%

B2

∣

∣

∣

∣

2

dφ

≥
{

1
u1

∫ σ(δ,u
1
)

0

∣

∣cT eA∗

2θB2

∣

∣

2
dθ, if u1d(s(t)) > 0

1
u1

∫ σ(δ,u1)

0

∣

∣cT e−A∗

2θB2

∣

∣

2
dθ, if u1d(s(t)) < 0

≥ α1(δ, u1, u1) > 0. (15)

In (15), the property of both time invariant pairs{±A∗
2, B2}

being controllable is used. The proof is completed by com-
bining (14) and (15). 2

E. Observability of Linear Time Varying Nominal Subsystem

For the ease of applying the proposed near-optimal frame-
work to both state-feedback and output-feedback designs,
output matrixC has already been embedded into performance
index (4). As a result, observability property of system (11) is
required for design and stability analysis in both cases.

Definition 4: [34] System (11) is uniformly completely
observable if its observability Grammian

Wo(t, t + δ) =

∫ t+δ

t

ΦT (τ, t)CT
2 C2Φ(τ, t)dτ (16)

and state transition matrix satisfy the following two inequali-
ties: for all t,

0 < αo1(δ)I ≤ Wo(t, t+δ) ≤ αo2(δ)I, ‖Φ(t, t+δ)‖ ≤ αc3(δ),

where δ > 0 is a fixed constant,αoi(·) are fixed positively
valued functions.

Comparing definitions 1 and 4, we know that uniform
complete observability of pair{A2, C2} is equivalent to

uniform complete controllability of pair{−AT
2 , C2}. In other

words, system (11) is uniformly completely observable if and
only if its dual system

ż′ = −AT
2 (u1d(t))z

′ + CT
2 v′

2 (17)

is uniformly completely controllable. Under state transforma-

tion ξ
4
= [ξ1, · · · , ξn−1]

T = [z′n−1, · · · , z′1]
T , system (17) is

transformed intoξ̇ = A2(−u1d(t))ξ + B2v
′
2. Invoking lemma

1, we have the following result.
Lemma 2:Under assumption 1, system (11) is uniformly

completely observable (that is, there exists a constantδ∗o >
0 such that definition 4 holds for all choices of constantδ
satisfyingδ ≥ δ∗o ).

F. Relaxation and Removal of Assumption 1

As summarized in the introduction, existing results on
tracking control design all require certain non-vanishingcon-
ditions. It is clear from the proof of lemma 1 that, for
uniform complete controllability,u1d(t) being both uniformly
bounded and uniformly nonvanishing is necessary and that
certain uniform continuity (such as uniform right continuity,
or uniform left continuity, or uniform semi-continuity) isalso
necessary. In fact, closest to assumption 1 is the assumption
2.12 in [26], but that assumption requires thatu1d(t) is
continuously differentiable and global Lipschitz with respect
to t. Thus, assumption 1 provides the least restrictive condition
for uniform complete controllability of system (11).

Nonetheless, it is necessary to show that the proposed design
framework is not confined to systems satisfying assumption
1. In what follows, three classes ofu1d(t) are considered: it
is convergent to zero (that is, vanishing); it is nonvanishing
but not uniformly nonvanishing; and it is zero. Under those
choices, system (11) may not be uniformly completely con-
trollable. Examples are used to illustrate that assumption1
can be relaxed or even removed by using the so-called time
folding/unfolding technique. The basic idea here is to ensure
assumption 1 in a transformed domain/space. Hence, despite
of the loss of uniform complete controllability in the original
domain/space, the proposed control design framework can be
readily applied.

Example 1:Consider nominal system (11) with

u1d(t) =
1

κ(t)
cos(wt),

w ≥ 0, κ(t) > 0 for any finite timet ≥ 0, andlimt→∞ κ(t) =
+∞ but 1/κ(t) 6∈ L1. Obviously, signalu1d(t) is vanishing,
and assumption 1 is not satisfied.

Let us introduce the following time and control transforma-
tions:

τ =

∫ t

0

1

κ(s)
ds, and v2(t) =

1

κ(t)
v′
2(τ).

The first transformation unfolds the time and is differentiable,
and both transformations are one-to-one and onto. Under the
transformations, nominal system (11) is mapped into

dz(τ)

dτ
= u′

1d(τ)A∗
2z(τ) + B2v

′
2, (18)
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whereu′
1d(τ) = cos(wt) with t being replaced by the inverse

of the above time transformation (which can be found once
κ(t) is specified). Clearly,u′

1d(τ) in system (18) satisfies
assumption 1 in the transformed time domain ofτ .

As will be shown in the subsequent sections, several types
of controls can be designed (forv′

2) to exponentially stabilize
system (18) (and its corresponding nonlinear systems) in the
domain of τ . Once v′

2 is found, v2 is found and it is well
defined. For the class ofκ(t) considered in this example, the
resulting stability in the domain oft is at least asymptotic
stability, and additional stability claim may be drawn based
on the property ofκ(t). For instance, ifκ(t) = t + 1, the
result in the domain oft is only asymptotic (but not uniform
asymptotic) stability; and ifκ(t) =

√
t + 1, the result in

the domain oft is uniform asymptotic (but not exponential)
stability. 3

Example 2:Consider nominal system (11) with

u1d(t) =

{ w0

(t+1)2 cos(w1t), t ∈ [22n − 1, 22n+1 − 1),

cos(w2t), t ∈ [22n+1 − 1, 22n+2 − 1),

wherew0, w1, w2 ≥ 0, n ∈ ℵ, andℵ = {0, 1, 2, · · ·} is the
set of non-negative integers. It is apparent thatu1d(t) is un-
vanishing but not uniformly unvanishing to satisfy assumption
1.

Now, let us define the time-folding transformation:

τ =







ln(1 + t), t ∈ [22n − 1, 22n+1 − 1),
(2n + 1) ln 2 + ln 2

22n+2−22n+1 (t − 22n+1 + 1),

t ∈ [22n+1 − 1, 22n+2 − 1),

which is one-to-one and onto and has right-continuous first-
order derivative. Under the transformation, nominal system
(11) can be transformed into (18), whereu′

1d(τ) is given by
the double-column expression in equation (19). It is obvious
that, no matter whetherw0 = 0 or not, u′

1d(τ) is uniformly
unvanishing (as defined in assumption 1) in the domain ofτ .
The rest of developments can be carried out as did in example
1. 3

Example 3: In the event thatu1d(t) in nominal system (11)
is vanishing and|u1d(t)| ∈ L1, simple time folding/unfolding
mappings fromt to τ defined in examples 1 and 2 would
no longer be adequate. In this case, our technique calls for a
time-dependent state transformation through which time fold-
ing/unfolding is accomplished and assumption 1 is satisfied
in the transformed state space. For instance, consider nominal
system (11) with

u1d(t) = e−t, A∗
2 =

[

0 1
0 0

]

, and B2 =

[

0
1

]

.

Now, let us define the time-unfolding state and control trans-
formations:

z =

[

e−t 0
0 1

]

z′, and v′
2 = v2,

under which nominal system (11) is transformed intoż′1 =
z′1+z′2 andż′2 = v′

2. This transformed system is time-invariant
and obviously satisfies assumption 1, and controlv′

2 could be
designed and calculated. 3

All the above examples deal with nominal system (11)
naturally arising from the trajectory tracking problem. For the

stabilization (or regulation) problem, the conventional choice
is u1d ≡ 0, in which case the above discussion can be applied
directly to u1(t), as illustrated by the following example.

Example 4:To make system (1) globally asymptotically
stable, we can recursively design two dynamic feedback con-
trol componentsu1 andu2. First, let dynamic feedback control
u1 be of form

u̇1 = − 1

t − t0 + 1
u1 −

[

ω2 − 1

4(t − t0 + 1)2

]

x1, (20)

whereω > 0 is a design parameter whose value is arbitrary,
u1(t0) = cu‖x(t0)‖, and cu is also a design parameter
arbitrarily chosen by the designer so long ascu 6= 0 whenever
x1(0) = 0. It follows from (20) and equatioṅx1 = u1 in (1)
that the closed loop subsystem is

ẍ1 +
1

t − t0 + 1
ẋ1 +

[

ω2 − 1

4(t − t0 + 1)2

]

x1 = 0.

It is not difficult to verify that closed loop solutions are

x1(t) =
1√

t − t0 + 1
{x1(t0) cos(ωt − ωt0)

+
u1(t0) + 0.5x1(t0)

ω
sin(ωt − ωt0)

}

,

u1(t) = − 1

2(t − t0 + 1)3/2
{x1(t0) cos(ωt − ωt0)

+
u1(t0) + 0.5x1(t0)

ω
sin(ωt − ωt0)

}

+
ω√

t − t0 + 1
{−x1(t0) sin(ωt − ωt0)

+
u1(t0) + 0.5x1(t0)

ω
cos(ωt − ωt0)

}

.

It is obvious that signalu′
1(t)

4
=

√
t − t0 + 1 · u1(t) satisfies

assumption 1 unless‖x(t0)‖ = 0. On the other hand, the rest
of system dynamics in (1) can be expressed as

żs = u1A
∗
2zs + B2u2, (21)

where zs
4
= [x2, · · · , xn]T , matricesA∗

2 and B2 are those
defined in (8). Lettingτ = 2

√
t − t0 + 1 − 2 and u′

2 =√
t − t0 + 1 · u2, we know from (21) that

dzs

dτ
= u′

1A
∗
2zs + B2u

′
2, (22)

which is uniformly completely controllable. Hence, as willbe
shown in sections III and IV, controlu′

2 (and in turnu2) can
be designed to makezs asymptotically stable (and solution
x1(t) is already asymptotically stable). 3

Summarizing the above results, we know that assumption
1 does not pose any limitation to the proposed control design
framework, and an important consequence is that uniform
complete controllability can be recovered for stabilization
of nonholonomic systems. Upon fully recovering uniform
complete controllability and utilizing it, the proposed control
design framework becomes applicable to not only trajectory
tracking but also regulation and stabilization.
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u′
1d(τ) =

{

w0e
−2τ cos(w1e

τ − w1) τ ∈ [2n ln 2, (2n + 1) ln 2)
cos

(

w2((2
2n+2 − 22n+1)( τ

ln 2 − 2n − 1) + 22n+1 − 1)
)

τ ∈ [(2n + 1) ln 2, (2n + 2) ln 2)
(19)

III. D ESIGN OFSTATE-FEEDBACK NEAR-OPTIMAL

CONTROL

In this section, state-feedback near-optimal controlvsfno

will be synthesized by following the design steps outlined in
section II-C. The design will then be extended in section IV
to the case of output feedback.

A. Optimal Controls for Individual Linear Subsystems

In this subsection, optimal controls are individually de-
signed for linear subsystem (9) and linear time-varying nom-
inal system (11). Since linear optimal control design is well
known, the focus is placed upon finding an appropriate Lya-
punov function that will be used in the near-optimal control
framework (in the cases of both state feedback and output
feedback but not regulation) for nonlinear error system (3).
To this end, choose

Q(t) = diag{q1, q2(t)}, andR(t) = diag{r1, r2(t)}. (23)

It follows from (4) that performance index can be rewritten as
J = J1 + J2 where
{

J1(t, x1e, v1) = 1
2

∫ ∞

t0
[q1x

2
1e + r1v

2
1 ]dt,

J2(t, z, v2) = 1
2

∫ ∞

t0
[q2(t)z

T CT
2 C2z + r2(t)v

2
2 ]dt.

(24)

Now, consider the Lyapunov function

V (xe, t) = xT
e Pxe, (25)

where matrix P is the solution to the time-varying state-
independent Riccati equation:

Ṗ + [PA + AT P − PBR−1BT P + CT QC] = 0. (26)

It follows from block property of matricesA, B, C, Q andR
that P (t) = diag[p1, P2(t)], p1 =

√
q1r1,

V (xe, t) = p1x
2
1e + zT P2z

4
= V1(x1e) + V2(z, t), (27)

and matrixP2(t) is the solution to the following reduced-order
differential Riccati equation: for someP2(∞) > 0,

0 = Ṗ2(t) + P2(t)A2(t) + AT
2 (t)P2(t)

−P2(t)B2r
−1
2 (t)BT

2 P2(t) + CT
2 q2(t)C2. (28)

It should be noted thatP2 can be pre-computed by integrating
backwards and off line and then stored with an adequate
sampling period. Ifu1d(t) is periodic (and so are the choices
of r2(t) and q2(t)), solution P2(t) (hence P (t)) is also
periodic. Finding solution ofP requires that the history of
u1d(t) be known. In some applications such as the target-
tracking and leader-follower problems, the goal point for the
tracker/follower need to be updated periodically and according
to observation of target/leader’s current position and velocity.
In this case, it would be better to treat the problem not as a
tracking problem but as the set point regulation problem with
the set point being updated periodically.

The following lemma summarizes all the useful results. It
should be noted that, in the seminal paper of [34], optimal
control (such as the ones in (29)) is derived and uniform
asymptotic stability of the closed loop system is shown. It
is also shown in [35] that, for linear systems with uniformly
bounded matrices, uniform asymptotic stability is equivalent
to exponential stability. Although Lyapunov converse theorem
ensures the existence of at least one Lyapunov function cor-
responding to exponential stability, the proof of the following
lemma is mainly intended to showV in (25) is such a Lya-
punov function. In fact, the two inequalities in (30) are critical
to the subsequent developments of near-optimal control.

Lemma 3:Consider subsystems (9) and (11) under perfor-
mance indices in (24), respectively. Then, under assumption 1,
the linear optimal control vector is

v∗
l (xe, t) = −R−1(t)BT P (t)xe, (29)

or equivalently,
{

v∗
l,1(x1e, t) = −r−1

1 p1x1e,

v∗
l,2(x2e, t) = −r−1

2 (t)BT
2 P2(t)z,

wherep1 is given by that in (27) andP2(t) is defined by (28).
Moreover, the closed loop system is globally exponentially
stable, and Lyapunov functionV in (25) satisfies the following
two inequalities:

γ1‖xe‖2 ≤ V (xe, t) ≤ γ2‖xe‖2,
d
dt [Φ

T
cl(t, t0)P (t)Φcl(t, t0)] ≤ −γ3Φ

T
cl(t, t0)Φcl(t, t0),

(30)

where γj (for j = 1, 2, 3) are some positive constants, and
Φcl(t, t0) is the closed-loop state transition matrix defined by
dΦcl(t, t0)/dt = [A(t) − BR−1(t)BT P (t)]Φcl(t, t0).
Proof: In [34], existence of optimal control is shown for both
linear time-invariant and time varying systems, and (as shown
by (6) with G ≡ 0 and F ≡ 0) the linear optimal control is
given by (29). In stability theorem of (6.10) in [34], asymptotic
stability is established. Then, by invoking theorem 3 in [35],
exponential stability is concluded. As a part of the proof
of stability theorem of (6.10) in [34], solutionP to Riccati
equation (26) is shown to be positive definite and uniformly
bounded. Thus, the first inequality in (30) is established with
γ1 = inft≥t0 λmin(P (t)) and γ2 = supt≥t0 λmax(P (t)),
whereλmin(·) and λmax(·) are the minimum and maximum
eigenvalues, respectively. The rest of the proof is to establish
the second inequality in (30).

It follows from (27) that, for subsystem (9) under control
v∗

l,1 in (29),






V̇1 = −q1x
2
1e = − q1

p1
V1 = −

√

q1

r1
V1,

x1e(t) = x1e(t0)e
−

p1
r1

(t−t0) = x1e(t0)e
−
√

q1
r1

(t−t0).
(31)

For subsystem (11), differentiatingV2(t)
4
= V2(z(t), t)

(defined in (27)) along the trajectory of (11), (29) and (28)
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yields

V̇2 = −q2(t)z
T CT

2 C2z − zT P2B2r
−1
2 BT

2 P2z

≤ −qzT CT
2 C2z − r‖v∗

l,2‖2. (32)

On the right hand side of inequality (32), both terms are
negative semi-definite with respect to‖z‖. IntegratingV̇2 over
an interval[t, t+δ] for anyt ≥ t0 and for anyδ ≥ max{δ∗c , δ∗o}
(whereδ∗c andδ∗o are defined in lemmas 1 and 2, respectively),
we have

V2(t) − V2(t + δ)

≥ q

∫ t+δ

t

‖C2z(s)‖2ds + r

∫ t+δ

t

‖v∗
l,2(s)‖2ds. (33)

It can be assumed without loss of any generality that,
along the trajectory of (11), under controlv∗

l,2 in (29),

and for some functionξ(z(t), t) ≥ 0,
∫ t+δ

t
‖v∗

l,2(s)‖2ds =
ξ(z(t), t)‖z(t)‖2. In what follows, the right hand side of
inequality (33) is shown to be positive definite with respect
to ‖z(t)‖ by investigating two cases of functionξ(z(t), t).
The first case is that, for allt > t0, ξ(z(t), t) ≥ ξ holds
for some constantξ > 0. In this case, the claim is obvious

as V2(t) − V2(t + δ) ≥ r
∫ t+δ

t
‖v∗

l,2(s)‖2ds ≥ rξ‖z(t)‖2.
The second case is thatξ(z(t), t) = 0 for some finitet or,
as t approaches infinity (together with whatever change the
state z(t) has), ξ(z(t), t) approaches zero. Thus, for those
values of t (including possibly t = +∞), the inequality
∫ t+δ

t
‖v∗

l,2(s)‖2ds ≤ ε‖z(t)‖2 holds for any choice ofε > 0.
On the other hand, the solution to system (11) under control
v∗

l,2 in (29) is z(s) = Φ(s, t)
[

z(t) +
∫ s

t
Φ(t, τ)B2v

∗
l,2(τ)dτ

]

.
Hence, we know from uniform complete controllability and
uniform complete observability of{A2(t), B2, C2} that
double-column expressions of inequality (34) hold. In the
derivations of (34), inequality‖a + b‖2 ≥ (‖a‖ − ‖b‖)2 ≥
1
2‖a‖2 − ‖b‖2 and Schwarz (integral) inequality are applied.
The right hand side of (34) is positive definite with re-
spect to‖z(t)‖ as ε can be chosen to be arbitrarily small.
Therefore, we haveV2(t) − V2(t + δ) ≥ q[0.5αo1(δ) −
n2αo2(δ)αc2(δ)ε]‖z(t)‖2.

Summarizing the two cases and reconsidering inequality
(33), we know that, for allt ≥ t0 and for some constant
λ > 0,

V2(t) − V2(t + δ) ≥ λ‖z(t)‖2 ≥ λ

γ2
V2(t). (35)

Recalling from (32) thatV̇2 ≤ 0, we can rewrite the above
inequality as

V2(t) − V2(t + δ) ≥ λ

γ2
V2(t + δ),

that is,

V2(t + δ) ≤ 1

1 + λ
γ2

V2(t)
4
=

1

σ
V2(t). (36)

Therefore, for anyt ≥ t0, N can be chosen to be the smallest
positive integer such thatt0 + (N − 1)δ < t ≤ t0 + Nδ. It

follows from the second inequality in (36) that

V2(t) ≤ V2(t0 + (N − 1)δ) ≤ 1

σ
V2(t0 + (N − 2)T )

≤ · · · ≤ 1

σN−1
V2(t0) ≤ σV2(t0)e

− ln σ
δ

(t−t0), (37)

which directly shows exponential convergence ofV2(t). Thus,
without loss of any generality, we can assume that, for any
τ ≥ t andt ≥ t0 and for some constantβz,1 and time function
βz,2(·), V2(τ) = V2(t)βz,2(τ−t)e−βz,1(τ−t), whereβz,2(0) =
1, 0 < βz,2(t) ≤ σ, andβz,1 ≥ lnσ/δ according to inequality
(37) and to the fact thatV2(t) ≥ 0. It follows that, given any
δ ≥ max{δ∗c , δ∗o},

∫ t+δ

t

V2(τ)dτ = V2(t)

∫ t+δ

t

βz,2(τ − t)e−βz,1(τ−t)dτ

= V2(t)

∫ δ

0

βz,2(s)e
−βz,1sds

4
= βz(δ)V2(t),

or equivalently,V2(t) = β−1
z (δ)

∫ t+δ

t
V2(τ)dτ , whereβz(δ) is

a finite positive number. Taking time derivative on both sides
of the last equation and invoking (35) yield

V̇2(t) =
1

βz(δ)
[V2(t + δ) − V2(t)] ≤ − λ

γ2βz(δ)
V2(t)

≤ − γ1λ

γ2βz(δ)
‖z‖2. (38)

Combining (31) and (38) yields that, for someγ3 > 0,
V̇ ≤ −γ3‖xe‖2. Thus, the second inequality in (30) can
be concluded by noting thatV = xT

e P (t)xe and xe(t) =
Φcl(t, t0)xe(t0). 2

B. Designs of Suboptimal and Near-Optimal Controls

In this subsection, we first show that linear optimal control
(29) is globally-exponentially-stabilizing and suboptimal for
system (3) and that its performance can be quantified (against
the optimal performance under the unattainable nonlinear
optimal control in (5)) by the residue from the optimality
condition, as summarized by the following theorem. This
result leads naturally to the proposed design of near-optimal
control which, to be stated shortly, selectively minimizesthe
optimality residue.

Theorem 1:Consider nonlinear tracking error system (3)
under assumption 1 and under the controlv(xe, t) =
vsfso(xe, t), where

vsfso(xe, t)
4
=

[

vsfso,1 vsfso,2

]T
= v∗

l (xe, t), (39)

denotes the so-called state-feedback sub-optimal (sfso) control,
andv∗

l (xe, t) is defined by (29). Then, the closed loop system
is globally and exponentially stable. Furthermore, under per-
formance index (4) with the choices of weighting matrices in
(23), control (39) is suboptimal and its closeness to optimality
can be measured by‖Es(xe, vsfso)‖2, where

Es(xe, vsfso)
4
=

[

Es1(xe, vsfso)
Es2(xe, vsfso)

]

, (40)
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∫ t+δ

t

‖C2z(s)‖2ds ≥
∫ t+δ

t

∣

∣

∣

∣

‖C2Φ(s, t)z(t)‖ −
∥

∥

∥

∥

C2Φ(s, t)

∫ s

t

Φ(t, τ)B2v
∗
l,2(τ)dτ

∥

∥

∥

∥

∣

∣

∣

∣

2

ds

≥ 1

2

∫ t+δ

t

‖C2Φ(s, t)z(t)‖2ds −
∫ t+δ

t

‖C2Φ(s, t)‖2

∥

∥

∥

∥

∫ s

t

Φ(t, τ)B2v
∗
l,2(τ)dτ

∥

∥

∥

∥

2

ds

≥ 1

2

∫ t+δ

t

‖C2Φ(s, t)z(t)‖2ds −
∫ t+δ

t

‖C2Φ(s, t)‖2ds ×
∥

∥

∥

∥

∥

∫ t+δ

t

Φ(t, τ)B2v
∗
l,2(τ)dτ

∥

∥

∥

∥

∥

2

≥ [0.5αo1(δ) − n2αo2(δ)αc2(δ)ε]‖z(t)‖2, (34)

Es1(xe, vsfso) = [∂(F2x1e)
T /∂x1e]P2z, and

Es2(xe, vsfso) = −P2G2r
−1
1 p1x1e + P2F2x1e −

r−1
1 p1x1e(A

∗
2)

T P2z.
Proof: As shown in section II-B, performance of control (39)
can be quantified against optimal performance by checking op-
timality condition (6). That is, it follows fromEs(xe, vsfso) =
λ̇ + ∂H/∂xe with λ = P (t)xe that, under control (29),

Es(xe, vsfso) = Ṗ xe + PG(xe)vsfso + PF (x1e, u2d)x1e

+[PA + AT P − PBR−1BT P + CT QC]xe

−vec

[

xT
e PBR−1 ∂GT (xe)

∂xie
Pxe

]

+vec

[

∂(F (x1e, u2d)x1e)
T

∂xie
Pxe

]

. (41)

Substituting both Riccati equation (26) and control (29) into
equation (41) yields

Es(xe, vsfso) = −PGR−1BT Pxe + PFx1e

−vec

[

xT
e PBR−1 ∂GT

∂xie
Pxe

]

+vec

[

∂(Fx1e)
T

∂xie
Pxe

]

.

Thus, expression (40) can be obtained directly from the above
equation by utilizing the special structures and functional
dependence of matricesG(xe), F (x1e, u2d), B, P andR.

Exponential stability of the closed-loop system can be

established using Lyapunov functionV (t)
4
= V (xe, t) de-

fined in (25). Although system (3) under control (39) is
nonlinear, its closed loop dynamics can be rewritten asẋe =
[A(t)−BR−1(t)BT P (t)]xe + G(xe)vsfso + F (x1e, u2d)x1e,
or equivalently,

xe(t) = Φcl(t, t0)

[

xe(t0) +

∫ t

t0

Φcl(t0, τ) [G(xe(τ))vsfso

+F (x1e(τ), u2d(τ))x1e(τ)] dτ ] .

Hence, we have the expression ofV̇ as given by double-
column equation (42). It follows from the second inequality
in (30) that the time derivative ofV along any trajectory of
system (3) under control (39) can be expressed as:

V̇ ≤ −γ3‖xe‖2 + 2xT
e PG(xe)vsfso

+2xT
e PF (x1e, u2d)x1e

= −γ3‖xe‖2 − 2zT P2G2r
−1
1 p1x1e + 2zT P2F2x1e. (43)

It follows from (40) that inequality (43) can be rewritten as

V̇ ≤ −γ3‖xe‖2 + 2zT Es2(xe, vsfso)

+2r−1
1 p1x1ez

T (A∗
2)

T P2z

≤ −γ3‖xe‖2 + 2‖z‖ · ‖Es2(xe, vsfso)‖
+2r−1

1 p1x1ez
T (A∗

2)
T P2z, (44)

which will be referenced in the analysis of near optimal control
to be designed.

Substituting (40) again into (44) yields∗

V̇ ≤ −γ3‖xe‖2 + 2‖z‖
[

r−1
1 p1‖P2‖ · ‖G2‖ + ‖P2‖ · ‖F2‖

+2r−1
1 p1‖(A∗

2)
T P2‖ · ‖z‖

]

|x1e|. (45)

Recalling the structures of functionsG(·) andF (·) in nonlin-
ear tracking error system (3) as well as the structural of sfso
control (39), we know that solution ofx1e(t) remains to be
that in (31) and that

‖G2(z)‖ ≤ ‖z‖ ≤ ‖xe‖. (46)

Hence, it follows from boundedness of reference inputu2d

that the following inequality holds for some constantcf > 0:

‖F2(x1e, u2d)‖ ≤ cf . (47)

Therefore, using solution (31) and inequalities (46) and (47),
we can rewrite inequality (45) as

V̇ ≤ −γ3‖xe‖2 + (c0|x1e(t0)|‖xe‖ + c1‖xe‖2)e−c2(t−t0)

≤
[

−2β0 + 2β2c2e
−c2(t−t0)

]

V

+2β1

√
V e−c2(t−t0)|x1e(t0)|, (48)

where c0 = 2γ2cf , c1 = 6p1r
−1
1 γ2|x1e(t0)|, c2 =

√

q1/r1,
β0 = γ3/(2γ2), β1 = c0/(2

√
γ1), andβ2 = c1/(2c2γ1). The

solution to inequality (48) is given by
√

V (t)

≤
√

V (t0)e

∫

t

t0
(−β0+β2c2e−c2(τ−t0))dτ

+

∫ t

t0

e

∫

t

s
(−β0+β2c2e−c2(τ−s))dτ

β1|x1e(t0)|e−c2(s−t0)ds

≤
√

V (t0)e
β2e−β0(t−t0)

+
β1e

β2

β0 − c2

[

e−c2(t−t0) − e−β0(t−t0)
]

,

∗Without the need of expression (44), one can obtain (45) directly from
(43).
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V̇ =

[

xe(t0) +

∫ t

t0

Φcl(t0, τ)[G(xe(τ)) + F (x1e(τ), u2d(τ))x1e(τ)]vsfsodτ

]T {

d

dt
[ΦT

cl(t, t0)P (t)Φcl(t, t0)]

}

×
[

xe(t0) +

∫ t

t0

Φcl(t0, τ)[G(xe(τ)) + F (x1e(τ), u2d(τ))x1e(τ)]vsfsodτ

]

+ 2xT
e P (t)G(xe)vsfso

+2xT
e P (t)F (x1e, u2d)x1e. (42)

from which exponential stability is obvious. 2

Theorem 1 provides not only closed-loop exponential stabil-
ity but also a quantitative measure on the closeness of control
(39) to nonlinear optimal control (5). One of the objectives
of the proposed near optimal control design methodology is
to find a closed-form control that minimizes the optimality
residue. Clearly, control (39) is a good candidate to begin our
search for the best among all the candidates that are both
analytical and globally exponentially stabilizing. To this end,
let the proposed state-feedback near-optimal (sfno) control be
of form

vsfno(xe, t) = vsfso(xe, t) + vsfna(xe, t), (49)

where vsfso(xe, t) is given by (39), andvsfna(xe, t)
4
=

[vsfna,1, vsfna,2]
T is a state-feedback nonlinear additive (sfna)

control component to be determined. Given the residue of
Es(xe, vsfso) in (40), the residue corresponding to near opti-
mal control (49) can be similarly derived from the optimality
condition (6) under the constraint thatλ = P (t)xe. The
constraint is necessary since matrixP (t) from both Lyapunov
function (25) and Riccati equation (26) is the best among avail-
able solutions. Therefore, it follows from optimality condition
(6), from Riccati equation (26), and from the derivation of
(40) that

Es(xe, vsfno)

= Ṗ xe + [PA + AT P − PBR−1BT P + CT QC]xe

+vec

[

vT
sfso

∂GT (xe)

∂xie
Pxe

]

+ PBvsfna

+vec

[

vT
sfna

∂GT (xe)

∂xie
Pxe

]

+ PG(xe)vsfso

+PG(xe)vsfna + PF (x1e, u2d)x1e

+vec

[

∂(Fx1e)
T

∂xie
Pxe

]

=

[

∂(F2x1e)T

∂x1e
P2z

−P2G2r
−1
1 p1x1e + P2F2x1e − r−1

1 p1x1e(A
∗
2)

T P2z

]

+

[

p1

(A∗
2)

T P2z + P2G2

]

vsfna,1

+

[

0
P2B2

]

vsfna,2 (50)

4
= Es(xe, vsfso) + M1(z)vsfna,1 + M2vsfna,2. (51)

Symbol Es(xe, vsfso) in expression (51) is used to denote a
lumped sum of terms, and it is also good for intuitive compar-
ison. Strictly speaking, while equation (50) is the expression
for calculation and design,Es(xe, vsfno) and Es(xe, vsfso)

is related by (51) only at the initial instant of time (when the
state assumes the same value) after which the system trajectory
becomes different under two different controls.

It is clear from (51) that the nonlinear additive con-
trol vsfna should be designed to selectively minimizes the
residue‖Es(xe, vsfso + vsfna)‖2. The following lemma pro-
vides the design ofvsfna, and vsfna is solved analytically
using the least-square minimization under the selection of
vsfna,1(xe, t) ≡ 0 (which will be explained after theorem 2).

Lemma 4:Suppose that nonlinear tracking error system
(3) satisfies assumption 1 and is under the state feedback
near optimal controlvsfno(xe, t) in (49). Given performance
index (4) with the choices of weighting matrices in (23), the
following choice ofvsfna,2(xe, t) is near optimal under the
selection ofvsfna,1(xe, t) ≡ 0:

vsfna,2(xe, t) = −(P2B2)
+Ys, (52)

where(P2B2)
+ = [BT

2 PT
2 P2B2]

−1BT
2 PT

2 is a pseudo-inverse
of matrix P2B2, and

Ys
4
= −r−1

1 p1x1e[(A
∗
2)

T P2z + P2G2] + P2F2x1e. (53)

Specifically, under the selection ofvsfna,1(xe, t) ≡ 0,
‖Es(xe, vsfno)‖ is minimized by controlvsfna,2(xe, t) in
(52), and inequality

‖Es(xe, vsfno)‖2

= Y T
s

[

I − P2B2(B
T
2 PT

2 P2B2)
−1BT

2 PT
2

]

Ys

+

[

∂(F2x1e)
T

∂x1e
P2z

]2

< ‖Es(xe, vsfso)‖2 (54)

holds for allxe ∈ <n but those at which(P2B2)
+Ys = 0 (and

hence‖Es(xe, vsfno)‖ = ‖Es(xe, vsfso)‖ asvsfna,2(xe, t) =
0).
Proof: The proof is to show that, givenvsfna,1(xe, t) ≡ 0,
function‖Es(xe, vsfno)‖2 is minimized by the corresponding
least square solutionvsfna,2(xe, t) in (52). It follows that,
upon settingvsfna,1 = 0,

‖Es(xe, vsfno)‖2 = ‖Es2(xe, vsfno)‖2 +

[

∂(F2x1e)
T

∂x1e
P2z

]2

,

Es2(xe, vsfno) = Ys + P2B2vsfna,2,
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and that, for all choices ofvsfna,2,

‖Es2(xe, vsfno)‖2

= Y T
s

[

I − P2B2(B
T
2 PT

2 P2B2)
−1BT

2 PT
2

]

Ys

+
[

vsfna,2 + (BT
2 PT

2 P2B2)
−1BT

2 PT
2 Ys

]T

×BT
2 PT

2 P2B2

[

vsfna,2 + (BT
2 PT

2 P2B2)
−1BT

2 PT
2 Ys

]

≥ Y T
s

[

I − P2B2(B
T
2 PT

2 P2B2)
−1BT

2 PT
2

]

Ys. (55)

Hence, inequality (54) can be readily concluded from
(55). That is, the choice ofvsfna,2 in (52) minimizes
‖Es(xe, vsfno)‖2 under the choice ofvsfna,1 ≡ 0. 2

To justify the proposed design of nonlinear additive con-
trol, we must also show that the performance improvement
quantified in lemma 4 is achieved uniformly over time by
a comparative study of closed-loop stability. The following
theorem shows an improvement of global exponential stability
of the closed-loop system under near-optimal control (49).

Theorem 2:Consider system (3) that satisfies assumption
1. Then, under the near-optimal control (49) (which is in
turn defined by (39) and (52)), the closed-loop system has
a convergence rate of global exponential stability no less than
that under suboptimal control (39).
Proof: To proceed with a comparative study of global and ex-
ponential stability, consider again Lyapunov function defined
in (25). It follows from the discussion leading to (43) that,
under control (49) (in terms of (39) and (29)) and along its
resulting trajectory of (3),

V̇ = xT
e Ṗ xe + 2xT

e P [Axe + Bvsfno]

+2xT
e PGvsfno + 2xT

e PFx1e

≤ −γ3‖xe‖2 − 2zT P2G2r
−1
1 p1x1e + 2xT

e PBvsfna

+2xT
e PGvsfna + 2zT P2F2x1e. (56)

Substitutingvsfna,1(xe, t) ≡ 0 into (56) yields

V̇ ≤ −γ3‖xe‖2 − 2zT P2G2r
−1
1 p1x1e

+2zT P2B2vsfna,2 + 2zT P2F2x1e.

It follows from (50) that the above inequality can be rewritten
to be

V̇ ≤ −γ3‖xe‖2 + 2zT Es2(xe, vsfno)

+2r−1
1 p1x1ez

T (A∗
2)

T P2z

≤ −γ3‖xe‖2 + 2‖z‖ · ‖Es2(xe, vsfno)‖
+2r−1

1 p1x1ez
T (A∗

2)
T P2z. (57)

Under control (52), inequality (54) holds. Consequently, the
statement of the theorem can now be concluded by comparing
(44) and (57) and by applying the comparison theorem in [33].
2

It is important to note that minimization of the optimality
residue is first performed in lemma 4 for a given instant
of time and is then shown to be uniform over time in the
proof of theorem 2. Any further instantaneous reduction of
making ‖Es(xe, vsfno)‖2 less than its value in (54) has
to be done by minimizing not only‖Es2(xe, vsfno)‖2 but
also ‖Es1(xe, vsfno)‖2. Such a minimization is impossible
unless controlvsfno is redesigned such thatvsfna,1 6= 0.

So, why vsfna,1 ≡ 0 is selected? There are two reasons.
First, as shown by (44), stability and convergence of the
closed loop system is impacted not byEs1(xe, vsfno) but
only by Es2(xe, vsfno). Thus, it is from stability argu-
ment that minimizing‖Es2(xe, vsfno)‖2 is sufficient. Sec-
ond, if the unconditional instantaneous least square min-
imum of ‖Es(xe, vsfno)‖2 is solved from equation (51),
‖Es(xe, v

∗
sfno)‖2 being made pointwise smaller than that in

(54) holds only for a very short period during the initial
transient. Afterwards, the near-optimal performance is de-
termined by whether the optimality condition is not only
minimized instantaneously but also forced to diminish quickly
and uniformly over time. In fact, it can be shown analytically
that, under the least square solution with non-zero control
termv∗

sfna,1, the closed loop exponential convergence rate will
become much slower and consequently the value of optimality
residue actually becomes larger soon aftert0. For this reason,
in the proposed framework, nonlinear additive control (49)is
designed under the choice ofvsfna,1 ≡ 0, and such a control
is indeed near-optimal.

IV. D ESIGN OFOUTPUT-FEEDBACK NEAR-OPTIMAL

CONTROL

In this section, the framework of near-optimal tracking
control design is extended to output feedback. In tracking
error dynamics in (9) and (10), output tracking error is
ye = [x1e, x2e]

T . The following time-varying observer is to
asymptotically estimate the unmeasured error state variables
(i.e., z2 up to zn−1 in subsystem (10)) from input-output
information ofye andv: for any initial conditionẑ(t0),

˙̂z = A2(u1d(t))ẑ + B2v2(t) + G2(ẑ)v1(t)

+F2(x1e, u2d)x1e + L(t)(z1 − ẑ1), (58)

where L(·) is a time-varying gain vector to be selected,
v1(t) = v∗

l,1(x1e, t) is defined in (29), andv2(t) is the
observer-based control to be synthesized later. It followsfrom

(10) and (58) that dynamics of estimation errorz̃
4
= z − ẑ are

described by

˙̃z = µ(t)A∗
2z̃ − L(t)C2z̃ = [µ(t)A∗

2 − L(t)C2]z̃, (59)

whereµ(t)
4
= u1d(t)+v∗

l,1(x1e, t), andA∗
2 is the matrix given

in (8). The following lemma provides a closed-form design of
observer (58).

Lemma 5:Under assumption 1, estimation errorz̃ of equa-
tion (59) is globally and exponentially stable if gain vector
L(t) is set to be that in the double-column expression of (60),

whereβµ(t, t0)
4
=

∫ t

t0
µ(s)ds, δo ≥ δ∗µ,o is a given constant,

and δ∗µ,o is the value ofδ∗c resulting from the application of
lemma 1 to pair{−µ(t)(A∗

2)
T , CT

2 }.
Proof: It follows that, under controlv1(t) = v∗

l,1(x1e, t), the
solution to subsystem (9) and given in (31) is exponentially
convergent, and so isv1(t). Hence, we know from assump-
tion 1 that time functionµ(t) = u1d(t) + v1(t) also satisfies
assumption 1. Now, consider the time varying “nominal sys-
tem” of error dynamics (59):̇̃z

′
= µ(t)A∗

2z̃
′ and ỹ′ = C2z̃

′.
For this fictitious system, letΦµ(t, t0) and Wo,µ(t − δo, t)
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L(t) =

















δo

∫ t

t−δo
βµ(s, t)ds · · ·

∫ t

t−δo

βn−2
µ (s,t)

(n−2)! ds
∫ t

t−δo
βµ(s, t)ds

∫ t

t−δo
β2

µ(s, t)ds · · ·
∫ t

t−δo

βn−1
µ (s,t)

(n−2)! ds
...

... · · ·
...

∫ t

t−δo

βn−2
µ (s,t)

(n−2)! ds
∫ t

t−δo

βn−1
µ (s,t)

(n−2)! ds · · ·
∫ t

t−δo

β2n−4
µ (s,t)

(n−2)!(n−2)!ds

















−1

CT
2 (60)

denote its state transition matrix and observability Grammian,
respectively. That is,Φµ(t, s) =

∑n−2
k=0

1
k! (A

∗
2)

kβk
µ(t, s), and

Wo,µ(t − δo, t) =

∫ t

t−δo

ΦT
µ (s, t − δo)C

T
2 C2Φµ(s, t − δo)ds.

(61)
Therefore, we know from lemmas 2 and 1 that, since the pair
{µ(t)A∗

2, C2} is uniformly completely observable, inequalities

0 < αµ,1(δo)I ≤ Wo,µ(t − δo, t) ≤ αµ,2(δo)I,
‖Φµ(t − δo, t)‖ ≤ αµ,3(δo),

(62)

hold for allδo ≥ δ∗µ,o, whereαµ,i(·) are some positively valued
functions.

To show global and exponential stability of estimation error
dynamics (59), consider the following Lyapunov function
candidate:Vµ(z̃, t) = z̃T So(t − δo, t)z̃, whereδo ≥ δ∗µ,o, and

So(t − δo, t) = ΦT
µ (t − δo, t)Wo,µ(t − δo, t)Φµ(t − δo, t)

=

∫ t

t−δo

ΦT
µ (s, t)CT

2 C2Φµ(s, t)ds. (63)

It follows from (63) and (62) that

γµ,1(δo)‖z̃‖2 4
=

αµ,1(δo)

α2
µ,3(δo)

‖z̃‖2 ≤ Vµ(z̃, t),

Vµ(z̃, t) ≤ αµ,2(δo)α
2
µ,3(δo)‖z̃‖2 4

= γµ,2(δo)‖z̃‖2,
(64)

which shows that Lyapunov functionVµ(z̃, t) is positive
definite, decrescent, and radially-unbounded.

It follows that the time derivative ofVµ(·) along the
trajectory of (59) is

V̇µ = 2z̃T So(t − δo, t) ˙̃z + z̃T ΦT
µ (t, t)CT

2 C2Φµ(t, t)z̃

+2z̃T

[
∫ t

t−δo

ΦT
µ (s, t)CT

2 C2
dΦµ(s, t)

dt
ds

]

z̃

−z̃T ΦT
µ (t − δo, t)C

T
2 C2Φµ(t − δo, t)z̃

= −2z̃T So(t − δo, t)L(t)C2z̃ + z̃T CT
2 C2z̃

−z̃T ΦT
µ (t − δo, t)C

T
2 C2Φµ(t − δo, t)z̃.

= −z̃T CT
2 C2z̃ − z̃T ΦT

µ (t − δo, t)C
T
2 C2Φµ(t − δo, t)z̃

≤ −z̃T CT
2 C2z̃, (65)

under the choice of feedback gain

L(t) = S−1
o (t − δo, t)C

T
2 . (66)

It is elementary to show that combining equations (61), (63),
and (66) renders the closed form solution in (60) for observer
gain L(t). Furthermore, according to (64), gain matrixL(t)
has the property that, for anyδ > 0,

∫ t+δ

t

‖L(τ)‖2dτ ≤ γ−2
µ,1(δo)δ. (67)

Integrating expression (65) oḟVµ over an interval[t, t + δ]
for any t ≥ t0 andδ > 0, we have

Vµ(t) − Vµ(t + δ)

≥
∫ t+δ

t

z̃T (τ)CT
2 C2z̃(τ)dτ

= z̃T (t)

[

∫ t+δ

t

ΦT
µ,cl(τ, t)C

T
2 C2Φµ,cl(τ, t)dτ

]

z̃(t), (68)

whereVµ(t)
4
= Vµ(z̃(t), t), and Φµ,cl(τ, t) is the state tran-

sition matrix for close-loop estimation dynamics of (59).
Recalling that{µ(t)A∗

2, C2} is uniformly completely observ-
able and thatL(t) satisfies inequality (67), we know by
invoking theorem 4 in [36] that pair{[µ(t)A∗

2−L(t)C2], C2} is
uniformly completely observable. Hence, there exists constants
λµ > 0 and δ∗µ,o,cl > 0 such that, for anyδ ≥ δ∗µ,o,cl,
∫ t+δ

t
ΦT

µ,cl(τ, t)C
T
2 C2Φµ,cl(τ, t)dτ ≥ λµI. Substituting this

inequality and (64) into (68) yields

Vµ(t) − Vµ(t + δ) ≥ λµ‖z̃(t)‖2 ≥ λµ

γµ,2
Vµ(t).

Exponential stability ofVµ(t) and in turn of‖z̃(t)‖ can be
shown by comparing the above inequality and (35) and by
duplicating that proof ofV2(t) being exponentially convergent.
2

Upon having the exponentially convergent observer (58), we
can convert the state-feedback near-optimal control in (49) into
an input-output near optimal control, as shown in the following
theorem. Since the development of the input-output design is
parallel to that of the state-feedback design, the proof of the
theorem will focus upon providing key expressions and refer
to the corresponding parts in the proofs of theorem 1, lemma
4, and theorem 2.

Theorem 3:Consider tracking error system consisting of
(9) and (10) which satisfies assumption 1. Given performance
index (4) with the choices of weighting matrices in (23),
choose the output feedback near optimal (ofno) control to be

vofno(x̂e, t)
4
=

[

vofno,1 vofno,2

]T

= vofso(x̂e, t) + vofna(x̂e, t), (69)

vofso(x̂e, t) = −R−1(t)BT P (t)x̂e, (70)

whereP (t) is given by (27),x̂e = [x1e, ẑ
T ]T , ẑ(t) is defined

by (58), vofso(x̂e, t) is the so-called output feedback sub-
optimal (ofso) control, andvofna(x̂e, t) is the so-called output
feedback nonlinear additive (ofna) control term. Then,

(a) the closed-loop system is globally exponentially sta-
ble, andvofso(x̂e, t) is suboptimal ifvofna(t) = 0;
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(b) the closed-loop system is also globally exponentially
stable if

vofna
4
=

[

vofna,1 vofna,2

]T

=
[

0 −(P2B2)
+Yo

]T
, (71)

where

Yo
4
= −r−1

1 p1x1e[(A
∗
2)

T P2ẑ + P2G2(ẑ)]

+q2C
T
2 (z1 − ẑ1) + P2L(t)(z1 − ẑ1)

+P2F2x1e. (72)

Moreover, control (69) together with (71) is near
optimal in the sense that the optimality residue
∥

∥

∥
λ̇ + ∂H/∂xe

∥

∥

∥

2

λ=P (t)x̂e

is minimized not only at

any fixed time instant under the selection of
vofna,1 = 0 but also uniformly over time.

Proof: The proof consists of three parts. In the first part,
control (69) together with (71) is shown to be instantaneously
near optimal under performance index (4) and under the
selection of vofna,1 = 0. In the second part, exponential
stability of the output feedback sub-optimal control (70) is
established for system (9) and (10). Finally, in the third part,
the closed loop system under control (69) and (71) is shown to
be exponentially stable and uniformly near optimal over time.
Part I: It follows from (9) and (58) that

˙̂xe = A(u1d(t))x̂e + [B + G(x̂e)]v + F (x1e, u2d)x1e

+
[

0 [L(t)(z1 − ẑ1)]
T

]T
. (73)

It follows from the optimality condition that, under control
(69) and by usingP (t) in (26) and settingλ = P (t)x̂e, the
optimality residue is:

Eo(x̂e, vofno)

= Ṗ x̂e + [PA + AT P − PBR−1BT P

+CT QC]x̂e + CT QCx̃e + vec

[

vT
ofso

∂GT (xe)

∂xie
P x̂e

]

+vec

[

vT
ofna

∂GT (xe)

∂xie
P x̂e

]

+ PBvofna + PG(x̂e)vofso

+PG(x̂e)vofna + P

[

0
L(t)(z1 − ẑ1)

]

+PF (x1e, u2d)x1e + vec

[

∂(F (x1e, u2d)x1e)
T

∂xie
P x̂e

]

,

wherex̃e = xe− x̂e and z̃ = z− ẑ. By noting x̃1e ≡ 0 and by
utilizing the special structures and functional dependence of
matricesG(x̂e), F (x1e, u2d), B, C, P andR, one can show
that, parallel to (50),

Eo(x̂e, vofso) =

[

∂(F2x1e)T

∂x1e
P2ẑ

Yo

]

, (74)

Eo(x̂e, vofno) − Eo(x̂e, vofso)

=

[

p1B1 0
(A∗

2)
T P2ẑ + P2G2(ẑ) P2B2

] [

vofna,1

vofna,2

]

, (75)

where Yo is defined by (72), Eo(x̂e, vofno) =
[

Eo1(x̂e, vofno) ET
o2(x̂e, vofno)

]T
and Eo(x̂e, vofso) =

[

Eo1(x̂e, vofso) ET
o2(x̂e, vofso)

]T
are the optimal residues

of output feedback near-optimal controlvofno and output
feedback sub-optimal controlvofso, respectively. It is
straightforward to show as did lemma 4 that, upon fixing
vofna,1 = 0, ‖Eo(x̂e, vofno)‖2 is minimized byvofna(t) in
(71), that is,

‖Eo2(x̂e, vofno)‖ ≤ ‖Eo2(x̂e, vofso)‖ (76)

Part II: To show that control vofso(x̂e, t) =
−R−1(t)BT P (t)x̂e is globally exponentially stabilizing,
we note that vofso(x̂e, t) = vsfso(xe, t) + ṽ(x̃e, t),

where vsfso(xe, t) is given by (29), and ṽ(x̃e, t)
4
=

R−1(t)BT P (t)x̃e.
Consider again the Lyapunov function in (25). It follows

from the discussion leading to (43) that the time derivative
of V along any trajectory of (3) under controlvofso(x̂e, t) is
given by

V̇ = xT
e Ṗ xe + 2xT

e P [Axe + Bvsfso] + 2xT
e PBṽ

+2xT
e PG(xe)vofso + 2xT

e PFx1e

≤ −γ3‖xe‖2 + 2xT
e PBṽ + 2xT

e PFx1e

+2xT
e P [G(x̃e) + G(x̂e)]vofso

= −γ3‖xe‖2 + 2zT P2B2r
−1
2 BT

2 P2z̃ + 2zT P2F2x1e

−2zT P2[G2(z̃) + G2(ẑ)]r−1
1 p1x1e. (77)

It follows from (74) that inequality (77) can be expressed as

V̇ ≤ −γ3‖xe‖2 + 2zT P2B2r
−1
2 BT

2 P2z̃

+2zT [−P2G2(z̃) + (A∗
2)

T P2ẑ]r−1
1 p1x1e

−2zT (q2C
T
2 + P2L)z̃1 + 2zT Eo2(x̂e, vofso)

≤ −γ3‖xe‖2 + 2zT P2B2r
−1
2 BT

2 P2z̃ + 2zT [−P2G2(z̃)

+(A∗
2)

T P2z − (A∗
2)

T P2z̃]r−1
1 p1x1e − 2zT (q2C

T
2

+P2L)z̃1 + 2‖z‖ · ‖Eo2(x̂e, vofso)‖, (78)

which will be referenced in the part III for stability analysis
of output feedback near optimal control (69).

Applying the expression ofEo2(x̂e, vofso) in (74) to in-
equality (78) and then taking bounds yield

V̇ ≤ −γ3‖xe‖2 + 2‖z‖
[

‖P2B2r
−1
2 BT

2 P2‖ · ‖z̃‖
+r−1

1 p1|x1e| · ‖P2‖(4‖z̃‖ + 3‖z‖)
]

+4|z̃1| · ‖z‖(q2 + ‖P2‖ · ‖L‖)
+2‖z‖ · ‖P2‖ · ‖F2‖ · |x1e|. (79)

Substituting (31) into inequality (79) and invoking the fact of
z̃ being exponentially stable (which is stated in lemma 5; say,
of rateγµ,3) yield

V̇ ≤ −γ3‖xe‖2 + c3‖xe‖e−c4t + (c5‖xe‖
+c6‖xe‖2)e−c2t + c7‖xe‖e−(c2+c4)t

≤
[

−β0 + β3e
−c2t

]

V + β4

√
V e−c4t

+β5

√
V e−c2t + β6

√
V e−(c2+c4)t, (80)

wherec3 = (2γ2
2r−1 + 4q̄ + 4γ−1

µ,1γ2)‖z̃(t0)‖
√

γµ,3γµ,2/γµ,1,
c4 = γµ,3, c5 = 2γ2cf |x1e(t0)|, c6 = 6p1r

−1
1 γ2|x1e(t0)|,

c7 = 8p1r
−1
1 γ2|x1e(t0)|‖z̃(t0)‖

√

γµ,3γµ,2/γµ,1, β3 = c6/γ1,
β4 = c3/

√
γ1, β5 = c5/

√
γ1, andβ6 = c7/

√
γ1. Exponential



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.51, NO. ??, PP. ??, 2006 16

stability is obvious by comparing the above inequality and
(48) and by invoking the subsequent argument in the proof of
theorem 1.
Part III: To show that control (69) together withvofna in (71)
is globally exponential stabilizing and uniformly near optimal
over time, consider again Lyapunov function in (25) whose
time derivative along any trajectory of (9) and (10) and under
control (69) is

V̇ = xT
e Ṗ xe + 2xT

e P [Axe + Bvsfso]

+2xT
e PBṽ + 2xT

e PBvofna

+2xT
e PG(xe)[vofso + vofna] + 2xT

e PFx1e.

Noting that vofna,1 ≡ 0 implies G(xe)vofna = 0. Thus, it
follows from the discussion leading to (77) that,

V̇ ≤ −γ3‖xe‖2 + 2xT
e PBṽ + 2xT

e PBvofna

+2xT
e P [G(x̃e) + G(x̂e)]vofso + 2xT

e PFx1e

= −γ3‖xe‖2 + 2zT P2B2r
−1
2 BT

2 P2z̃ + 2zT P2B2vofna,2

−2zT P2[G2(z̃) + G2(ẑ)]r−1
1 p1x1e

+2zT P2F2x1e. (81)

Now, substituting expression (75) and control (71) into (81)
yields

V̇ ≤ −γ3‖xe‖2 + 2zT P2B2r
−1
2 BT

2 P2z̃

+2zT [−P2G2(z̃) + (A∗
2)

T P2ẑ]r−1
1 p1x1e

−2zT (q2C
T
2 + P2L)z̃1 + 2zT Eo2(x̂e, vofno)

≤ −γ3‖xe‖2 + 2zT P2B2r
−1
2 BT

2 P2z̃

+2zT [−P2G2(z̃) + (A∗
2)

T P2z − (A∗
2)

T P2z̃]r−1
1 p1x1e

−2zT (q2C
T
2 + P2L)z̃1 + 2‖z‖‖Eo2(x̂e, vofno)‖, (82)

It follows from the result of (76) under control (71) that the
conclusion of stability and uniformly improved performance
can be drawn by comparing (78) and (82) and by invoking the
comparison theorem [33]. 2

V. A PPLICATION TO CONTROL OF A MOBILE ROBOT

In this section, the proposed framework of near-optimal
control design is applied to a car-like mobile robot. Like an
automobile, front wheels of the robot are steering wheels, and
rear wheels are driving wheels with a fixed straight forward
orientation. As shown in [37], [38], kinematic model of the
car-like robot is given by:

ẋc = ρc cos(θc)ωc1, ẏc = ρc sin(θc)ωc1,

θ̇c = ρc

lc
tan(φc)ωc1, φ̇c = ωc2,

(83)

where (xc, yc) are Cartesian coordinates of the guidepoint,
θc is the orientation angle of the car body with respect to
the xc axis, φc is the steering angle,ρc is the driving wheel
radius,lc is the distance between the two wheel-axle centers,
ωc1 is the angular velocity of the driving wheel, andωc2

is the steering rate. Kinematic model (83) has singularity
at φc = ±π/2, which fortunately does not occur either in
practice or mathematically by limiting the range ofφc within
(−π/2, π/2). The range ofθc is also set within(−π/2, π/2)

to ensure an one-to-one mapping of following coordinate and
control transformations:

x1 = xc, x2 = yc, x3 = tan(θc), x4 =
tan(φc)

lc cos3(θc)
,

and
ωc1 =

u1

ρc cos(θc)
,

ωc2 = − 3 sin(θc)

lc cos2(θc)
sin2(φc)u1 + lc cos3(θc) cos2(φc)u2.

Under the above transformations, kinematic model (83) is
mapped into chained form (1) withn = 4. It follows from
the Lie group operation that the tracking errors are defined
as x1e = x1 − x1d, x2e = x2 − x2d + (x1 − x1d)(x1dx4d −
x3d)+0.5(x2

1d−x2
1)x4d, x3e = x3−x3d−x4d(x1−x1d), and

x4e = x4 − x4d. In what follows, time varying smooth laws
synthesized for tracking and regulation control are simulated
for the car-like mobile robot.

For trajectory tracking controls, let the reference trajectory
be generated with zero initial conditions (x1d(0) = x2d(0) =
x3d(0) = x4d(0) = 0) and under the two sinusoidal steering
inputs:

u1d = a0+a1 sin(0.1t), u2d = b0+b1 cos(0.1t)+b2 cos(0.2t),

wherea0 = 0.3183, a1 = 1, b0 = b1 = 0, and b2 = 0.0106.
Over the interval[0, 20π], the desired trajectory moves from
the initial position[0, 0, 0, 0]T to the position[20, 10, 0, 0]T ,
and the segment is shown by the solid curve in figure (1f).
Since the steering inputs are of period20π, the reference
trajectory fort ≥ 20π will continue its motion by repeating the
same pattern of the segment defined in the intervalt ∈ [0, 20π].

In the simulation of state feedback near-optimal control, the
following choices are made: (a) Initial conditions are set to be
x1(0) = −2, x2(0) = −1, x3(0) = π, and x4(0) = 0; (b)
Control design parameters are chosen to ber1 = r2 = 20
and q1 = q2 = 1. In figures (1b) and (1a), state-feedback
near-optimal control (49) (consisting of (39) and (52)), and
its corresponding closed loop tracking error state variables are
provided, respectively. For the purpose of comparison, state
feedback sub-optimal control (39) and its resulting error state
trajectory are given by figures (1d) and (1c), respectively.In
figure (1e), histories of the optimality residual values under
the two state-feedback controls are plotted. In figure (1f),
phase portraits in the Cartesian space are plotted. It is obvious
that the proposed state-feedback near-optimal control (49)
together with (52) achieves better performance than that under
suboptimal control (39).

For output-feedback near-optimal tracking control (69),
the same choices are made as those for the near optimal
state-feedback tracking control, and the additional choices
made for observer (58) include: initial condition̂z(t0) =
[ −1 0 0 ]T , δo = 2, observer gain vectorL(t) in (60)
and withβµ(s, t) = a0(s− t)+10a1(cos(0.1t)−cos(0.1s))+

r−1
1 p1x1e(0)

√

r1/q1

(

e−
√

q1/r1s − e−
√

q1/r1t
)

. In figure 2,
simulation results under the control are provided, including
a comparison (figure (2c)) against to output-feedback sub-
optimal control (70). In figure (2d), convergence of state
estimation by the proposed observer is shown.
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(1c) Tracking errors under suboptimal control
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Fig. 1. Simulation results of state feedback controls
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(2a) Tracking errors under near-optimal control
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(2b) Output-feedback near optimal control
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Fig. 2. Simulation results of output feedback controls

VI. CONCLUSION

In this paper, a new unifying design framework is proposed
for controlling nonholonomic chained systems by investigating
uniform complete controllability of time varying systems,by
presenting a time-folding/unfolding technique, and by devel-
oping the concept of near optimal control. It is explicitly
shown that, for both trajectory tracking and regulation of
nonholonomic systems, uniform complete controllability can
be retained by transformations no matter whetheru1d(t) is
uniformly nonvanishing or merely nonconvergent to zero or
vanishing or identically zero (in the last case,u1(t) is directly
analyzed). As a result of the common controllability property,
tracking control and stabilizing control can be designed in
a unified manner. In addition, near-optimal state and output
tracking controls can be designed in three steps: two optimal
control solutions are obtained first for two linear nominal
subsystems, their combination is used to generate a stabilizing
but suboptimal for the overall system, and a nonlinear additive
control term is calculated using the optimality condition to
minimize the distance between the suboptimal control and the
unattainable optimal control. It is shown that all the proposed
controls are globally asymptotically stabilizing, in simple
closed forms, time varying and smooth, and near-optimal.

Simulation study of a car-like robot shows effectiveness of
the proposed methodology.
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