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Abstract— It is well known that a nonlinear optimal control  been shown in [2] that mechanical systems with honholonomic
requires the solution to a two-point boundary value problem constraints can be either locally or globally convertedhe t
or to a nonlinear partial differential equation and that such a so-called chained form under a coordinate transformatiah a
solution can only be obtained off line by numerical iteration. In . .
this paper, a new and near-optimal control design framework a control mapp'”g- As a rgsult, the. chained form has_ been
is proposed for contro"ing any nonholonomic system in the Used as a Canor”cal fOI‘m n ana|ySIS and Control dES|gn for
chained form. The proposed design is based upon thorough nonholonomic systems. The chained form is also equivatent t
study of uniform complete controllability of the corresponding the so-called power canonical form [3] and skew-symmetric

linear time var_ying nominal system. It is shown tha}t, no matter  -pained form [4], and their dynamic extension has been
whether the first component u14(¢) of reference input vector explored in [5]

is uniformly nonvanishing or simply nonconvergent to zero or . L . .
vanishing or identically zero, uniform complete controllability One of the main reasons of continuing research interests is

of the (nominal) system can be recovered by employing the that, by Brockett's theorem [6], nonholonomic systems cann
proposed time-folding/unfolding technique. Upon establishing pe asymptotically stabilized around a fixed point under any
the common property of uniform complete controllability, the  gm56th (or even continuous) time-independent state fetdba

proposed framework can be used to design both trajectory trak- L
ing control and regulation control in a systematic and unified control law. Consequently, there has been a divide betwreen t

manner. Using duality, uniform complete observability can also be control design of making the system track a desired trajgcto
established, a closed-form and exponentially convergent observe and the design of stabilizing the system around a point, and

can be synthesized, and the controls designed using the proposedjifferent approaches have been used to tackle each of the two
framework can be either state-feedback or output-feedbackThe problems or their combination.

tracking controls are designed using the same 3-step process. dth Th bl f |ati trol t tabilizali
is, design of the proposed controls starts with optimal control e problem of regulation control (or posture stabilizajio

solutions to two linear nominal subsystems, one time-invariant 1S t0 stabilize a constrained system at any given point in the
and the other time varying. The two solutions combined together state space. One line of the research efforts is to devis tim
render a globally stabilizing suboptimal control for the overall implicit but discontinuous feedback control laws, and thasmn
system. Then, the optimality condition is invoked to determine notable among them is the time-invariant coordinates anel co

the distance between the suboptimal control and the optimal trol t f ti 50 k th di
one. Consequently, an improved control can be obtained by UO!ransiormations (also known as theprocess) proposed in

introducing a nonlinear additive control term in such a way that  [7]. The transformations are well defined everywhere exoapt

the distance aforementioned is minimized as much as possible inthe hyperplane of; = 0 and, off the singularity hyperplane,

closed form. An example is used to show that regulation control they map the chained form into a linear time-invariant Syste
can be designed similarly. All the controls designed are in simple by which stabilization can easily be achieved. If the initia
closed forms and hence real-time implementable, they are time -

varying and smooth, globally and exponentially/asymptotically con(_jltlon happens tc_) be on the hyperplane, a separate bo_ntro
stabilizing, and they are near optimal since their closeness to law is designed to drive the state off the plane. Hence, tfa fin

the optimal control (attainable only off-line) can be measured, control contains two separate laws and is discontinuous. Th

monitored on line, and has been minimized. switching control guarantees exponential stability besites
Index Terms— Nonholonomic chained systems, near-optimal being discontinuous, contains terms such saét)/z} > (t)
control, state feedback, output feedback, tracking control. which may be excessively large around the singularity hyper

plane. In [8], the switching control law is re-designed gsam
algebraic Riccati equation related to the time-invariam¢dr

. . system after the transformations. To avoid excessivelgelar
Control of nonholonomic systems has received a great d ‘ue in the neighborhood of the singularity hyperplane, th

of attention [1], and many designs have been proposed. It RS jaw is revised in [9] to be explicitly bounded, ane th
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used in [3]; skew-symmetric chained form, Barbalat lemmtime. In [30], [25], an output feedback tracking control is
and Lyapunov-like argument are employed in [4]; periodidesigned under the conditions that;(¢) satisfies a persistent
systems and its Lyapunov argument are utilized in [13]; andeacitation condition and is differentiable up ta — 2) order,
system argumentation and a modifiedransformation are de- the control becomes a switch controkif,(¢) changes its sign,
veloped in [14]; all to achieve global asymptotic stabifiaa. and the stability is claimed to be almost everywhere. There i
It is shown in [15], [16] that asymptotic stabilizing corltrono result available on time-varying smooth output-feeétbac
can be made to be so-callggdexponentially stabilizing. A control for regulation.
stabilizing control is also developed for a third-order mlod The results aforementioned present significant advances,
of wheeled robots in [17]. In addition, hybrid designs of combut there are several fundamental issues that have not been
bining time-varying and switching control laws are pursiued adequately addressed. First, several sufficient conditiave
[18], [5], [19]. Recently, a robust control design is propds been proposed for tracking control design, but there has not
in [20] to ensure practical stability for perturbed systemiseen any report on thorough study of (uniform complete)
whose nominal systems are driftless. Besides its ability obntrollability for chained systems along a desired tri@pc
dealing with perturbation terms, the design in [20] is novalr a system trajectory. It is necessary to determine whether
and interesting because controllability is used to selket tuniform complete controllability can be ensured for vasou
so-called bounded transverse functions whose trajestdige types of trajectories. The issue becomes much more acute
in a neighborhood of the origin and to which the systerfor the regulation control problem as it is well known that
trajectory converges. In essence, the result in [20] bedgehained systems are nonlinearly controllable but not figea
tracking and stabilization problems by exploring conaabllity  controllable at the origin. The interesting question is thiee
and by choosing transverse functions (while adopting tlee intrinsic nonlinear controllability of chained systermman
requirement of practical stability), and the general idefis be explicitly revealed and retained somehow in terms of
exploring controllability and trajectory and of bridginget linear controllability (through transformation) in ordeermake
design problems are very relevant to this paper. regulation control design parallel to tracking control ides

The problem of trajectory tracking is generally differenSecond, because of the lack of sufficient understanding in
from the regulation problem as the reference input vector (controllability, there is no unifying framework by which na
particular, its first element;4(t)) is not or does not convergeous controls (tracking and regulation controls as well atest
to zero in general. Most of the existing results explore thfeedback and output feedback controls) can be designed in
property to avoid the loss of linear controllability at thegin, a systematic manner in order to achieve asymptotic stabilit
and hence control design for the tracking problem is somewh#r observer-based output feedback control designs, namifo
less challenging than that for regulation. In [21], a logallcomplete observability is required, and little has beenedimn
exponentially stabilizing control is proposed for tragt analyze the property for chained systems. Third, for boél th
tracking using the standard linearization technique and uoretical and practical reasons, it is desirable to obtaitrots
der the assumption that the linearized system is uniformilyat are smooth, have simple closed-form expressions, and
completely controllable along the desired trajectory. ndsi ensure best performance possible. It follows from Broékett
the backstepping method [22], trajectory tracking contah theorem [6] that time varying smooth control laws would be
be designed to ensure semi-global asymptotic stability lblye only type of choices. It also well known that optimal
employing a high-gain feedback [23], and stability can madmntrol laws are generally time varying and smooth. Thus,
global for a 3-order model of wheeled robot [24] or foit is fundamentally interesting to study whether closed¥fo
line tracking [23]. Recently, tracking control designedngs time varying smooth controls can be designed for chained
the backstepping method is shown to also ensure glolsglstems to yield the best performance achievable real time
asymptotic stability [25], whereas exponential stabilisy for both tracking and regulation, which is the main thrust of
established only for slowly-changing reference trajaetorlt the proposed near optimal control design framework.
is also shown in [26] that a linear time varying control can In this paper, a unifying design framework is proposed
ensure global exponential stability if;4(¢) is continuously based on both Lyapunov direct method and nonlinear optimal
differentiable, non-vanishing, and Lipschitz with respéz control theory. In order to find an appropriate Lyapunov
time. For a third-order model of wheeled robot, local sigpbil function for both state and output feedback designs, umifor
is shown under persistent reference motion in botland complete controllability of chained systems along a desire
y directions [27]; global exponential stability is estabbsl trajectory is investigated, and the simple conditionuf(t)
under the assumption that the reference trajectory satiafiebeing uniformly nonvanishing (which by itself is already
persistent excitation like condition [28]; and global aptotic less restrictive than those in the existing results such as
stability is obtained under three conditions on referemmear [26]) is found. More importantly, it is shown that, using the
and angular velocities [29]. so-called time-folding/unfolding technique, uniform cplete

In practice, output feedback control is preferred to stat®ntrollability can be retained by transformation if 4(t)
feedback control, and there have been a few results awvailaisl merely nonconvergent to zero or even vanishing. For the
so far. In [26], a linear time varying output feedback traxgki tracking problem, uniform complete controllability camvalys
control is proposed to ensure global exponential stalalijgin be ensured, and hence a Lyapunov function is found in
under the conditions that reference inpyj(t) is continuously terms of a differential Riccati equation and for both cases
differentiable, non-vanishing, and Lipschitz with respée of state feedback and output feedback. For the stabilizatio
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problem, while uniform complete controllability is inhertéy Il. PROBLEM FORMULATION
absent for the original (linear time varying nominal) sys-
tem, intrinsic controllability of chained systems is expds
by judiciously designing the input component(t) and by

The class of nonholonomic chained systems studied in this
paper are of form:

applying time/state transforms so that the transformetesys ;| — u;, 4y = z3u;, -+ @p1 = Taur, En =u2, (1)
becomes uniformly completely controllable in order to med
with control design. This innovative transformation makes wherez = [z, -+, z,]T € R" is the statey = [u1, us]” €

proposed design framework applicable in a systematic aid is the control input, ang = [z1,z2]” € R? is the output.
parallel way to both tracking and stabilization problems OFor trajectory tracking, the desired trajectory to be foka
the other hand, the proposed design framework is to generist@iven by:

time-varying smooth controls in simple closed forms and to T1q4 = U1d,
guarantee the so-called near optimal performance in additi Toq = T3qUid,
to global and asymptotic/exponential stability. The badea . @)

of near-optimality is that, although optimal control formo B

linear systems such as those in the chained form can only Ln—1)d = Tndlird,

be solved iteratively and off-line, many suboptimal colgro Tnd = U2d,

can be found, that the standard optimality condition can Rghere ;;, — (14, Tna) T € R, ya = [w14, 724]7 € B2,
restated as a distance measure (called the optimalityuesid,, , (1) = [u,,(t), usq(t)]” € R? is the time-varying reference
between the suboptimal control and thmgttainablg optimal  inpyt (i.e., open-loop steering control) that is assumetheo
one, and that the residue can be minimized. Specifically, {)iformly bounded. In the tracking control design, propert
framework applies to the tracking designs in three stepst.,Fi of (1) is explored and utilized. For regulation/stabilization,
utilizing the structure of chained systems, two linear wali reference inputs, is identically zero, and the corresponding
controls are designed for the two linear nominal subsys&msanalysis and design can be done directly in terms f) (as
corresponding error dynamics. In the second step, it is BhOW;ij| pe shown by example 4 in section II-F).

that combining the two individually-optimal controls yisl a Chained system (1) has the nice property that its vector
globally stabilizing suboptimal control for the overallaihed fq|ds are left-invariant with respect to a Lie group opematilt

system. In the third step, a nonlinear additive control tésm ;g given in [20] that, for any vector8, o € %", their operation
analytically synthesized so that the resulting controldoees ¢ | je group product is? * o, where (9 x o) € R”,

near optimal in the sense that the corresponding optimality

residue is minimized. In short, the proposed framework @an b (Ox0)1 =91 +01, (U*0)n ="+ 0n,
used to design asymptotically stabilizing controls fockiag

and stabilization and for the cases of state feedback apdiou@nd, fori =n —1,n—2,...,2,

feedback, and the resulting controls are in simple closed$p n J—i

time varying and smooth, globally asymptotically stalilg, (F*0)i =0 +0i + Z _91—.' j
and of near-optimal performance. j=it+1 (7 =)

It is elementary to verify that the identity element in thee Li
group isg 20 e R in the sense that x o = o * ¢ holds

for all o. Accordingly, the group inverse of;, denoted by

AT 1 Z1 4T , _
The paper is organized as follows. In section II, the prob ' = [ 27} 23, -+ ;| anddefined by, szq =

lems of tracking and regulation are formulated togethee, tiva * z; = 9, is found to be

basic idea of near optimal control is motivated, necessary . 1

properties such as structural property of chained systems, T1a = 7Tdy Tpg = “Pnd

uniform complete controllability, and uniform complete-oband, fori=n—1,---.2,

servability are discussed and established, and desigrs step

of the proposed near optimal framework are provided. An 1 T4 1

example is used to show that, by designiagt) first and Tig = 7Tid Z (j _i)!xjd'

then applying appropriate transformation to recover unifo g=itl

complete controllability, stabilization control desigedomes Using the group operation, we can define the state tracking

parallel to trajectory tracking control design. In sectibh  grror petween (1) and (2) as. A w7l * o, that is, z, =

the framework is illustrated by the design of a state feekbag,, ... 5 1T o = —2. 421, 2, = —2pq+a,, and for

near optimal tracking control. In section IV, the framewesk ; —,, 1 ... 2

applied to synthesize an output feedback near optimal aontr . e . i

saver. I secton V. smulaon resuls of a cer ke mebi “i« =~ it Y- ol = 30 )
: ’ - (= (=

robot are presented to illustrate the proposed near optimal

controls, and their superior performance is validatedubho In addition, let's denote the output tracking error py =

comparisons. In section VI, brief conclusions are drawn. [z, 72.]7 and the feedback control (to be designed)uby

n j—i

j=i+1 j=i+1
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[v1,v9]T Su— ug. Then, it is straightforward to verify that control design, we choose to demonstrate the proposedotontr
the corresponding error system is design framework using thén, 2) chained form in (1). It is

. straightforward to see that all the results apply direabhthe
e = A(u14(t))xe + [B + G(xe)]v + F (216, U24)Z1e, 3) clas_g of(n, m) chained systems: pply )

Ye = O-Tev
where Ty = w1y Xy, = U,
0 0 0 0 ] ¢j7i:u1mj7i+1, ZSZ.Snj—l,lngm—l,
0 0 wqgt) 0 e 0 where [z, X7,..., X117 € R* with X; =
|00 0w e 0 [Tj-12,.yTj—1n, ,]° are sub-states fo2 < j < m
A(uld(t)) — . . . . , 7—1,2 sy bj—1,mn; 1 ) " > 7] > ’
Lo : - : and u = [ug,us,...,u,|T is the input vector. The only
0 0 0 u14(t) difference is that, analogous to the decomposition into two
0 0 0 0 subsystems to be developed in subsection 1I-C, the regultin
) ) error system (3) of the abowen, n) chained model contains
10 0 0 m subsystems.
0 0 r3e 0 Alternative models equivalent to the chained form can be
B=: , Gre) = | Sl employed for nonholonomic systems. For instance, it is show
0 0 Tne O in [3] that chained form (1) can be transformed to the scechll
0 1 0 0 power form:
. , . , 1 ne
and r 0 b Y1 = U1, P2 = U2, P3 = P1U2, *** Pn = m% 2U2,
— (1 — 2)luggal _ . . . '
(n—2) Y2dTie | which also has its own dynamic extensions [5].
—(n — 3)lugqx’, o . . -
F(1e,uzq) = _ , If the definition of tracking error is properly modified,
: the resulting error dynamics are different but retain a# th
—Uag important properties so that the proposed design can béesdppl
I 0 i successfully. Should the conventional choice of trackirgre
100 --- 0 Ze S x4 IS made, the error system would be the same as
C=1010 - 0l (3) except thatF" = 0 and
In the paper, two types of controls will explicitly be con- | 0 x3e+x3¢ 0 Tpet+Tpg O

structed: state-feedback trajectory tracking control emighut- G = 0 0 0 0 0

feedback tracking control. In addition, the design proce
of regulation/stabilization control is outlined by an exam

The design objective is that, for system (3), all three cantr
strategies are in closed-form for real-time implementgtio
achieve near optimality (the best achievable real-timal a

nsure global mptotic stabilit . In short, a new near- : : ; )
ensure g obal asy ptotic S ability @t Short, & NEW NeAr o invariant control systems, tracking error dynami€$oom
optimal control design framework is developed. . ; A )
. . . .. (3) can be derived directly from their original equationglan
The technical development in the rest of this section is : . :
at transformation to the chained form is not necessary [20

follows. In subsection II-A, several facts related to theiced This means that the proposed design is not confined to the

form and its error dynamics are summarized. In subsectioH : . 4 .
L . L ained form and can be applied directly to nonholonomic
[I-B, the basic idea of near-optimal control is introduced’

Structural properties of error system (3) are discussed slxstems of left-invariant vector fields. Nonetheless, adtiar-

subsection II-C to illustrate the main steps of near—opltim([an‘rmon is generally needed to render error system (3) and, by

control design. Controllability needed for the trajecttnyck- usmg_the inverse of the_ transformaﬂqn, performance measu
) L L7 . . . used in the control design (such as index (4) in subsection II
ing control design is studied in subsection 11-D. Obserigbi ; ) .

i . B) can be expressed in terms of physical variables and hence
needed for the design of output feedback control design HSve explicit physical meanings
briefed in subsection II-E. In subsection II-F, the coratiti b phy g

o unfon complte convolabityipsenaviy s s " PPICEIOT 10 [noue e, ton ke o
to hold under various choices afi4(t) (or u(t)) for both y

. . o control design. It is straightforward to show that, uponinigk

trajectory tracking and stabilization problems. : . . !
care of nonholonomic constraints, dynamic equations can be

) ) ) transferred into a reduced-order vector differential ¢éigueof
A. Models of Nonholonomic Systems and Their Tracking Erarang . Then, the proposed near optimal designdaran be
Dynamics extended to a torque-level control by using standard method

It is well known that many nonholonomic systems can b&uch as backstepping design. Since those standard desiggns a
transformed into the chained form by coordinate transfermavailable and effective for dealing with unconstrainedaipic
tions [2]. In order to ensure wide applicability of our pr@ea equations as shown in [31] and references therein, we choose

ince the above matrig explicitly depends onesg up to
T4, the subsequent control design and stability analysisavoul
require their uniform boundedness. The use of Lie group
operation removes this requirement.

Another advantage of using the group operation is that, for
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in this paper to focus upon the kinematic control problem &teps of the proposed near-optimal control design will be
constrained systems. presented in section II-C by exploiting properties of theoer
system.
B. Necessity of Near-Optimal Control
To synthesize a performance-oriented control for chainéd Structural Properties of the Error System
system (3), we can begin with the nonlinear optimal control It is obvious from (3) that

theory [32], [33]. Consider the following cost functional: ] ] )
A= dlag{Al, A2}7 B= dlag{Bl, Bg}, C = dlag{Cl, CQ},

1 oo
J(t, (), v(t)) = —/ [T CTQ(t)Cxo+vT R(t)v]dt, (4) 0 0 0
2 Jt G:[G O}andF—[F}
2

where matrices)(¢) and R(t) can be freely chosen by the

designer as long as they are uniformly bounded asq/ < where

Q(t) < gl and0 < rI < R(t) < 7I. Then, conditions for , _ Bi=1, Ci=1, B,=[0 0 - 0 1]"
optimality can be found using the calculus of variationsafTh ’ ’ '

is, given HamiltonianH as Co=[1 0 -+ 0], As(uiqt)) = u1q4(t)A3,

1 1
H = §I€TC'TQ(t)C:U5 + §UTR(t)’U o010 -0 Z2
0 0 1 - 0 23
TrA(t e B e F(z1e Cle
+A H{A) e + [B + G(ze)|v + F(T1e, u2d)T1e s A N L = | ’
where A € R” is the Lagrangian multiplier, necessary condi- 0 0 1 1
tions for optimality are [32]: 00 - 0 0
OH OH ‘ 0H
fe=———, — =0, and A\=-—_—. —(n — 2)lugga?
oA v 0T, n—4
—(n — 3)lugqxy;
It follows that conditioni. = 0H /O is always satisfied and d F _ . 8
that conditiond H/9v = 0 is guaranteed by the optimal control an 2(1e, uzd) : - ®
candidate _762d
v* = —R7Y)[B + G(x)]|T P*(t, z) ., (5)

Therefore, error dynamics in (3) can be partitioned into the
where functionP* (¢, z.) is a matrix parameterization of thefollowing two subsystems:
optimal Lagrangian multiplier as\* = P*(¢,x.)x.. Thus,

control (5) meets all first-order necessary conditions ifrira 1e = Aiz1e + Bror,  yie = Ciie, ©)
P*(t,z.) is selected according to and

d)\ aH Z = Ag(uld(t))z + BQ’UQ =+ GQ(Z)’Ul

T = ) +F3(T1e, U2d) T 16, (10)

A=A clp=pr y2e = Caz,

or simply, A

E* (-Te) é E(xe) =0, (6) where 2 :_ [_217 T 7Z7L—1]T = [«IQQ, e amne]T € _mnil' The

p=p* decomposition into subsystems (9) and (10) yields two uisefu

where vegy,] 2 [771 %}T, and E(z.) is given by properties. First, subsystem (9) is of first order, lineenet

invariant, and independent of subsystem (10). Subsystén (1

the double-column formula (7). Consequently, equationig6) .
is nonlinear but has a linear time varying nominal system

often referred to as the optimality condition, af@(x.)||?

will be calledresiduefrom the optimality condition. Since the defined by

optimal value of residue is zero (i.€(x.) = 0), the optimal 5= Ag(u14(t))z + Bova, yae = Caz. (11)
control design can be interpreted as the problem of minimgizi

the residue. Second, coupling from subsystems (9) to (10) is through

If optimal control (5) were pursued, matrix* (¢, z.) would  [G2(2)v1 + Fa(Z1e, uga)z1c], the nonlinear terms in the sys-
have to be solved from (nonlinear) differential equatiop (§em. Utilizing these structural properties, the proposedrn
with boundary conditionsz.(to) and P(co,z.(c0)) > 0, optimal control design will be carried out by the following
which could be done only off-line through numerical iterathree steps:
tions. Thus, the resulting optimal control (5) is not soleaim  Step 1: Determine closed-form optimal controfg andv;,

real time or practical for most applications. To overcomis th for linear subsystem (9) and linear time varying
fundamental limitation of optimal control and to achievétee nominal system (11), respectively.

performance, we propose a hear-optimal control designtwhicStep 2: Design a sub-optimal contrgl, to ensure exponen-

according to the aforementioned discussion on (6), can be tial stability of the overall system (3). Specifically,
characterized as the problem of finding a closed-form contro Vsol = u;fl and vg, 0 = v;fQ are shown to be the

similar to (5) such that its associated residue is minimized proper choices.
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ad\ OH 0P r OP . T
E(z.) = 7 + or. ~ ot x. + vec [xe 3%‘@] {[A-(B+G) R (B+G) Plze + Fai.}
+[PTA+ATP - PT(B+G)RYB+G)'P+CTQClae + PFx1,
T F T
—vec g:eTPT(BJrG)(R‘l)TgPace + vec MP:ne : ©)
0%je O0%ie
Step 3: Synthesize a near-optimal control of forfy,; = either left continuity or semi-continuity (either upperlower).

Vso,i + Unai» Wherei = 1,2 andv,,; are closed- However, lemma 1 no longer holds if14(¢) is piecewise
form, nonlinear additive control terms chosen to mineontinuous, uniformly bounded, and uniformly nonvanighin
imize the corresponding residue from the optimalitfFor example, consider4(t) = 3, 6(t — iTs), whereT, > 0
condition and to ensure exponential stability of thés a constantj(t — 7s) = 1 att = Ty, andd(t — T,) = 0 at
overall system. t # Ts. In this case, it follows from the proof of lemma 1 that

In essence, the proposed near-optimal control designsstaffc(to,ts) = B2Bj3 (t; —to) is singular.

with a linear optimal control for linear dynamics and then Definition 2: A time functionw(?) : [to, o0) — R is said to
chooses a nonlinear additive control to compensate for nd¥ uniformly right continuous if, for every > 0, there exists
linear dynamics, to minimize the optimality residue, and t& > 0 such thatt < s <+ n implies [w(s) — w(t)| < e for

ensure exponential stability. A design of linear optimattcol  all ¢ € [to, c0).

v}, calls for controllability and observability of linear time ~Definition 3: A time function w(t) : [to,0) — R is said
varying nominal system (11), and these two fundament# be uniformly nonvanishing if there exist constaats> 0

issues are the topics of subsections II-D and II-E, respaigti andw > 0 such that, for any value of, |w(s)| > w holds
somewhere within the intervél, ¢ + 4.

Assumption 1:Desired reference control inputyq(t)
[to,00) — R, is uniformly right continuous, uniformly
bounded, and uniformly nonvanishing.

In order to solve an infinite-time state-feedback optimal Lemma 1:Under assumption 1, system (11) is uniformly
control problem for linear time-varying system (11), umifo completely controllable (i.e., there exists a constnt> 0
complete controllability of paif{Az(u1a(t)), B2} needs to such that definition 1 holds for all choices of constant
be established. Below is the standard definition adopted fraatisfyings > ;).

[34]. Proof: It is straightforward to show that the state transition

Definition 1: [34] Let W.(to,ty) and ®(t,ty) denote con- matrix is
trollability Grammian and open-loop state transition rixatf

D. Controllability of Linear Time Varying Nominal Subsyste

system (11)' ie. (I)(t,T) _ f Asx(s)ds _ AZ fT uy4(s)ds
Welto,ty) = [, @(to,7)B2B 7 (to, T)dr, (12) Z L (A3)Fp"(t,7), (13)
Oltty) = Ap(ura(t)®(t to). =
Then, system (11) is uniformly completely controllablehiet where 3(t, ) f u14(s)ds. In deriving the last equation of
following two inequalities hold for alt: (13), the property tha([A*)(" 1 =0 is used.

It follows from assumption 1 that there exists constant
such thatjui4(t)] < @ for all ¢. Thus, we know from (13)
whereé > 0 is a fixed constant, and,;(-) are fixed positively that
valued functions. - . A

The following simple assumption is introduced to establish 12t ¢+ 0)ll < eldaliipteeal < emldzle = = a3(0).
all of the properties needed in the tracking control desigismilarly, we have that, for any unit vecter
(including controllability and observability propertiesolution

0 < a1 (0)I < We(t, t406) < aea(6)I, ||D(t, t40)| < acs(d),

of Lyapunov function, and global exponential stability}. | TWo(t,t +8)e < /Ws |®(t, 7)|2dr
should be noted that, for the trajectory tracking problem -t

in general, the assumption can be made without loss of t+o 2 AL (r—1)

any generality and that, ifi;4(¢) vanishes over time, the = / : dr
tracking problem reduces to the regulation problem for Wwhic t,;

a smooth time varying control can be designed without any < / 2l Asllsgs 2 o, (8).
assumption (as will be illustrated by an example in section 0

[I-F). Should an open-loop reference inpui(t) be selected On the other hand, according to assumption 1, there exist
to be discontinuous, right continuous steering time flomgi constant$ > 0 andu; > 0 such that, for any, |u14(s)| > u,

are typical choices. It is straightforward to see that lemimaholds for somes(t) € [t,t + ¢]. In addition, by uniform
also holds if right continuity in assumption 1 is replaced bgight continuity and uniform boundedness.(7) is uniformly
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bounded in magnitude, has a fixed sign, and is uniformiyniform complete controllability of paif—AZ, C,}. In other
bounded away from zero within the subinterval§t), s(¢) + words, system (11) is uniformly completely observable iflan
o(d,uq)] C [t,t+ 6], where functions(-) is independent of. only if its dual system
It follows from (13) that, for any unit vectot,
W (13) y anity 5= — AT (u1q(t)2 + CT ) (17)
AWt t+8)c > TWo(s(t),s(t) +o(6,u,))c

_ /s(t)Jra(Ml) Az [, wa(nydn
s(t)

/0(6721)
B 0

/0(5721)
B 0

Now, let0(¢) = [ [ura(s(t) + o)|do for ¢ € [0,0(5,u,)]. It
follows from [u14(s(t) +0)| > w, that functionf(¢) is strictly F Relaxation and Removal of Assumption 1
monotonically increasing ovéf, o (4, u;)] and uniformly for

5 is uniformly completely controllable. Under state tranmsfa-
dr tion ¢ 2 (€1, oy Ena)T =204, -+, 21]T, system (17) is
transformed intd = As(—u14(t))¢ + Byvb. Invoking lemma
1, we have the following result.
Lemma 2:Under assumption 1, system (11) is uniformly
. o 2 completely observable (that is, there exists a consiant
T et Js ““(S(t)“’)ngg‘ dé. (14) 0 such that definition 4 holds for all choices of constant
satisfyingé > §7%).

e By

« [s()+o 2
: u14(n)dn
cle™ Jow Bsy| d¢

2

As summarized in the introduction, existing results on

all ¢, that tracking control design all require certain non-vanishomg-
0(6) f0¢ u14(s(t) + 0)do if wig(s(t)) >0 ditions. It is clear from the proof of lemma 1 that, for
_foab wia(s(t) + o)do if wia(s(t) <0 uniform complete_ controllab|I|tyu}d(z.f) bemg both uniformly
bounded and uniformly nonvanishing is necessary and that
and that, sincelf/d¢ # 0, function 6(¢) has a well defined certain uniform continuity (such as uniform right contityi
inverse with or uniform left continuity, or uniform semi-continuity) &lso
do do do 50 necessary. In fact, closest to assumption 1 is the assumptio

2.12 in [26], but that assumption requires that,(t) is
continuously differentiable and global Lipschitz with pest
tot. Thus, assumption 1 provides the least restrictive canliti
for uniform complete controllability of system (11).

= > —_—

lua(s(t) + @) — w
Therefore, we know that there exists a positive constant
such that

/U(Ml) T A2 ff m(s(t)+a)deB2 ? d Nonetheless, it is necessary to show that the proposeddesig

0 framework is not confined to systems satisfying assumption

N { E_11 foa(&yl) |CT€A;‘9B2}2 o, if uya(s(t)) >0 1 In what follows, three cla_sses @_fld(_t) are c_onsidereq: it_

> L o) | T —A%e |2 ) is convergent to zero (that is, vanishing); it is nonvamighi
ar Jo |c"e™ 0 Bo["df, if ura(s(t) <0 but not uniformly nonvanishing; and it is zero. Under those

> ai(6,u1,uy) > 0. (15) choices, system (11) may not be uniformly completely con-

trollable. Examples are used to illustrate that assumption
rﬁgn be relaxed or even removed by using the so-called time
olding/unfolding technique. The basic idea here is to emsu
assumption 1 in a transformed domain/space. Hence, despite
- . ) ) . of the loss of uniform complete controllability in the omgil
E. Observability of Linear Time Varying Nominal Subsystenyomain/space, the proposed control design framework can be
For the ease of applying the proposed near-optimal frameadily applied.
work to both state-feedback and output-feedback designsExample 1:Consider nominal system (11) with
output matrixC' has already been embedded into performance 1
index (4). As a result, observability property of system)(ikl u14(t) = — cos(wt),
required for design and stability analysis in both cases. k(t)
Definition 4: [34] System (11) is uniformly completely w > 0, x(¢) > 0 for any finite timet > 0, andlim;_, o, x(t) =
observable if its observability Grammian ~+oo but 1/k(t) € L1. Obviously, signak:y4(t) is vanishing,
‘s and assumption 1 is not satisfied.
Wo(t, t +6) = / T (1,t)CE Cy® (7, t)dr (16) Let us introduce the following time and control transforma-
t tions:
and state transition matrix satisfy the following two inagu /t 1 1
T =
0

In (15), the property of both time invariant paifs-A3, By}
being controllable is used. The proof is completed by co
bining (14) and (15). O

ties: for all ¢, ——ds, and wvy(t) = -

K(s)
0 < o (6)] < Wo(t, t46) < aa(0)1, [|D(t, t46)[| < es(d), The first transformation unfolds the time and is differeitiéa

whered > 0 is a fixed constante,(-) are fixed positively and both transformations are one-to-one and onto. Under the
valued functions. transformations, nominal system (11) is mapped into

Comparing definitions 1 and 4, we know that uniform dz(7)
ili i i i = ) (1) A52(7) + Bav} (18)
complete observability of paifAs, C.} is equivalent to ar 1d 2 203,
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whereu) () = cos(wt) with ¢ being replaced by the inversestabilization (or regulation) problem, the conventionabice

of the above time transformation (which can be found ondgu,4 = 0, in which case the above discussion can be applied

k(t) is specified). Clearlyu,(7) in system (18) satisfies directly tou;(¢), as illustrated by the following example.

assumption 1 in the transformed time domainrof Example 4:To make system (1) globally asymptotically
As will be shown in the subsequent sections, several typsiaible, we can recursively design two dynamic feedback con-

of controls can be designed (fof) to exponentially stabilize trol components:; andus,. First, let dynamic feedback control

system (18) (and its corresponding nonlinear systems)en th, be of form

domain of 7. Oncew) is found, vs is found and it is well

defined. For the class of(t) considered in this example, the  ;, — — 1 up — |w? — 1 z1,  (20)
resulting stability in the domain of is at least asymptotic t—to+1 4t —to+1)?

stability, and additional stability claim may be drawn bése,nere,, > 0 is a design parameter whose value is arbitrary,
on the property of«<(t). For instance, ifx(¢t) = t + 1, the wi(to) = callz(to)]l, and ¢, is also a design parameter

result in the domain of is only asymptotic (but not uniform gpirarily chosen by the designer so longeas# 0 whenever
asymptotic) stability; and ifx(t) = /t+ 1, the result in 21(0) = 0. It follows from (20) and equatioti; = u; in (1)
the domain oft is uniform asymptotic (but not exponential)y,a+ the closed loop subsystem is

stability. O

Example 2:Consider nominal system (11) with P PR 1 } A
1+ 77— 71 — 7 13| T1=0U
0) { s cos(wnt), e [22n —1, 227 1), t—tot1l At —to +1)?
' cos(wat), te 22T —1, 22772 — 1), |tis not difficult to verify that closed loop solutions are
wherewg, wy,ws > 0, n € X, andX = {0,1,2,---} is the 1
set of non-negative integers. It is apparent thaf(t) is un- zi(t) = N {z1(to) cos(wt — wtp)
vanishing but not uniformly unvanishing to satisfy assuompt v (to) +0.521(fo)
1. +0 0 sin(wt — wto)} ,
Now, let us define the time-folding transformation: 1“
In(1 +t), e 22 —1, 220 1), ui(t) = Tty T 1 {x1(to) cos(wt — wtp)
T=9 @+ )2+ gt (t - 220 1+ 1), ua (to) + 0.521 (to)
te 22l —1, 2202 _ ), + w' sin(wt — wto)}
which is one-to-one and onto and has right-continuous first- w .
order derivative. Under the transformation, nominal gsyste +m {=a1(to) sin(wt — wto)
(11) can be transformed into (18), whet&,(7) is given by
K . N d ) A ul(to) + 05%1(?5())
the double-column expression in equation (19). It is obsiou + - cos(wt — wtp) ¢ -

that, no matter whethew, = 0 or not, v/ ,(7) is uniformly

unvanishing (as defined in assumption 1) in the domaimn. of It is obvious that signals, (¢) 2 VI—To+1-wi(t) satisfies

The rest of developments can be carried out as did in examgle, 1 jtion 1 unlesiz(to)|| = 0. On the other hand, the rest

1 <& e
Example 3:In the event that;4(¢) in nominal system (11) of system dynamics in (1) can be expressed as
is vanishing andu.4(t)| € £, simple time folding/unfolding 2 = w1 ALz, + Bous, 1)
mappings from¢ to 7 defined in examples 1 and 2 would
no longer be adequate. In this case, our technique calls fopgere », 2 [£2,- -, 2,]T, matricesA; and B, are those

time-dependent state transformation through which tinie-f0 gefined in (8). Lettingr = 2f—1f, +1 — 2 and v}, =
ing/unfolding is accomplished and assumption 1 is satisfie{m.u% we know from (21) that

in the transformed state space. For instance, considemabmi
. d s
system (11) with di — W, ALz + Boul, 22)
H=et, a;=|21 d Bo=| "
wa(t) =€, Ay =1 |, an 27 1 which is uniformly completely controllable. Hence, as vii#

X . , .
Now, let us define the time-unfolding state and control Han%hown n sections Il and IV, con_tr012 (and in turnu,) can
formations: e designed to make, asymptotically stable (and solution

. x1(t) is already asymptotically stable). o
z = { 60 (1) } 2, and vl = v, Summarizing the above results, we know that assumption
1 does not pose any limitation to the proposed control design

under which nominal system (11) is transformed idfo= framework, and an important consequence is that uniform
zi + 24 andz) = v}. This transformed system is time-invariantomplete controllability can be recovered for stabiliaati
and obviously satisfies assumption 1, and contfotould be of nonholonomic systems. Upon fully recovering uniform
designed and calculated. <& complete controllability and utilizing it, the proposedntil

All the above examples deal with nominal system (11design framework becomes applicable to not only trajectory
naturally arising from the trajectory tracking problemrfoe tracking but also regulation and stabilization.
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Wy (7) = woe ™27 cos(wre” — wy) TE€[2nIn2, (2n+1)In2) (19)
LT = cos (wa(2272 — 227H) ({25 — 20 — 1) + 227+ — 1)) re[(2n+1)In2, (2n+2)In?2)
[1l. DESIGN OFSTATE-FEEDBACK NEAR-OPTIMAL The following lemma summarizes all the useful results. It
CONTROL should be noted that, in the seminal paper of [34], optimal

In this section, state-feedback near-optimal contrgl,, control (such as the ones in (29)) is derived and uniform
will be synthesized by following the design steps outiined i@Symptotic stability of the closed loop system is shown. It

section 1I-C. The design will then be extended in section I\ @lso shown in [35] that, for linear systems with uniformly
to the case of output feedback. bounded matrices, uniform asymptotic stability is equival

to exponential stability. Although Lyapunov converse tiego
ensures the existence of at least one Lyapunov function cor-
responding to exponential stability, the proof of the faling

In this subsection, optimal controls are individually detemma is mainly intended to shoW in (25) is such a Lya-
signed for linear subsystem (9) and linear time-varying forunov function. In fact, the two inequalities in (30) aretical
inal system (11). Since linear optimal control design islwelo the subsequent developments of near-optimal control.
known, the focus is placed upon finding an appropriate Lya-| emma 3:Consider subsystems (9) and (11) under perfor-

punov function that will be used in the near-optimal contrghance indices in (24), respectively. Then, under assumitio
framework (in the cases of both state feedback and outpHé linear optimal control vector is

feedback but not regulation) for nonlinear error system (3)

A. Optimal Controls for Individual Linear Subsystems

To this end, choose vf (xe,t) = =R~ (t) B P(t), (29)
Q(t) = diag{q1, ¢2(t)}, andR(t) = diag{r,, r2(t)}. (23) oOr equivalently,

It follows from (4) that performance index can be rewritten a { V7 (T1e,t) = —ri ;e

J = Ji + Jo where Via(22e,t) = —ry ' (1)B] Pa(t)z,

Jit,z1e,01) = 5 [o i, +riofldt, 04 wherep; is given by that in (27) and(t) is defined by (28).
{ Jo(t, z,v9) = %j:;c [q2(t) 2T CT Coz + ro(t)v3]dt. (24) Moreover, the closed loop system is globally exponentially
Now, consider the Lyapunov function stable, and Lyapunov functidr in (25) satisfies the following
' two inequalities:
V(ze, t) = zeTPxe, (25)

Yillzel? < V(we,t) < y2llze?,
where matrix P is the solution to the time-varying state- = [®%(t,t0)P(t)®e(t, to)] < —y3RL (¢, to)Pai(t, to),
independent Riccati equation: wherey; (for j = 1,2,3) are some positive constants, and
P+ [PA+ATP—PBR'BTP+CTQC)=0. (26) ®alt to)is the closed-loop state transition matrix defined by
d®.(t,to)/dt = [A(t) — BR™1(t)BT P(t)]®.(t, o).
It follows from block property of matrices, B, C, @ andR  proof; In [34], existence of optimal control is shown for both
that P(t) = diagp1, P2(t)], p1 = /171, linear time-invariant and time varying systems, and (asvsho
) T A by (6) with G = 0 and F' = 0) the linear optimal control is
Vi(ze,t) = prage + 27 Poz = Vi(wie) + Va(z, 1), @7) given by (29). In stability theorem of (6.10) in [34], asyrafit
and matrixP,(t) is the solution to the following reduced-ordesStability is established. Then, by invoking theorem 3 in][35

(30)

differential Riccati equation: for some,(co) > 0, exponential stability is concluded. As a part of the proof
. - of stability theorem of (6.10) in [34], solutio® to Riccati
0 = B(t)+ P()A2(t) + Ay (1) Pa(t) equation (26) is shown to be positive definite and uniformly

—Py(t)Byry ' (t) B Py(t) + CF q2(t)Co.  (28) bounded. Thus, the first inequality in (30) is establishethwi
infi>g Amin(P(t)) and 2 = sup;>; Amax (P (1)),
Amin(+) @nd Apax(+) are the minimum and maximum
aé envalues, respectively. The rest of the proof is to distab
Yhe second inequality in (30).

It follows from (27) that, for subsystem (9) under control

It should be noted thaP, can be pre-computed by integrating&}her_e
backwards and off line and then stored with an adequ
sampling period. Ifu14(¢) is periodic (and so are the choice
of ro(t) and ¢o(t)), solution P(t) (hence P(t)) is also

periodic. Finding solution ofP requires that the history of .,

A in (29),
u14(t) be known. In some applications such as the targevtld1 in (29)
tracking and leader-follower problems,.thg goal point _ime t V= gl = 0V, = /ﬁ—lVl,
tracker/follower need to be updated periodically and adicgyr o P b (31)
to observation of target/leader’s current position anadai). T1e(t) = z1e(to)e” T = gy (tg)e” V70,

In this case, it would be better to treat the problem not as a A
tracking problem but as the set point regulation problentwit For subsystem (11), differentiating(¢) = Va(2(t),t)
the set point being updated periodically. (defined in (27)) along the trajectory of (11), (29) and (28)
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yields follows from the second inequality in (36) that

~ _ 1

Vo = —q2(t)27 05 Coz — 2" PaBory ' By Paz Va(t) < Valto+ (N —1)8) < =Va(to + (N — 2)T)
g

< —QZTCQTCQZ — f||’UZ2||2. (32)

Va(to) < oVa(to)e 5 (—10)  (37)

On the right hand side of inequality (32), both terms are o
negative semi-definite with respect|te||. IntegratingV, over Which directly shows exponential convergenceldft). Thus,
an interval[t, t+6] for anyt > ¢, and for anys > max{d*,6*} Without loss of any generality, we can assume that, for any
(wheres* andé: are defined in lemmas 1 and 2, respectivelyy, = t andt > ¢, and for some constapt, ; and time function
we have B22(), Va(r) = Va(t)B. 2(T = t)e P=1 71, whereg, »(0) =

1,0 < fB.2(t) <o,andf.1 > Ino/d according to inequality

Vo(t) — Va(t +6) (37) and to the fact thak>(¢t) > 0. It follows that, given any
t+5 ) t+0 . ) ) > max{(g* 5*},
s o[ e s e [ st Pas. 39
t t

crro

t+6 t+0

Vo(r)dr = Val(t) Bao(T —t)e Pea(m=0gr
It can be assumed without loss of any generality that,/t t
along the trajectory of (11), under contrai’, in (29), J 8. s
9 jectory (L) oy L 2( : = Vo(t) [ Boa(s)eP=1%ds
and for some functiorg(z(t),t) > 0, [, [[vfy(s)|Pds = 0
£(z(t),)]z(®)|>. In what follows, the right hand side of 2 B.(5)Va(t)

inequality (33) is shown to be positive definite with respect
to ||z(¢)|| by investigating two cases of functiof(z(t),t). or equivalently,Va(t) = 8, 1(6) :+5V2(T)d7', whereg, () is

The first case is that, for all > o, £(z(t),t) > £ holds a finite positive number. Taking time derivative on both side
for some constan{ > 0. In this case, the claim is obviousof the last equation and invoking (35) yield

as Vo(t) — Val(t +8) > r [/7 |opy(s)|Pds > relz@)2. . 1

The second case is th&(z(tt),t) = 0 for some finitet or, ~ Va(t) = ﬁ—@[%(t +6) = Va(t)] < —%(5)‘/2(?5)
ast approaches infinity (together with whatever change the ? A\ 120

state z(t) has), {(z(t),t) approaches zero. Thus, for those < - n 2% (38)
vzﬂyées oft (including possiblyt = +o0), the inequality 7262 (6)

o llvia(s)]Pds < el|z(t)]|* holds for any choice of > 0. Combining (31) and (38) yields that, for somg > 0,
On the other hand, the solution to system (11) under contfdl < —vs||z.||2. Thus, the second inequality in (30) can
vy In (29) isz(s) = ®(s,1) {z(t) + [ ®(t,7)Bovj o (1)dr|. be concluded by noting tha&t = 2zl P(t)z. and z.(t) =
Hence, we know from uniform complete controllability and®e(tto)Ze(to)- -
uniform complete observability of A5(t), Bz, C:} that

double-column expressions of inequality (34) hold. In thg. Designs of Suboptimal and Near-Optimal Controls

L ) . 5 g 5

(iienvgtlons gf (34), mequaht)_ﬂa + bl .2 (”aH Io1) 2. In this subsection, we first show that linear optimal control

zJlal . Ibi* and _Schwarz (mtggral) [qequallty are a.pplled(zg) is globally-exponentially-stabilizing and subopéihfor

Zhsctn?ohﬁ (ht?\rrda;ldiaﬁf b(:?hc',sse‘?ffg"fe O;?Ei?gilw'g;ngﬁéystem (3) and that its performance can be quantified (agains

T?}ereforez we ha\G/eV ) — Vot + 6) > ql0.5 (3:5) ~'the optimal performance under the unattainable nonlinear
20, (6) ' @)l (t)HZQ 2 = 4F0001 optimal control in (5)) by the residue from the optimality

117 00210) A2l 0)ELIEE) || T condition, as summarized by the following theorem. This
Summarizing the two cases and reconsidering inequal

Wsult leads naturally to the proposed design of near-@btim
&3:;’)’0\/\/8 know that, for allt > t, and for some constant control which, to be stated shortly, selectively minimizbe

optimality residue.
5 A Theorem 1:Consider nonlinear tracking error system (3)
Va(t) = Va(t +0) 2 Al=(0)] 2 %VQ(t)' (35)  under assumption 1 and under the contrgle.,t) =
. Usfso(Ze,t), Where
Recalling from (32) thatl, < 0, we can rewrite the above
. . N T «
|nequal|ty as Usfso(-xat) = [ VUsfso,1 Usfso,2 ] =7 (xevt)7 (39)

A denotes the so-called state-feedback sub-optimal (stsmjad,
Va(t) — Va(t +0) 2 %Vz(t +9), andv; (z., t) is defined by (29). Then, the closed loop system
is globally and exponentially stable. Furthermore, under p
formance index (4) with the choices of weighting matrices in
Va(t) Va(t). (36) (23), control (39) is suboptimal and its closeness to ogityna
A
oy can be measured byE;(z.,vsss0)||%, where

that is,

>
S

1
Va(t+6) < .

Therefore, for any > ty, N can be chosen to be the smallest A { Eq1 (e, Vsfso) } (40)

positive integer such thay + (N — 1)0 < ¢ < tg+ NJ. It Es(@e, vss0) = Eoo(xe, Vsfso)
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t+8 t+6 s 2
/ 1Coz(s)|2ds > / 1Cod(s, 8)2(8)]| ’ Cg(I)(s,t)/ B(t, 7)Byojo(r)dr || ds
t t t
1 t+06 t+9 s 2
> 5/ |Co®(s,t)2(t)|*ds — / |Ca®(s, )| / O(t,7)Bavy o(T)dT|| ds
t t t
| [te t+6 46 2
> 5/ |Co®(s,t)2(t)||*ds — / |Co®(s,t)||*ds x / ®(t,7)Bov}o(1)dr
t t t
> [0.5001(8) — n*aoz(8)acz(9)e]||= (1), (34)
E (e, Vsfso) = [0(Foz1e)” 0x16] Poz, and It follows from (40) that inequality (43) can be rewritten as
Eg (e, Vsfs0) = —PGory'pizie + PaForge . 9 T
— * < - e S ey Ysfso
i pra1e(A3)T Poz. [ 73!? | +2; E*%T(x Vs fso)
Proof: As shown in section 1I-B, performance of control (39) +2r piwiez’ (A3)" Paz
can be quantified against optimal performance by checkiag op < —ysllzell? + 20|z - (| Es2 (e, vspso) |
timality condition (6). That is, it follows fronE,(x., vsfs0) = +2T1—1p1x16ZT(A;)TP22’ (44)

A+ 8H/8z. with A = P(t)z. that, under control (29),
which will be referenced in the analysis of near optimal coint

Ey(te,vsf50) = Pre+ PG(2e)vssso + PF(T1c,u2a)%10  to be designed.
+[PA+ ATP - PBR™'BTP + CTQC)z. Substituting (40) again into (44) yields
IGT (z. . -
“vec [meTPBR_l%PJ;e} Vo< sl + 202l [T e Pall - 1Gall + 1Bs] - Il
Tie — %
T +2r 7 pu|[(A3) T Pol| - [|2]]] |2 1e - (45)
+vec 8(F(Z‘1E,U,2d)l’1e) Pz (41)
O ;e °lr Recalling the structures of functiori$(-) and F'(-) in nonlin-
- . . . __ear tracking error system (3) as well as the structural af sfs
Substlltutmg bot.h Riccati equation (26) and control (2Gpin ., .o (39), we know that solution of.(f) remains to be
equation (41) yields that in (31) and that
— -1 T
Ba(@eveseo) = —PGRTB Pae + PR IG2( < l12] < el (46)
T ppp19G" : :
—vec|z, PBR - Pz, Hence, it follows from boundedness of reference inpui
(Frr)” e that the following inequality holds for some constant> 0:
Tie
————Px.| .
*V‘*C[ Dirie ] | Fo(@res uza)l| < . (47)

Thus, expression (40) can be obtained directly from the @boVherefore, using solution (31) and inequalities (46) and),(4

equation by utilizing the special structures and functionave can rewrite inequality (45) as

dependence of matrice€s(z.), F'(x1e, u2q), B, P and R. 9 9 —ea(t—to)
Exponential stability of the closed-loop system can b& —sllze]|” + (colzre (to)l[lell + caflze|")e ™=

established using Lyapunov functiovi(t) 2 V(z.,t) de- [—25o+2ﬂ2026_02(t_t°)} 4

fmeq in (25). Although system_(3) under con_trol'(39) is +2ﬁ1\/76_02(t_t°)\$1e(to)|, (48)

nonlinear, its closed loop dynamics can be rewritten: as-

[A(t) = BR™(t) BT P(t)]ze + G(2e)Vsso + F(21e, u2a)T1e,  Wherecy = 2yacy, ¢1 = 6piry alaie(to)l, 2 = /a1 /r1,

IN N

or equivalently, Bo = v3/(272), B1 = co/(2y/71), and B2 = c1/(2cam1). The
‘ solution to inequality (48) is given by
ze(t) = ®y(t,to) [me(to)—i—/ D (to, 7) [G(2e(T)) Vs fs0 VO
to
t_ coe2(7=%0))qr
+F(CC16(T),U2,1(T))ZE1€(T)} dT} . < /—V(to)efto( Bo+pP2 )d
. . . t ¢ g (r—s
Hence, we h{:\ve the expression ©f as given by 'double-' n efs(_guwzcze ( >)dTﬁ1|xle(t0)|e_02(s_t0)ds
column equation (42). It follows from the second inequality to
in (30) that the time derivative of” along any trajectory of ~ _ V(t)ef2 e Polt—to)

system (3) under control (39) can be expressed as:
616,82 [ —c2(t—to) —Bo(t—to)

. 2 T € —€ )

Vo< —sllae|” + 22, PG(xe)'Usto Bo — c2

22T PF
i 2(331e, 1;2‘1)3616 1 T *Without the need of expression (44), one can obtain (45)ctyrdrom
= —ysllxe||® — 22" PyGar] p121e + 227 PaFoxi.. (43) (43).
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T

vV o= [:Ue(to)—i—/t (I)cl(to,T)[G(xe(T))+F(lee(T),1L2d(7'))£61e(7)]1}sf50d7':| {%[@Zl(t,to)P(t)@d(t,to)]}

x [xe(to) + / Dei(to, 7)[G(we(T)) + F (l‘1e(T),wd(f))xle(T)]vsfsodT} + 227 P(t)G(e)s 0

to
+22] P(t)F (21, uza) T 1c. (42)

from which exponential stability is obvious. O is related by (51) only at the initial instant of time (whereth
Theorem 1 provides not only closed-loop exponential stabfitate assumes the same value) after which the system trgject
ity but also a quantitative measure on the closeness ofa@ontoecomes different under two different controls.
(39) to nonlinear optimal control (5). One of the objectives |t is clear from (51) that the nonlinear additive con-
of the proposed near optimal control design methodology ti®! v,;,, should be designed to selectively minimizes the
to find a closed-form control that minimizes the OptimaHWesidueHEs(aze,vsfso + Vs fna)||2. The following lemma pro-
residue. Clearly, control (39) is a good candidate to begin ovides the design 0by .4, and vssn, iS solved analytically
search for the best among all the candidates that are bgling the least-square minimization under the selection of
analytical and globally exponentially stabilizing. Toghend, Vs fna1 (e, t) = 0 (Which will be explained after theorem 2).
let the proposed state-feedback near-optimal (sfno) ebbé Lemma 4:Suppose that nonlinear tracking error system

of form (3) satisfies assumption 1 and is under the state feedback

(49) near optimal controbs,,,(ze,t) in (49). Given performance
index (4) with the choices of weighting matrices in (23), the

where vsfso(we,t) is given by (39), andvsppa(ze,t) £ following choice Of Ug fna,2 (e, t) is Near optimal under the

[Us fra.1, Vs fra2) " is @ state-feedback nonlinear additive (sfnagelection ofv, a1 (e, t) = 0:

control component to be determined. Given the residue of

Ey(z¢,vs¢50) In (40), the residue corresponding to near opti- Vs fna,2(Te,t) = —(PaBa) Y, (52)

mal control (49) can be similarly derived from the optimgalit

condition (6) under the constraint that = P(t)z.. The where(P,B,)* = [BY PY P,B,]~' BT PT is a pseudo-inverse

constraint is necessary since matfixt) from both Lyapunov of matrix P, B,, and

function (25) and Riccati equation (26) is the best among-ava

'Usfno(xa t) = Usfso(xa t) + Usfna (.’L’e, t)7

able solutions. Therefore, it follows from optimality catioin A T
(6), from Riccati equation (26), and from the derivation of Yo = - pianel(43)" oz + PGol + PoFae. (58)
(40) that o ;
Specifically, under the selection 0Ofsf,q,1(2c,t) = 0,
Es(xe,Vsfno) |Es(ze, vsfno)| is minimized by controlv,pe2(ze,t) in
= Pz.+ [PA+ATP - PBR'BTP + CTQC]x. (52), and inequality
[ 0GT (z.)
T e
—+vec _Usf&)ial'ie P.re:| + PBUana ||Es (l'e, Usfno)H2
r oGT = YT [I - P,By(BYPI P,B;) ' BI P Y.
+vec UsTfmﬂPa:e] + PG(2e)Vsfso [ . ? 22 2 2] ’
L 89@6 n (’)(Fgarle) P
+PG(xe)vsf’na + PF(J?le,UQd)ﬂfle 8x16 2
r T
Lvec[2FT1e) P%} < ||Es(ze, vsso) | (54)
L 3:1:7;6
A(Fozi )T Py holds for allz, € R" but those at whicli 2 B,)*Y; = 0 (and
= _ Oz _ hence|| E = ||E as t) =
PG e+ s e (43T Py | PO gl = 1Bt 88l
p1 . i i =
+ { T ] Vs fna.1 Proof: The proof is to show that, given; sy, 1(z.,t) = 0,
(43)" Poz + PoG function || Es (e, fusfno)||2 is minimized by the corresponding
least square solutiom (ze,t) in (52). It follows that
s fna 50 ¢ sfna,2\Le, ,
+ { P, Bo ] Usfna.2 (50) upon setting rnq,1 = 0,
AN
= Es<xez vsfso) + Ml (Z>Usfna,1 + M2vsfna72- (51)

T 2
Symbol E, (., vsfso) in expression (51) is used to denote dBs(Te, Vspno) > = | Bsa (e, vs o )l|* + {8(1;2%6)%2] ;
lumped sum of terms, and it is also good for intuitive compar- te

ison. Strictly speaking, while equation (50) is the expi@ss

for calculation and designi’s(x., vsfno) and Eq(ze, Usfso) Eo(xe,Vsfno) = Ys + PaBavsfna,2,
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and that, for all choices 0f; ¢1,4,2, So, why vs¢ne1 = 0 is selected? There are two reasons.
5 First, as shown by (44), stability and convergence of the
[Es2(2e, vs o) closed loop system is impacted not (2., vs o) but
= Y.'[I - P,B2(B] Pf P,By) 'B] P Y, only by Es(ze,vsno). Thus, it is from stability argu-
i [Usfna72+ (BgP2TP2B2)—1B;FP2Tva]T ment that minimizing||Es2(x., vsfno)||” is sufficient. Sec-

T o7 AT T ond, if the unconditional instantaneous least square min-
By Py PyBy [vsfna2 + (By Py P2Ba) ™ By Py Y] imum of ||Es(xe,vsfno)||® is solved from equation (51),
> Y. [I - P,Bs(B] Py P,By) "By P Y,. (55) ||Ey(ze,vls,,)|I* being made pointwise smaller than that in
54) holds only for a very short period during the initial
(55). That is, the choice ofu,snes in (52) minimizes Lonsient. Afterwards, the near-optimal performance is de
9 : ’ = termined by whether the optimality condition is not only
|Es(ze, Vs fno)||* under the choice 0bgfpq,1 = 0. S . L X
A : . . minimized instantaneously but also forced to diminish Klyic
To justify the proposed design of nonlinear additive con- . . . ;
and uniformly over time. In fact, it can be shown analytigall

trol, we mgst also shovy that _the perfqrmance |mpr9vemetrp]tat’ under the least square solution with non-zero control
guantified in lemma 4 is achieved uniformly over time b

. o . ¥erm * the closed loop exponential convergence rate will
a comparative study of closed-loop stability. The followin v b exp 9

Hence, inequality (54) can be readily concluded fro

sfna,l?
. . . become much slower and consequently the value of optimality
theorem shows an improvement of global exponential stgbili . :

residue actually becomes larger soon after-or this reason,

of the closedjloop ;ystem under near-opt|m'a|.contro| (49)2 in the proposed framework, nonlinear additive control (#9)
Theorem 2:Consider system (3) that satisfies assumpt'%esigned under the choice of a1 = 0, and such a control

1. Then, under the near-optimal control (49) (which is if. . -
turn defined by (39) and (52)), the closed-loop system hﬁa%smdeed near-optimal,
a convergence rate of global exponential stability no lbas t

that under suboptimal control (39). IV. DESIGN OFOUTPUT-FEEDBACK NEAR-OPTIMAL
Proof: To proceed with a comparative study of global and ex- CONTROL
ponential stability, consider again Lyapunov function defi In this section, the framework of near-optimal tracking

in (25). It follows from the discussion leading to (43) thatcontrol design is extended to output feedback. In tracking
under control (49) (in terms of (39) and (29)) and along itsrror dynamics in (9) and (10), output tracking error is
resulting trajectory of (3), Ye = [Z1e,72.]T. The following time-varying observer is to
asymptotically estimate the unmeasured error state Jagab

) _ T 1 T
V. =z Pfe + 2z P[A%TJF Bvs fno] (i.e., zo up to z,_; in subsystem (10)) from input-output
+2z, PGusno + 22, PFx1e information ofy,. andwv: for any initial conditionz(zy),
< —ysllzell? = 22T PyGory tpixie + 22T PBug fng . . R
< +;3ip~g Lo et P E o= Ap(una(t)z + Bavs(t) + Ga(2)un (1)
T B Osna AR TR e +Fy(w10,u9a)71e + L) (21 — 51),  (58)
SubSHitutingvs fna, 1 (e, 1) = 0 into (56) yields where L(-) is a time-varying gain vector to be selected,
Vo < —ysllze? = 22T PoGory tpre vi(t) = v/ (21e,t) is defined in (29), andvy(t) is the
+2:7P, Bovsnaz +2 2T Py Fyay.. observer-based control to be synthesized later. It follfras

_ ) ~ (10) and (58) that dynamics of estimation erfof ~ — 2 are
It follows from (50) that the above inequality can be revenitt gescribed by

to be )
: Z = p(t)Azz — L(t)Caz = [u(t) Ay — L(t)Ce]z,  (59)
V S *73H$e||2 + ZZTESQ(xey Usfno) A
12rT 22T (A5)T Poz yvhzreq_(r;f) f:ﬁud(_t) +Ivl’ﬁ1(xle,t), %ndAg ils th?j rfnatrixdgiv_en f
in (8). The following lemma provides a closed-form design o
< —pallzell? + 202 | Bea (e, vagno)l ©) g lemma.p 9

o T, T observer (58).
T2 prznez” (A3)” Poz. (57) Lemma 5:Under assumption 1, estimation eréof equa-

Under control (52), inequality (54) holds. Consequenthe t tion (59) is globally and exponentially stable if gain vecto
statement of the theorem can now be concluded by comparih) 1S Set to beAthat in the double-column expression of (60),
(44) and (57) and by applying the comparison theorem in [33}here 3, (t,tg) = f; p(s)ds, 6, > 0, , is a given constant,
O andé;, , is the value ofs; resulting from the application of

It is important to note that minimization of the optimalitylemma 1 to pair{—u(t)(A%)7",C7T}.
residue is first performed in lemma 4 for a given instarRRroof: It follows that, under controb; () = v}, (1., 1), the
of time and is then shown to be uniform over time in thsolution to subsystem (9) and given in (31) is exponentially
proof of theorem 2. Any further instantaneous reduction eébnvergent, and so is;(¢). Hence, we know from assump-
making || Es(ze, vsfno)||® less than its value in (54) hastion 1 that time functionu(t) = u14(t) + v1(t) also satisfies
to be done by minimizing not onlyi Es2(z.,vsno)||? but assumption 1. Now, conside.r/ the time varying “nominal sys-
also || Es1 (e, vsfno)||?. Such a minimization is impossibletem” of error dynamics (59): = u(t)A3z’ andy’ = CsZ’.
unless controlvs s, is redesigned such that,s,.1 # 0. For this fictitious system, le®,(t,to) and W, ,(t — 6,,t)
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—1

¢ t o B 2(st)
%o Jizs, Bulsit)ds - [, (n—2)! ds
t t t B (s1)
s, t)ds 2(s,t)ds - L ds
L(t) _ ft—éo 5#( ) ft—&o 5#( ) ‘/;5—60 (,.1_2)! CQT (60)
t B?LQ(s,t) t ﬁ,’}"*l(s,t) t B?,".*“(s,t)
ftﬂso [CE) ds ftﬂso NN ds - ftﬂso —(n'—z)!—(n—z)zds

denote its state transition matrix and observability Gréaamn  Integrating expression (65) d{,, over an intervalt, ¢t + d]
respectively. That isP,,(t,s) = 34— 4 (A5)*BE(t,s), and  for anyt > t, andd > 0, we have
t
Wi (t — 60,1) = / BT (5,1 — 8,)CT Cy, (5,1 — 8,)ds. Valt) = Vilt +9)
=0 61 > / 27 ()03 Coi(r)dr
Therefore, we know from lemmas 2 and 1 that, since the pair ¢
Aj, Cy} is uniformly completely observable, inequalities =T o T T 5
{n(t) A3, Cy J = Z(t) / @M’Cl(r, t)Cy Co®, (T, t)dT | Z(t), (68)
0 < 0 1(00)I < Wy, (t —60,t) < v 2(60)1,

@02 = 00, )] < 00.5(30), where V,(t) £ V,(3(t),t), and ®,, (7, 1) is the state tran-
hold for alld, > 4y, ,, wherea,, ;(-) are some positively valued sition matrix for close-loop estimation dynamics of (59).
functions. Recalling that{u(t) A%, C>} is uniformly completely observ-
To show global and exponential stability of estimation erraable and thatZ(t) satisfies inequality (67), we know by
dynamics (59), consider the following Lyapunov functiofinyoking theorem 4 in [36] that paif{u(t) A5 —L(t)Cs], Co} is
candidateV),(z,t) = 27, (t — 6,,t)z, whered, > 6% ,, and yniformly completely observable. Hence, there exists taomis
Solt=0st) = DLt = G0 )Wou(t = G0, ) D, (t = 0,t) N > 08N g > 0 such that, foramp = 0,0,
¢ . @f (1, )05 Co®y, (7, t)dr > A, 1. Substituting this
= / O] (5,1)C5 Ca®,(s,t)ds. (63) inequality and (64) into (68) yields
t—0do
It follows from (63) and (62) that V() — Vi(t+68) > MJIZ@))? > j—”vﬂ(t).

M2

(62)

512 2 2pi(®) 3 5
Y1 (B0)[12]1* = ai,g,(&o)HZ"? < Vu(2:1), (64) Exponential stability ofV/,(t) and in turn of||Z(¢)| can be
Viu(3,1) < apua(60)02 5(6,)|12]12 2 Y2(8.) | 2112, shown by comparing the above inequality and (35) and by

) . i N duplicating that proof 0¥ (¢) being exponentially convergent.
which shows that Lyapunov functio¥,(z,t) is positive

definite, decrescent, and radially-unbounded.

: y-Ht Upon having the exponentially convergent observer (58), we
It follows that the time derivative ofV/,(-) along the

can convert the state-feedback near-optimal control ini(#8

trajectory of (59) is an input-output near optimal control, as shown in the folfayv
Vi = 257S,(t— 80, t)% + 2707 (t,)CT o, (1, 1) theorem. Since the development of the input-output design i
+ 4 (s, 1) parallel to that of the state-feedback design, the proohef t
1937 [/ @5(5775)0502#615 z theorem will focus upon providing key expressions and refer
t—3, dt to the corresponding parts in the proofs of theorem 1, lemma
—ZT®) (t — 0o, 1)Cy Co®,(t — 8,,1)2 4, and theorem 2.
= 2378, (t — 6,, ) L(t)Cai + 37 CT Cy2 Theorem 3:Consider tracking error system consisting of

STaT(s T B - (9) and (10) which satisfies assumption 1. Given performance
qu)’}(t Né"’NtT)CQTCQ(I)“(t 5;’ bz _index (4) with the choices of weighting matrices in (23),
= 2 002 =2 @, (t—6,,t)C5 C2®u(t — 00,t)Z  choose the output feedback near optimal (ofno) control to be

< —zrcleyz, (65) . A T
. i ’Uof'rw(xea t) = [ Vofno,1  Vofno,2 }
under the choice of feedback gain Vogso(@er ) + Vogna(Zest) (69)
L(t) = S, (t — 6,,1)C5 . (66) Vossol(iest) = —RNt)BTP(t)e, (70)

It is elementary to show that combining equations (61), 1(63\)/hereP(t) is given by (27).i. = [21e, 7], 4(t) is defined
an_d (66) renders the closed for_m solution in (QO) for observgy (58), Vosso(ie,t) is the so-called output feedback sub-
gain L(t). Furthermore, according to (64), gain matdX¢)  optimal (ofso) control, and, e (7., t) is the so-called output
has the property that, for any> 0, feedback nonlinear additive (ofna) control term. Then,

t+48 . .
9 _9 (@) the closed-loop system is globally exponentially sta-
/t IL()I7dT < 7,71 (80)d. 67) ble, anduo so(ie, t) is suboptimal ifv mq(t) = 0;
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(b)  the closed-loop system is also globally exponential
stable if

T
[ Vofna,1 Vofna,2 ]
[0 —(PB2)"Y,

Vofna
G

b

where

>

—r1 'p1a1e[(A3) T Poz + PaGa(2)]
+q2C3 (21 — 21) + PaL(t) (21 — 1)
+P2F221316. (72)
Moreover, control (69) together with (71) is nea
optimal in the2 sense that the optimality residu
HA +OH /O,

A=P(t)Z,

any fixed time instant under the selection
Vofna,1 = 0 but also uniformly over time.

is minimized not only at

Proof:

The proof consists of three parts. In the first par

15

Iy Eoi(Ze,vofso) Ely(de, vogso) ]T are the optimal residues
of output feedback near-optimal controls,, and output
feedback sub-optimal control,s,,, respectively. It is
straightforward to show as did lemma 4 that, upon fixing
Vofna,1 = 0, [|Eo(Ze, Vofno)||* is minimized byv,,q(t) in
(71), that is,

‘|Eo2(ievv0fn0)” < HE02(§76»’U01‘50)” (76)

Part Il To show that control v, so(Ze,t)
—R7Y(t)BTP(t)z. is globally exponentially stabilizing,
we note that vofso(Ze,t) Usfso(Ze,t) + 0(Ze,t),
Where v r0(ze,t) is given by (29), and(.,t) 2
&-1(t)BTP(t)i..

Consider again the Lyapunov function in (25). It follows

offom the discussion leading to (43) that the time derivative

of V along any trajectory of (3) under controls.,(Z.,t) is
given by

control (69) together with (71) is shown to be instantangous 1/
near optimal under performance index (4) and under the
selection ofv,fne,1 = 0. In the second part, exponential

el Pr. + 227 P[Ax. + Bugyso) + 20 PBo
+2'r’£PG('Ie)’Uofso + 2$£PFLL’1€

stability of the output feedback sub-optimal control (76) i
established for system (9) and (10). Finally, in the thirdt,pa
the closed loop system under control (69) and (71) is shown
be exponentially stable and uniformly near optimal overetim
Part I: It follows from (9) and (58) that

Te

A(u14(t))Ze + [B + G(&e)]v + F (216, U24)%1e
+[0 LBz —-20T ], (73)
It follows from the optimality condition that, under contro
(69) and by usingP(t) in (26) and setting\ = P(t)z., the
optimality residue is:
Eo(i'm Uofno)

= Pi.+[PA+ ATP - PBR'BTP
0GT (z.)

axie

T
ofso

+0TQC)z, + CTQCE, + vec [v

p@]

Pi‘6:| + PBUofna + PG(@E)UOJCSO
0

L(t)(21 — £1)

8(F(1‘16, UQd)xle)
axie

T
ofna

0GT (x.)
airie

—&-PG(i‘JUOhm + P [

+vec l:U

T
+PF(21e,u2q)T1e + vec[ Pfce} ,
wherez, = . — 1. andZ = z — 2. By noting%,. = 0 and by
utilizing the special structures and functional dependeof
matricesG(z.), F(x1e,u2q), B, C, P and R, one can show
that, parallel to (50),

O(Fazie)”

Eo(i'm vofso) - Ox1e P2Z ) (74)
Eo(j:e; Uofno) - Eo(iey Uofso)
plBl 0 Vofna,l (75)
(Ag)TPQZ? + P2G2(é) P, Bs Vofna,2 ’

where Y, is defined by (72), E,(Zc,Vofno)
[ Eol(i'wvofno) Eg;(jjeavofno) ]T and Eo(ﬁmvofso)

—ysl|ze|* + 22T PBo + 22T PFa,,

1207 P[G(#2) + G vofso

773||:ve||2 + 2zTP2B27'2_132TP22 + 22T Py Foxq,e
—2:TP,[Gy(2) + Gg(é)]rf1p1x1e. (77)

to

It follows from (74) that inequality (77) can be expressed as

1% —v3|ze||? + QZTPQBgrnggPQZ
+227 [Py Ga(2) + (A3)T Podlry 'prae
—QZT(qQCQT + PyL)Z + 227 Ego (e, Vofso)
—3|ze]|? + QZTPQBQTf;lBngE + 227 - PGy (3)
+(A)T Pyz — (A3)T PoZ)ry ' prane — 227 (CF
TP L)z 42| 2] - | Eoa(Ze, vorso)ll, (78)
which will be referenced in the part Il for stability analys
of output feedback near optimal control (69).
Applying the expression oF 3 (%, vorso) IN (74) to in-
equality (78) and then taking bounds yield
Vo < —vsllzel® + 2|12 [| P2Bary ' BY Pol - |12

+ry tpalzae] - | Pall (4]1Z] + 3]l21])]

+4|z1| - ||zl (g2 + [| 2]l - || L))

+2[|z[| - [ P2]| - [ 2]l - |21e]- (79)
Substituting (31) into inequality (79) and invoking the tfax

Z being exponentially stable (which is stated in lemma 5; say,
of rate,, 3) yield

<

Vo< —vsllael® + csllzelle™ " + (cs |zl
+egllzel|?)e " + crl|ze e (2 en)t
< [Bo+ Bz |V + BuVVeeat

85V Ve + BgV Ve (2t (80)
wherecs = (2951 + 47 + 47, 172)112(t0) | /Y372 /Y1

cs = Yz €5 = 2vacs|Tie(to)], c6 = 6piry tye|rie(to)],
_ ~1 > _

cr = 8p1ry valzie(to)12(to) I/ pu3Vu2/ Y1y B3 = o/,

B = e3/\/71, Bs = ¢5/+/71, and 3g = ¢7//71- Exponential
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stability is obvious by comparing the above inequality anth ensure an one-to-one mapping of following coordinate and
(48) and by invoking the subsequent argument in the proof oéntrol transformations:

theorem 1. tan(¢.)

Part ll: To show that control (69) together with s, in (71) 1= e 127 Yer T3 = tan(0c), xa = 1. cos?(6.)

is globally exponential stabilizing and uniformly near ioml ‘

over time, consider again Lyapunov function in (25) whose d - Uy
time derivative along any trajectory of (9) and (10) and unde o pecos(0,)’
control (69) is 3sin(6,)
c -2 3 2
. ) Weg = ———————sin“(pe)u1 + . cos”(6.) cos™(¢e)us.
V = 2TPx,+ 22T P[Ax, + B fso) ? le cos?(0.) (fe)ua (6c) (9c)uz
+22" PBo + 22T PBu,fna Under the above transformations, kinematic model (83) is

mapped into chained form (1) with = 4. It follows from
the Lie group operation that the tracking errors are defined

Noting thatv,fne,1 = 0 implies G(zc)vofnae = 0. Thus, it @STie = T1 — T1d, T2e = T2 — Taqg + (1 — 214)(T14%aq —

+227 PG(x¢)[Vofso + Vofna] + 2L PFay,.

follows from the discussion leading to (77) that, x3q) +0.5(x],; — %) 2 4q, T3e = T3 —L3q — Taq(®1 —214), and

. T4e = T4 — T4q. In what follows, time varying smooth laws

Vo < —pllael’ + 228 PBO + 207 PBug g synthesized for tracking and regulation control are siteala
+227 P[G(3.) + G(2e)|vorso + 222 PFaq, for the car-like mobile robot.

= —sllzelf? + 22T PyBary ' BY Pyz + 227 Py Bovopnace For trajectory.tracking' clo.ntrols, IgF the reference trajec

—2:T By[Ga () + Go(2)]r I be generated with zero initial conditions;((0) = z24(0) =
ZT il ? L P x34(0) = x44(0) = 0) and under the two sinusoidal steering
227 Polwie. (81) inputs:

Now, substituting expression (75) and control (71) into)(8%u14 = ap+ay sin(0.1t), usq = bo+by cos(0.1¢)+bs cos(0.2t),

yields whereag = 0.3183, a; = 1, by = b, = 0, andb, = 0.0106.
V < —nsllze]? + 22T PBor; ' BI P2 Over the intervall0, 207], the desired trajectory moves from
B T . ST o a1 —1 the initial position[0,0,0,0]” to the position[20, 10,0, 0]7,
+2ZT[ P2f2(z) + (j42) P2TZ}T1 Prite and the segment is shown by the solid curve in figure (1f).
=22 (205 + P2L)Z1 + 227 Eoa(&e, Vofno) Since the steering inputs are of peri@dr, the reference
—v3l|ze||* + 22T Py Bory ' BT Py 2 trajectory fort > 207 will continue its motion by repeating the
+22T[— PGy (3) + (A5 Poz — (A5)T Poz]ry 'pray. S@ME pattern of the segment defined in the interal0, 207].
o.T T - . In the simulation of state feedback near-optimal contia, t
220 (020 + PoL)2 4 2|2l Eoz (e, Vorno) |, (82) following choices are made: (a) Initial conditions are sebé
It follows from the result of (76) under control (71) that ther1(0) = =2, 22(0) = —1, 23(0) = 7, andz4(0) = 0; (b)
conclusion of stability and uniformly improved performanc Control design parameters are chosen torbe= ry = 20

can be drawn by comparing (78) and (82) and by invoking tt#d g1 = g2 = 1. In figures (1b) and (la), state-feedback
comparison theorem [33]. g nhear-optimal control (49) (consisting of (39) and (52))dan

its corresponding closed loop tracking error state vagisblre
provided, respectively. For the purpose of comparisortesta
feedback sub-optimal control (39) and its resulting ertates

In this section, the proposed framework of near-optim#lajectory are given by figures (1d) and (1c), respectivigly.
control design is applied to a car-like mobile robot. Like afigure (1e), histories of the optimality residual values @nd
automobile, front wheels of the robot are steering wheeld, athe two state-feedback controls are plotted. In figure (1f),
rear wheels are driving wheels with a fixed straight forwarphase portraits in the Cartesian space are plotted. It imosv
orientation. As shown in [37], [38], kinematic model of thehat the proposed state-feedback near-optimal contro) (49
car-like robot is given by: together with (52) achieves better performance than thag¢mun

suboptimal control (39).

o _ (83) For output-feedback near-optimal tracking control (69),
O = - tan(ge)wer, b = wea, the same choices are made as those for the near optimal

where (z.,y.) are Cartesian coordinates of the guidepoingtate-feedback tracking control, and the additional af®ic
6, is the orientation angle of the car body with respect fhade for observer (58) include: initial conditiof(t,) =

the z. axis, ¢. is the steering angley. is the driving wheel [ =1 0 0 J", 6, = 2, observer gain vectoL(t) in (60)
radius, . is the distance between the two wheel-axle cente®d With5,,(s,t) = ag(s —t) +10a; (cos(0.1¢) — cos(0.1s)) +

w., is the angular velocity of the driving wheel, angl, 71 P1z1e(0)\/71/q1 (6’Vq1/”5 — e’Vql/”t)- In figure 2,

is the steering rate. Kinematic model (83) has singularigimulation results under the control are provided, inaigdi

at 9. = +m/2, which fortunately does not occur either ina comparison (figure (2c)) against to output-feedback sub-
practice or mathematically by limiting the range &f within  optimal control (70). In figure (2d), convergence of state
(=m/2, w/2). The range of.. is also set withif—=/2, «=/2) estimation by the proposed observer is shown.

IN

V. APPLICATION TOCONTROL OF AMOBILE ROBOT

ZTe = pecos(fc)wer, Yo = pesin(b.)wer,
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Fig. 1.
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Fig. 2. Simulation results of output feedback controls

VI. CONCLUSION Simulation study of a car-like robot shows effectiveness of

In this paper, a new unifying design framework is proposetge proposed methodology.
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