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Abstract

In this paper, by introducing the concept of command-to-state/output mapping, it is shown that the state of an uncertain nonlinear system
can robustly be estimated if command-to-state mapping of the system and that of an uncertainty-free observer converge to each other.
Then, a global Jacobian system is defined to capture this convergence property for the dynamics of estimation error, and a set of general
stability and convergence conditions are derived using Lyapunov direct method. It is also shown that the conditions are constructive and
can be reduced to an algebraic Lyapunov matrix equation by which nonlinear feedback in the observer and its corresponding Lyapunov
function can be searched in a way parallel to those of nonlinear control design. Case studies and examples are used to illustrate the
proposed observer design method. Finally, observer-based control is designed for systems whose uncertainties are generated by unknow;
exogenous dynamics.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction . . .
pursued by studying local behaviors of nonlinear systems,

often through the use of first-order Taylor series expansion
around the originl{ochmiller & Slotine, 1998 or the adop-
tion of a quadratic Lyapunov functioff ¢inias, 1990; Praly,
2002 (which, in general for nonlinear systems, is valid only

Estimation of internal state variables has always been an
integrated part of control design. For nonlinear systems,
observer design to estimate the full state from input and

output remains to be a challenging problem. If the sys- . : .
b ging p y locally within some region). Although these results are im-

tem under consideration is subject to bounded disturbances T .
a successful observer design must be robust. Existing re_portant and significant, there is a lack of general understand-

sults of global convergent observers sucisisias (1989) ing on what cor_lditions nonlinear state e§timation requires,
Gauthier, Hammouri, and Othman (19%#}E for particular on plant dyn_amlcs and on the reference input. Most_lmpor—
types of systems and do not consider uncertainties excepttantly’ there IS NO process reporte_d S0 far for an engineer to
for Dawson, Qu, and Carroll (19923him and Seo (2003) constru_ctwely search for ar_1d d‘?s'gr_‘ an obs_erver.

Closely related are high-gain but semi-globally and robustly In thls_paper, state est|_mat|on IS _con&dered for gen-
convergent observer desigriéh@lil, 1996: Khalil & Esfan- eral nonlinear systems with uncertainties and measure-

diari, 1993. On the other hand, observer design can also be ment_ NOISES. Instead of starting \.Nlth IMPOsIng: various
conditions on the plant to be estimated or on the ob-

- server, we study the robust estimation problem by in-
" This paper was not presented at any IFAC meeting. This paper was vestigating command-to-state/output mappingCSM).
recommended for publication in revised form by Associate Editor Thor I. The idea is that, when the command, uncertainty and
Fossen under the direction of Editor Hassan Khalil. . ' . ’
*Tel.: +14078235976: fax: +1407 823 5835. noise are all present (in general), any successful ob-

E-mail addressqu@mail.ucf.edu server design must make its CSM converge to that of
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the plant while attenuating the influence of uncertainty and systems. It will then be used in robust observer and control
noise. This prompts us to introduce the concept of a CSM designs in the subsequent sections.
being convergent. Using this concept, a set of conditions on  Consider the following system:
synthesizing a general class of robust observers are obtained
using the Lyapunov direct method. i=F(@t,z,r) + AF (. z,r, ), z(i0) =20,

It is worth pointing out that the concept of a CSM be- y = H(t,z,r), ym =y +AH(t, 2,7, 1,,), 1)
ing convergent is different from Lyapunov stability concepts
(Khalil, 1996 and input-to-state stabilitySontag & Wang, ~ Wherez € " is the statey € " is the commandy € %'
1995 and that it is similar to incremental stabilithrigeli, is uncertainty,y € R” is the output,y,, is measurement of
2002. In other words, while a plant to be estimated and Y. andn,, € R is measurement noise.
its observer must be uniformly bounded, they need not be The following assumptions are introduced, and most of
stable or asymptotically stable or input-to-state stable. In their requirements are standard while partial differentiability
fact, there is no need to estimate any asymptotically stableof F(-) and H(-) enables us to define shortly the so-called
state variable(s). Another reason to use the concept of CSMJacobian system.
is that, for nonlinear systems, observability may depend on
specific properties of the command. That is, observability Assumption 1. Known dynamics of (7, z, r) and H (¢, z, r)
for all bounded values of the command is a requirement are uniformly bounded with respect tplocally uniformly
too restrictive to be met in certain applications. It is shown bounded with respect to z and and differentiable with
that, for the plant and its observer to have convergent CSMrespect to z. Command(s) is uniformly bounded as
(in the presence of uncertainty and noises or not), the er- ()| <¢, and ||7(1)[| <c; (1) <.
ror dynamics between the observer and the plant (not just
the observer itself or the plant) should have certain stabil- Assumption 2. Unknown state z is uniformly boundec,,
ity properties (such as Lyapunov asymptotic stability in the [|2(t)[| <c; and [|z(1)|| <c: (1) <C..
absence of uncertainty). It turns out that stability and con-
vergence of the error dynamics are equivalent to those of aAssumption 3. Uncertainty belongs to a bounded set such
nonlinearly-defined Jacobian systdfor both the observer  that [AF(z, z, r, n)[| <&, (1) <<,
and the plant), not only locally but also globally (i.e., every-
where) in the appropriate state space. Assumption 4. Measurement noisey,, is bounded as

The concept of CSM and the innovative development/use IAH (¢, z, 7, 1,) | <cy, () <¢, .
of its globally-valid nonlinear Jacobian system enable us
to convert the robust estimation problem to a stabilization  In general AF () would be bounded in size by a function
problem. It is shown that, for many cases, algebraic state-of |z|| (or ||ly|l) as||AF (¢, z,r,n)|| <c.(z, |Iz])). In light of
dependent Lyapunov matrix equations are the conditions forAssumptions 2 and 3 can always be established, and hence
designing globally convergent observers. In fact, the condi- Theorem 1 is little changed. If Assumption 2 is to be estab-
tions mirror the process of determining state-feedback robustlished (as will be in Theorem 2), the proof of Theorem 2 can
control or optimal control for nonlinear uncertain systems be extended to the general casecoft, ||z||) by applying
(Isidori, 1995 & 1999; Khalil, 1996; Krstic, Kanellakppou- Lemma 2. The same can be said about Assumption 4.
los, & Kokotovic, 1995; Qu, 19938 Case study and design
examples are used to illustrate observer designs, including2 1. System mappings and robust observer
recursive designs. In particular, the conditions provide a nat-
ural way to search for glObal LyapUnOV function (Whether System (1) can be viewed asiaput-to-state/output map-
being quadratic or not) and to find the feedback function in ping [T 4T nr1T — z/y. If there is neither uncertainty
the nonlinear observer. These features make the proposeghor measurement noise, the system reduces to the so-called
method general, constructive, and promising. As an appli- CSM: » — z/y. For state estimation, the CSM is of the
cation, robust observer-based control is designed for a plantmain concern as system uncertainty and noise are simply

in which uncertainties are generated by an exogenous sysynknown. To estimate the state of system (1), consider the
tem. It is shown that the concept of CSM and the corre- fo”owing genera| class of nonlinear observers:

sponding observer design can be directly applied to achieve

global stability and convergence. This exter_1ds the r_esults N =F( 2 r) —[G(t, ys Y1) — G(t, ey, 5, 1)],

Qu (ZOQZ)and Qu and Jin (2001jo non-affine nonlinear $=H(t,2,7r), 5(to) =70, )

uncertain systems.

wherez is the estimate of, ¢,, =y, — 3, andG(-) is the

feedback function to be designed. Its CSMis> z/y. Thus,

robust estimation is to make the CSM of an uncertain system
In this section, the concept of CSM is introduced for the practically converge to that of an uncertainty-free and noise-

purpose of feedback state estimation of nonlinear uncertainfree CSM (of the observer), or vice versa. In other words,

2. State estimation using CSM
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the two CSMs are asymptotically and practically convergent defined. For nominal error system (5), the so-called Jacobian

to each other if

lz = 2l <oalco,r, t — to) + 02(Cy) + o3(Cy ), ®3)
A N _ .

wherecg , =max{||zoll, IZoll, ¢-}, 21(-) is a class# L func-

tion, andox(+), a3(-) are class#” functions!

2.2. Error dynamics

Let state and output estimation errors ez — z and
ey =y —y, respectively. It follows from (1) and (2) that the
error dynamics are

e=F st ey, z,z—e, 1)+ AF + AF,, (4)

whereAF andAH are defined in (1)¢,, =e, + AH,
F(t ey, 2. ) 2 F(t,2,0) + Gt ey, Hit,2,0), 1),

A
Fst,ey,z,2—er)=F(t,ey,z,1r)—F(t,ey,z—e,r),
and

~ A ~
AFm(t» )’m, y» yv r):G(t, e_Vm’ ym, r) - G(l, e)’m’ y, r)
—[G(t, ey, y, 1) = G(t, ey, 3, 1)].

It will be shown later that convergent CSMs do not imply

Lyapunov stability or input-to-state stability of system (1) or

(2). Instead, the concept of convergent CSM is on stability
of error dynamics. Specifically, we know from (3) that the

nominal estimation error system

(%)

is asymptotically stable and that error system (4) is input-
to-state stable with respect to botlandy,, .

Convergence of CSMs is closely related to incremental
stability in Angeli (2002) Their difference is that the rela-
tionshipr — z is investigated as the CSM for either a given
r or a class of commands while commanis treated in in-
cremental stability as the “disturbance.” By focusing upon
specific choice(s) of, the CSM can be used to develop sta-
bility and convergence conditions explicitly in terms rof
andz (as will be shown in Theorems 1 and 2), which is not
only useful for all the systems but also critical to those sys-

e=Fst,ey,z,2—e,r)

system is defined by: for some<0j < 1,
e=[V,Z ey, w, )| y——scle éz(t, ey,0,e,2,1)e, (6)

wheresy,, 7 () = 0% (-)/0w. It should be noted that locally-
defined Jacobian systems, especially linearized systems at
the origin by a first-order Taylor expansion, have been widely
used. In the context of observer design, observer synthesis
using a locally-defined Jacobian together with constant Lya-
punov function matriX? has been pursued lrohmiller and
Slotine (1998) Tsinias (1990)Praly (2001) The following
lemma shows that, although the mean value theorem does
not hold in general for vector functions, Lyapunov stabil-
ity of error system (5) and Jacobian system (6) are closely
linked. In particular, there is an equivalence in Lyapunov
stability argument between the two systems, not only locally
but alsoglobally.

Lemma 1. Consider system() and (6). Given any Lya-
punov functionV (t, e, z, r), suppose that one of the follow-
ing inequalities holds for some functigi):

TV A+ IVF st ey, 2,2 —e,r)< —p(lel), @)

ViV + VIV T (1 ey w, )l see < = 7(llel). (8)
Then inequality (7) implies that inequality(8) holds for
some constar < < 1. Converselyif inequality (8) holds
for all choices of constant € (0, 1) (or, more restrictively
for all w), inequality(7) holds

Proof. Let functioné(-) : R — R be defined by

ES) E[VIVIZ (1, ey, 2 — de.1).
It follows that&(1) — E(0) = —[V] VIZ 5(t, ey, z, 2 —e, ).
Applying the mean value theorer®(ossman, 1986yields
that&(1) — £(0) = /5¢(0)|s—g+ (1 — 0) holds for somey™ €
(0, 1). Direct computation yields
V6l(0) = —[V VIV, 7 (1 ey, w, 1)y —sele-
Therefore, there exisi&" < (0, 1) such that
[Ve VIV W Z (1, ey, w, 1)y le

=[VeVIFs(t, ey, 2,2 —e,r),

tems (such as non-holonomic systems in the chained form)from which the two statements can be concluded!

whose observability is command-dependent.

2.3. Jacobian system and its global equivalence

2.4. Useful stability results

Lemma 2 combines several standard results from texts

In order to facilitate observer design and its associated (Khalil, 1996; Qu, 199Binto a concise form conducive to

search of Lyapunov function, a nonlinekcobian systens

1As defined inKhalil (1996), o(s) : RT — RT is a class#’
function if «(0) = 0 and it is strictly increasingp(s) : Rt - Rt
is a class# ~ function if it is classz#" and a(s) — oo ass — oo;
a(s, 1) : RT x RT — Rt is a class# L function if, for each fixed, it
is a class#” function of s and if, for each fixeds, it is decreasing with
respect tat ando(s, 1) — 0 ast — oo.

the subsequent analysis, and its proof is omitted.

Lemma 2. Suppose that a Lyapunov functidi(r) >0 sat-
isfies the differential inequality

ll/
V< = dop(V) + 2@y (V) + Y diyli(v),
i=2

©)
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where /10?0, _l,,>2 is an integey 0<f,<---<py, VuHE w,r), L(t,ey,q,r)équ(t,ey,q,r),
0< 4 (1) <A <A, andy() is a classA « function. Then
— A
(i) If B, <1 and if io> 21, V(1) is globally uniformly Awlt ey, w. ) =A+ L ey, H w, 1), 1)C, (12)
bounded and also ultimately bounded by a cla&s At ey, 0, e.2.7) = Ay(t. ey, 2 — Oe, 1) (13)
» Yy 3 ©y Ky - w s Cyo ’ ’

function of2/(1o — 11). Furthermore if 4; (r) converge
asymptotically to zero for all,iso doesV (1).

(i) If p,>1andifig> 41, V(¢) is locally asymptotically
stable E=L(t,ey+AH,y — ey, + (1 — O)AH, r)

(iii) 1f B <landp, >1,V(z)islocally uniformly bounded —L(t, ey, y — Sey. 1), (14)
and locally ultimately bounded provided that polyno- T ”
mial equation Of_()vof_il)l’liﬁz_"‘ Yioiphihz=0 Matrix A(-) in (13) is the same as that in (6), while matrix
has two(or moré positive solutions for p A,,(-) defined in (12) will be used later.

Theorem 1 provides an explicit set of conditions for CSMs

to be asymptotically convergent and, as a result of Lemma 1,

it applies to both error system (4) and Jacobian system (11).

and matrixE(t, d, ey, y, 7, 11,,) is defined by

Lemma 3 relaxes the condition imposed anand A1 (¢)
in Lemma 2, and it can be extended to the case thé)
has certain property but is of a generic expression.

Theorem 1. Consider systenfl) under Assumption&—4.
Then inequality (3) holds if functionG(-) and Lyapunov
function V,(t, e, z, r) are found to meet the following in-
equalities for any 0 < d <1, for someO< f4, > <1 and

Lemma 3. Consider caséi) in Lemmaz2. If inequality (9)
holds withy(V) = V4 and 0 < ¢ <1, condition g > A1 in
Lemma2 can be relaxed to be

1t 0 < B3, B4, g <1, for constantsc;, ¢,, ¢4 20, ce, ¢y, ¢q >0,
o> tleoo 7 /t 41(7) dr. (10) for some class# ', functionsy;, (-), and for all s >0,
0
Proof. It follows from (9) that, for any given constant 71(llel)<Vesva(llelD, (1%)

0<c <1, there exists a constaM (which depends o

and/;,i=1 1,) such that, for allv > M ViVe+[VeVeIA( €y, 6. e.2,1)e < = k(e (16)
1y - 9y ety H = L]

. 3 —
V< — iVl + dg(t) V. 17, Vel <ced2 (llel). 17T VAIEI<cay(lel), (A7)
‘S/O;Vj‘;g the above differential inequality erIdS that, for all ”vz 1A éczy§3(||e||), ”vr 1A gcryg4(”e”), (18)
Vi) <vIT90) — A —@)t0(r) f0<qg<1, 73077 () <cyyg 0 v H(s) = cg89 S ey (s), (19)
V(1) <V (0)e 0 if g=1,

. where gaink. > 0 and constants:, ¢, observe the condi-
wheref(t) = Ag— flo A1(t) dt/t. Although0() may assume  tjons that

negative values during a finite interval, it becomes positive Sa(1— Ba)esc,E.

and remains so after some finite time instant, and hence d+5 (13_%7); et ifa=1

stability claim in case (i) of Lemma 2 can be established k. > 5,01 dﬁ e C“ﬁ’ [t =%
P3Pz

under inequality (10). O +64(1— Bereyps i 0<g<1, (20)

It is worth noting that (10) is much less restrictive than ¢z im c:(1) =0 if fiz3 <1,
/0 > /1. For instance, inequality (10) becomes trivial forany ¢, lim c;(t)=0 if S, <1,
function J1(r) belonging toL1 space. Also note that (10) e
is insufficient fory(V) = V¢ with g > 1 asf(:) assuming 5. 2 1imy oo (1/1) [l e(nde, Py 21im o0 (1/1) i
positive values over a finite interval can induce singularity (7)dc, and é,(-) is the discrete impulse function °
and possibly a finite escape time for solutiBidr).

Proof. It follows that, for Jacobian system (11),
2.5. Stability conditions of robust observer )
Vo=, Ve + Ve Vel + V, Ve + 7] Vet

It follows that Jacobian system of error dynamics (4) is: <V, Ve + VIV, Ae + |[VIVLE| - |AH|
¢ =Ae+ AF + EAH, (11) F 17 Vel - MAF I+ 17T Vell - 21+ 1177 Vell - 11711
\ — P — b1
whereAF (z, z, r, i) is the uncertaintyAH (¢, z, r, 17,,,) is the S —keys(llelD + cacy, v3(llell) + cecyz™ el

noise, 0< <1, At w, r) 20, F(t, w, r), C(t,w, r) 2 + e (075 lel) + crer 75 dlel),
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in which (15)—(18) are used, and Assumptions 1-4 are in-

voked. It follows from (19) that

Ve < = key(Ve) + caty cyyP2(IVell) + cotyeyy 1 (Ve)

+ 8 (e (Vo) + e ey P (V). (21)

Proof can be completed by invoking Lemmas 2 and 3l

Several of the conditions in Theorem 1 are worth elab-
orating. First, condition (16) is equivalent tg,V, +
[VIVelZ s< — keyps(llell) for error system (4) and, if
Vv:Ve =0, it says that matrixA(-) of the Jacobian system
is asymptotically stable for all “frozen” values of command
r(t) and state;(r). Second, gaitt, > O is usually the result
of observer design, and the choices of feedb&ck and
its Lyapunov functionV,(-) are to achieve stability and to

1327

and if the origin ofz =0 is asymptotically attractive for the
nominal system in the sense that

lim ||F(,0,r)|| =0, (23)
t—00

and that a Lyapunov functioi,(z, z, r) exists to estab-
lish the following inequalitiesfor any 0 < 6 < 1, for some
0<ps<1 and O0< fg ¢'<1, for constantsc’,c,, >0,
c; c; >0, for gain ky > 0, and for some classt", func-
tions y; (),

7allzID) < Ve (. z, r) < ys(llzlD,

attenuate the effects of uncertainty and measurement noiseand

Third, the conditions are stated in simpler forms to expose

the basic result of Theorem 1 and to simplify its proof, and
they can be relaxed (by invoking Lemma 2 or an improved
version of Lemma 3); for instancg, in (17) does not have
to be less than one, bounding function gy V. E|| may
have multiple terms, and functiop(s) in (19) can be a
function of different type or generic expression.

To achieve global convergence of estimation, condition
(20) puts restrictions on the impacts of commarid and
statez by limiting their magnitudes or their rates of change
in the limit. It follows from (18) and (17) that, for most
choices of Lyapunov functioi, (-), both 3 andf, are less
than one. Thus, (20) becomes trivial in the following two sit-

uations. The first is that a Lyapunov function is independent

of Fandz (i.e., V. (¢, e, z,r)=V,(t, ¢)) and hence,=c, =0
in (20). The second is that, as— oo, r(t) — rss and
z(t) — zss for some steady statess and zgs. While com-
mandr (r) is known, it is unlikely that(¢) has a steady-state

due to the presence of uncertainties. Thus, (20) is restrictive

mainly for the case that Lyapunov functidf(-) containsz
while 3 < 1. In this case, the magnitude of(r) will de-
pend upory, (1), which is admissible for a convergent CSM.
However, for a CSM to be convergent, the impactg @)
andr(¢) onc;(t) must also be limited by a clasg-L func-
tion. Without pre-qualifying these impacts, Theorem 1 is
established by imposing the conditioplim;_, o ¢;(r) =0
wheneverfi; < 1. On the other hand, the impacts can be
properly quantified if certain property of command-related
dynamics and certain stability property of the nominal sys-
tem are available. Such a result is provided by the following
theorem.

Theorem 2. Consider systenil) under Assumptiong, 3,
and 4. Then boundsc,(¢) on ||z|| andc:(z) on ||| are ul-
timately bounded by clask,, functions ofc, (1), respec-

tively, if A(t,z,r) 23F(t, z, r)/3z is bounded as

IA@, z, Dl <ordlzl), (22)

U, Ve + [VIVAA(, 6z, 1)z < — kppg(llzl), (24)
IIVZVzHSC;VgS(IlZII), ||Ver||<C;Vg6(||ZII),
N -1 / =1 7 q’é /
Y6 © V4 (8) <6760 75 (s) = 4 —cyyz(s), (25)
c;c;E;, if ¢ >1andfg=1,

kp> ceypp, if0<g’'<landfg=1, (26)
c) tlim ci(t)=0 if fg<1,

—00

wherep; = lim;_, ft; ¢ (1) dt/1.

Proof. It follows from (1) and Lemma 1 that stability of
system

z=[F(t,z,r) = Ft,0,r)]+[F(,0,r) + AF(t, z,r,n)]
can be studied by analyzing its Jacobian system
2=A(t,0z,r)z +[F(0,r)+AF(t, z,r, ], (27)

where 0< 0 < 1. It follows from (24) and (25) that, along
all the trajectories of (27), the time derivative of Lyapunov
function V. (-) is bounded from above as

Vo< — kg7 (Vo) + el (Vo) + cleeio (Vo). (28)

Thus, we know from (26) and Lemma 3 tHat, in turn ||z,
and its bound=, are all uniformly ultimately bounded by
a classK, function of ¢;. It then follows from (27), (23),
and (22) that
lim supc:(s) <

t_)OOIZS

t”m sudo s (cz(s))cz(s) + cy(s)],
—>oo[2s
at which the proof is completed.(]

Theorem 2 has three implications. First, Theorem 2 es-
tablishes the requirements o(r) andz(¢) that are required
in Assumption 2. Second, Corollary 1 stated below can be
proven by invoking Theorem 2 and then by using inequal-
ity (21) and Lemma 2. Third, the existence of Lyapunov
function V, (¢, z, r) facilitates the search for, (z, e, z, r) as
G(-) = 0yieldsA(t, ey, 5, e,z,r) = A(t, z — de, r).

Corollary 1. If Theorem?2 holds Theorem1 can still
be applied after removing fron{20) the condition of
lim;_,c;(t) = 0 wheneverp; <1 andc; # 0.
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There is no need to explain the conditions in Theorem 2 as
they are parallel to those in Theorem 1. Together, Theorems
1 and 2 provide a set of explicit conditions to check sta-
bility, convergence, and robustness of a nonlinear observer.
The subject of the next section is to show how the two theo-

rems can be applied to synthesize nonlinear observers. Such

a constructive design involves the search for feedld@ck
and its corresponding Lyapunov functidn(-). It will be
shown that, through the use of matrix representation in the

Jacobian system, the proposed design leads naturally to al-

gebraic (state-dependent) matrix equations which could be
solved in many cases and in the way comparable to a linear
time-invariant design.

We conclude this section by comparing the concept CSM
and standard stability concepts. In Theorem 1, stageas-
sumed to be uniformly bounded in the presence of uncer-
tainty. In other words, fictitious systetn= F(¢,z,r) + u
is bounded-input bounded-output with respect to “input”
However, this does not mean that the fictitious system is
input-to-state stableSpntag & Wang, 1995 since input-
to-state stability implieg — 0 asu — 0. Also note that
the convergence of CSM is defined in terms of either one
specific command(z) or one class of commands. As such,
it is not necessary for systetn= F(z,z,0) — F(¢,0,0) to

be asymptotically stable. For example, consider the second-

order system

f1=—z21+22+AF1,  Za=—r?(t)zo + AF>.

(2005) 1323-1333
ing steps

() FunctionG(:) in (2) is chosen such thagiven matrix
A(t, ey, 0,e,z,7) in (13), state-dependent Lyapunov
matrix equation

Pe, z, r)Z + ZTPT(e, Z,1)

Z_Q(tveya 5, e, Z,r)u (30)

admits a positive definite matri@(-) and a Lyapunov-
integrable matrixP(-) for all 6 € (0, 1), for r, and for
all (¢, ey, e, 2).

Determine gairk. and functiony(|le||) defined in(16)
by evaluating inequalit < k.ps(llel) <e' Q(t, ey, J, e,
z,r)e.

Calculate the partial derivatives iflL8) and (17), and
find the set of constants, c., c, ¢/, ¢y, ¢q, f;-
Conclude stabilityconvergence and robustness of the
observer by checking conditiof$9) and (20). When-
ever applicableTheoren2 and Corollary1 should be
invoked

(ii)

(iii)
(iv)

The key step of the observer design process in Corollary 2
is the algebraic Lyapunov matrix (30). The following corol-
lary provides further simplification.

Corollary 3. LetG(t, ey, y,r)=G(t,0, y,r). Then Corol-
lary 2 holds if Lyapunov matrix equatiq80)is replaced by
forall y=[e" zT]T, for all w € R" satisfying|w;| <|e;| +

For these reasons, convergent CSM is proposed in the paperz;|, and for the given r

and results on asymptotic stability or input-to-state stability
are not invoked. Should comman¢) be arbitrary, system
z=F(tz,r)— F(t,0,0) + u would have to be input-to-
state stable with respect to battandu in order for system
(1) to remain bounded.

3. Nonlinear observer design using CSM

Jacobian system (11) makes it possible to express error

dynamics globally into a standard matrix form. If the cor-
responding search of Lyapunov function is narrowed to the
class of time-independent functiols(e, z, ), a matrix rep-
resentation can also be used. That is, manx, z, r) is said

to beLyapunov-integrablé the partial differential equation

Ve Vele,z,r) = eTP(e, 1) (29)

is integrable and the resulting scalar functigsie, z, r) is
positive definite with respect te (as specified by (15)).

P( 1Ay + AL PT (1) = —Q(t. w, 7. 1), (31)

whereA,, (¢, 0, w, r) is the matrix defined iif12).

Three points are worth making here regarding nonlin-
ear algebraic Lyapunov matrix (30) or (31). First, state-
dependent (30) or (31) implies nonlinear observability,
which includes standard linear results as special cases. For
state estimation only, reachability is not required. However,
unlike the case of linear systems, one cannot simply solve
Eq. (31) for any positive definite choice @ (-). This is
because the resulting matri(-) must also be Lyapunov-
integrable as required by (29). If Eq. (30) or (31) does
admit a constant and symmetric solutiBnintegrability is
guaranteed and the resulting Lyapunov function becomes
quadratic ine.

Secondu = A, (t, 0, w, r)w is the Jacobian system cor-
responding to systet= F(¢,z,r) + G(¢,0, H(t,z,7), 1),
and henced, (-) can be viewed as its nonlinear system ma-

Using the matrix representations, the conditions in Theorem trix. While pointwise linearization and the local Jacobian
1 lead naturally to Lyapunov-based criteria for nonlinear system around the origin have been commonly used, the
observer designs, as evidenced by the following corollary. proposed design makes their application global in the state
Its proof is obvious from (16) and (13). space. Consequently, Eqg. (31) enables the designer to find
Lyapunov matrixP (e, z, r) that depends upog or z orr,

or their combinations. Thus, Lyapunov functidf(e, z, r)

is not restricted to be either quadraticéror independent

Corollary 2. Consider systeril) under Assumptions, 3,
and4. Nonlinear observe(2) can be found from the follow-
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of zandr, which makes the proposed design more general
than the existing design methods.
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that matrixP (y, r) is Lyapunov-integrable as defined in (29),
that S(y, r) is integrable as defined in (33), and that, for all

Third, the proposed observer design is closely connectedy, for all w with |w;|<|e;| + |z;|, and forr,

to nonlinear control design. Specifically, since Lyapunov
matrix equations (30) and (31) are both pointwise and global,
the process of solving for solutior?(-) and feedbaclG (-)

(for someQ(-) > 0) is parallel to that in the problem of non-
linear optimal control over an infinite horizon. Also, out-
put equationy = H (t, z,r) generally implies that matrix
O0H (¢, w,r)/0w is a flat matrix, which makes the choice of
G(-) be a dual problem to robust control designs under the
matching conditionsGorless & Leitmann, 1981 or equiv-
alently matched dynamics/uncertainti€gu( 1993, or the
generalized matching condition®y, 1993.

In what follows, a 2-by-2 block design and three exam-
ples are presented to illustrate the process of choagify
anddG(t, 0, y, r)/0y and then solving algebraic Lyapunov
matrix (31) pointwise.

3.1. 2-by-2 block design

Consider uncertain system (1) and let the state be parti-
tioned by the output as
H(t,z,r)=z1€ R, = y=[10]z=Cg, (32)
where z = [z] zJ] € W". Accordingly, partition system

matrix A(z, w,r)évwF(t, w,r) and Lyapunov matrix
P(z,r) in (29) and (31) as, withy =[e" zT]T,

], P(X,r)=[

respectively, wherePy1, A1; € R, On the other hand,
one can choose

A1l
A2l

A1
A2

P11
P

P12

A(t,w, ) =[ Poy

Ri(t,r)

G(,0,y, V2R, N%(y,r), R= [Rz(t i

V%0, ) =S, 1),

whereR1, S € R and R, € R"2*"™ are matrices to be
chosen, and matrif(-) needs to be integrable.

] ’ (33)

It follows from (31) that

Qu2(t, w, 3, 1)
Q2o(t, w, 3, 1)

Qut,w, y,r)
OT,(t, w, 7,7)

o, w,y,r)= [
where
—Q11= P11A11 + A11—1P1T1 + P12A21 + A-zrlPirz

+ P1RS + STR] Pl + P1oRoS + STR) P,
—Q12= P11A12+ A] Py + P1oAga + A) Py,

ToToT ToT pT

+ S8 Ry Py1+ S Ry Py,
and
—Q2(t,w, x,r) = P21A12 + AIZPle + PopAop + Agzpsz-

Therefore, observer (2) can be constructively designed if
matricesR; andSand matrix blocksp;; () are chosen such

imin(Qll) >0, imin(QZZ) >0,
A)min( Q11 min(Q22) > | Q12]12,

wherelnmin(-) denotes the operation of finding the minimum
pointwise eigenvalue of its matrix argument.

Summarizing the above derivations under block partition
(32), we know that Corollary 3 and observer design reduce to
the following: Given the matrix paifA(z, z, r), C}, choose
a state-independent matrik(z, ») and an integrable gain
matrix S(Cz, r) such that algebraic Lyapunov matrix equa-
tion (31) with A = A + RSC yields a Lyapunov-integrable
matrix P(y, r) as its pointwise (yet global) solution, all for
someQ(-) > 0 (specified by (34)). Once gain, this resultis a
dual to the nonlinear control problem. For system whose Ja-
cobian matrices have triangular structures, the block design
can be recursively applied to synthesize an observer, which
is parallel to that in control designs and will be shown by
Example 3.

In many cases, making matriX(-) symmetrical helps to
ensure its Lyapunov-integrability. For instance, let matrix

P(y,r) be

then P(-) is Lyapunov-integrable ifP;; (¢;) are integrable
and if

feiTPii(ei, z,r)de; >0, i=1,2,

f egPll deo + f e;Pzz deo > Ze—erlzez.

Condition (36) can be used to select non-quadratic Lyapunov
function, as will be in Example 1.

Having a symmetricaP(y, r) also facilitates the choice
of matrix Q(-). It follows from the expression 0,2, that
Amin(Q22) > 0 implies that, forr and for all {(z, w, y) :
lwi|<lei| + |z},

(34)

P
Poy(e2, z,1)

Pii(ex, z,1)

PQpr)= [ P1T2 (35)

(36)

PapAby + [Aby]" P22 <0, (37)
whereA’, 2 A+ P2’21P1T2A12. In other words, matrix’,
(through the choices of2, and P12) has “uniformly sta-

ble pointwise eigenvalues,” i.e., eigenvalues are stable both
pointwise and uniformly forr and for all (¢, w, y) with

lwi | <le;i| + |z;|. Similarly, Amin(Q11) > 0 implies

P11AYy +[A}4)T P11 <0, (38)
where matrix;; = A11+ Pj;t PioAzi+ (Ri+ P; PiaR2)S
must be uniformly pointwise stable. One possibility to
achieve uniform pointwise stability for matrixd}; is

to make[R1 + Pl‘llPlsz]S uniformly pointwise stable
(through choosingr1 and R2) and to make||S|| large if,
as a sufficient condition and through the choicePaf(-),
A11+ P P12A51 is uniformly bounded in norm by a class-
2 function ofr. OnceQ11 and Q2 are made to be positive
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definite, all the available choices should be explored to meetthe system is not Lyapunov stable around the origin and that,
the last condition in (34). As will be illustrated in Examples sincel > 1, the system is robustly uniformly bounded unless
1 and 2, choices should be finalized based on dynamics ofqzo andr — 0. It follows thatA(z, w, r) A v, Ft, w,r)

the Jacobian system. where

2 _ 2 2
3.2. Design examples A= T —21+ ngle _
—clwg — 2c1wiw? —rz—cl(w1+w2) — chwg
The following example shows that Lyapunov matrix (31)  Note that the Jacobian matrxhas several useful properties:
often leads to non-quadratic Lyapunov functions. diagonal elements have negative terms that are of highest
orders inw; and wz (among all the terms in the matrix),

Example 1. Consider system (1) with and both of them are either negative or negative-definite

—z1+ 0.5rz3 except for the term-r2; a pair of off-diagonal elements are

F(t,z,r) = [ ot } » Ht,z,r)=z1. skew symmetric, and the rest off-diagram terms are a cross

) . . _ product term ofw,w» and a term of 21+ r). Thus, there is
Itis straightforward to show (using Lyapunov functian= little difficulty to choose constant sub-block; to satisfy
23 + ¢z5) that the uncertain system is globally uniformly  the inequalities in (37) and (38). For example, let matrix
bounded. Also, it follows that P(-) be that in (35) withP1; =4 and P1, = P, =1 (hence

A 1 rw P is positive definite and integrable). Also, choage= 1,

2

A=Y/, F(, w,r)=|: 0 _1]- andR, = —1. It follows that

which is global!y and uniformly _asymptotically stable (v_vith 011=8 [_rz +w? + }(Clwg + 2ciwiws) — §S} ,

w = dz for all § € (0, 1) and using the Lyapunov function 4 4

L again). Thus, Theorem 2 applies if lim, r = 0. 2 2
It is clear that, for any choice of constant matRxLya- Q12=8(1+r) +wi +4dcrwiwz + crwi

punov matrix equation (31) does not yield a globally positive 4,

definite matrixQ. Hence, a non-quadratic Lyapunov func-

tion is needed for designing a global observer. Now, choose Q2> =1+ (1 + )2+ clwf + 2c1wiwy + 2c1w§.

matrix P(-) to be that in (35) withP12 = 1. In light of (37), o P, _

we know thatA’, = —1+4 rwy/Pz2(e2, z,r) < — 0.5 is en- Applying inequalitya® + b= > 2ab yields

sured for all{ws : |wz| <|ez2| + |z2]} by choosing 1012] <8(L+ 1) + w%; n 5c1wf n qw%

22,22
Po(ez, z,1) =2(2+cre5 +¢r25). 091+ (412 +crwd
It follows from (38) that A11 + Pi'Pi2A21 + (R1 +
P*P12R2)S = —1+4 (R1 + P;'R2)S< — 1 holds for all
P11, S>0andRq, R»<0. ka(r)
Next, chooseR1 = —1, R, =0, P;1=1, andS € (0, 2 + Q11216 () + T4
44/2). Under these choice®z2>2 + c2e + ¢2z3, 011 =
21+ 8), Q12=2+ S — rwy, and hence the last inequality

and
(u)%l + 5c1u)%)2 + clw§ + 8g¢(w1),

where

in (34) is met. It follows from (35) and (36) that the re- 5 o ka(r) o 22 _ 2., 2
. s . £ — 20w 45 —r2y
sulting Lyapunov matrixP is Lyapunov-integrable and that 95 (1) 1) = =5 (W + Sewp)® =t 4wy
Ve(e, z, r):%e%+elez+(2+_fz§)e§+%Efeg. Thus, the re- . }clwz _ §S.

sulting robust observer is given by (2) widi(z, ey, y,r) = 2 4

[—Sy 0]T. . L . 5
Therefore, inequalities in (34) holdskf(r) > (1+r)°/[1+

(1 + r)?) andk2(r) >1/[1 + (1 + r)?] are chosen and if
g¢(w1) > 0. The requirement of,(w1) > 0 can be guaran-
teed by choosing, i.e., by setting functiorG (-) as

Dynamics of the following example contain high-order
terms ofz, that cannot be eliminated in the design, either
directly or through the operating of being bounded. As a

result, existing results cannot be applied here. ko(r)  aia

8
G@JF=L1}LEMUW—§ZE:BY

Example 2. Consider system (1) with = z; and
P y (1) with = 21 5c1 243 9 S_grz

. [ﬂzl — 2T 24 o+ $23+ r2i| T 122+3 24V Y
B 2 2 2 3 ! 4 2
—C17125 — €12922 — 1722 — C1Z5 2+1 _ & _
HECEE TR

wherel > 1 andc; >0 are system parameters. It is straight-
forward to show (using Lyapunov functidn= z? + z3) that Then, the resulting robust observer is given by (2).



Z. Qu / Automatica 41 (2005) 1323-1333

The following example deals with the cases that the Jaco-
bian system has a triangular structure under which observer,

design can be carried out recursively.

Example 3. Consider system (1) with output (32). Two
cases of Jacobian matrix(-) being triangular are investi-
gated.

Suppose thatA(-) is block lower triangular and hence
A12 = 0. Then, inequality (37) reduces to

—Q20= PaAx+ Al P <0,

and it holds if and only if matrixA,2 is pointwise stable.
The choice ofPy, can help in making pointwise stability
become uniform pointwise stability. Ona@s; is positive
definite, choos®,=0 and symmetricaP =diag{ P11, P22}

It follows that

—Q011= P11(A11+ R1S) + (A11 + R1S)T Py,

and —Q12 = A£1P22- Therefore, 011 can be made
positive definite through the choice oRiS as long
as the portion ofAj; that is not pointwise stable is
uniformly bounded with respect tavy, and condition
42min(Q11)min(Q22) > || Q121 can always be guaranteed
provided that the dependence |pf21|| on wy is restricted
by the square root of that ¢fQ22].

If A(-) is block upper triangulard21=0. ChooseP;1 and
P> to be symmetrical. In this case,

—Q011= P11[A11 + (R1 + P1_11P12R2)S]
+[A11+ (R + P1_11P12R2)S]P1T1 <0,

which holds if and only if matrifA11+ (R1+ Pl‘llPlsz)S]
is uniformly pointwise stable. Given the choices Bf, S,
P11 and Py, it is not difficult to see how to mak&11 > 0.
On the other hand, it follows from (37) that makigg, > 0
is also straightforward. On the other hand, we have

—Q12= Pr1A12+ AL Py, + PioAz + STR] Py

+—STRgsz
and the remaining goal is to satisfy the last inequality in (34).
Could P>1 =0 andR> =0 be made-Q12= P11A12, and it

is simple to check whetherfhin(Q11)Zmin(Q22) > || Q12112
can be ensured.

As long as structural properties of the Jacobian system
hold for its sub-blocks, the above argument can be repeated, — — (¢, x, § — h(¥)),

in a recursive way.

4. Robust control by estimating uncertainty

Consider an uncertain system of form
xX=f@t, x,v,u), (39)

where f(-) has a known functional expressian,e R" is
the statey € R™ is the control, and € R’ is an uncertainty
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generated by exogenous system

D=g(t,v,x)+ Ag(t,v, x). (40)

The control problem is robust stabilization by estimating the
uncertainties, the proposed observer design using CSM is
applied, and the difference in observer design is that an “out-
put equation” based not anbut on statex from differential
equation (39) needs to be constructed.

The following assumptions are made for the plant and the
exogenous system. Assumption 5 guarantees controllability.
Assumption 6 is parallel to Assumption 3. Assumption 7 pro-
vides a way to assess and quantify the impact of estimation
error on control design and closed-loop stability.

Assumption 5. A perfect-knowledge contra=—U (¢, x, v)
and the corresponding Lyapunov functidfi(z, x) can be
found for systen(39) such that Vo,

f(l,x,l),—U(t,x,D))an(t,x), (41)
Cur XD < Vi S B2 XD, 157, Vil S cn Vi,

and

vtVn+[vIVn]fn(t,x)< _knvnﬁn(tax)a (42)

wherey, (-) is a class.#  function andcy,, B, ks, B, >0
are constants

Assumption 6. If x remains in a compact sestate v
of exogenous systerd0) is uniformly bounded and

|Ag(t, v, x)[|<cq Vnﬁ“(t, x) for constants,, 8, >0.

Assumption 7. For a given class of‘output functions
h(x) : R* — R there exist constants s, ¢, >0 and
s, Bg =0 such that Vv and Vé € (0, 1),

IVef @, x, 0, U, x, O)lemp—s+niyl

<erVilB ) + ello + h@|IF. (43)
Note that a completely unknown exogenous model is
admissible ax (¢, v, x) = 0 and that inequality (43) be-
comes independent of choices bf) and hencec, =0
if f(z,x,v,u) (or equivalently 7 (z, x, 0, =U (z, x, v))) is
affine inv.
Consider the following observer-based robust control

(44)

wherex = x — X, function 2(:) : R" — %! is a chosen
feedback of “estimation output” (which belongs to the class
in Assumption 7 and meets the conditions to be stated in
Theorem 3),x and? are defined by

£ =ko(x, )F + fult, x), (45)
0 =g(t, 0 —h(%),x) —ko(x, X)[\/zh(X)]x, (46)

wherek, (-) > 0 is a scalar gain to be chosen. Clearly, control
(44) is not one satisfying the separation principle.
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It follows from (41) and from observer (45) and (46) that
dynamics of estimation error under control (44) are

Y= —ko(x, )%+ ft,x,0,—U(t, x, D — h(F)))

— f(t,x,v,=U(t, x,v)), 47)
U= g(t,v,x) — g, v — h(X), x) + Ag(t, v, x)
+ ko(x, X)[V5h(X)]x. (48)

It follows from Lemma 1 that, for stability analysis, Egs.
(47), (48), and (39) are equivalent to the following system:

F=o/(t,3,0);+AA(, 5, 0), (49)
where 0< 6 < 1,

X
)
U+ h(X)

11 0 13
o = 0 ol x|,
0 0 /33

0
A%(I,Z,D)Z[ 0 i|,
Ag(t, v, x)

JZ/]_]_: Vifn(ﬂ é)|é:(5x;
d13=—ef(t,x,0, =U{, x, O)lemp—s@+nG))

oA 2= —kolyxn, HA23=.7/13, and

A33=[Vih(D)]L13+ V:g(t, ¢, X)|emp—sG+h)-

Comparing (49) and (11), we see thatcan be viewed
as an unknown “command signal” and robust control de-
sign is to ensure the convergence »fin the presence
of the “command” and by attenuating uncertainty vector
Ad/(t,Z,v). It follows from Theorem 1 that the key to
establish stability for system (49) (without any further infor-
mation onv) is to make its Lyapunov function be a function
of Z but independent af. The structure of matrix/(s, z, v)
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state 7 is either globally asymptotically stable or locally
asymptotically stable or globally uniformly ultimately
bounded(and hence so are x ang).

Proof. Choose Lyapunov function to be

Cc1

~ 2+03 V t ~
Ty [lxl + Vi(t, 23),

L(t,7) = vt x) +

2+ c3

wherec1 >0 andcy, c3>0 are constants. It follows from
(49) and (50) and from Assumptions 5-7 that

. i ~ -
L< = etk V2P 4 v TV o/ 1575 — ko 151124
+ 15195 T A 23%3 — ki V,, " + [V1, ValAg

2B, c2+B3+Bs ¢, b
< — a1k, V, + c1epgepen, Va2V, T

A v B X
+ C1Cn3CuC£f Vn2 ﬁ3 Vhﬂ6ﬁ7 _ k0||x||2+t3

Bs+1

5 . / ’ ) 1B
+epen IENFRVIVIT 1 cyco g sy Pt

x|
— VPt vV,

Letp : RT x R — R be a polynomial of two variables as

©(p.q) =—ap" +bp"™q™ —cq”, a,b,c,lj,m;>0.

It follows from Holder's inequality that

a \W/at2) o N 2/ Uat2)
P —U1+)| — -
I1 Io

x pl/ Wt gl5 /(a2 | pyogma ma

Thus, we know that, it? > (I1 + lo)m; for i =1, 2,

3 M1 > 0 such thatp, g > M implies e (p, q) <O,
that, if 12 < (11 + lo)m; fori =1, 2,

3 M> > 0 such that G< p, g < M> impliesp (p, g) <O,

and that, ifl2 = Iy +Ip)m; for i =1, 2 and if (a/ 1)"/ (2 +12)

makes the search of such a Lyapunov function possible, (c/12)2/ 1+ = /(1) + 1)

and such a result is given by the following theorem. lIts
proof shows how stability conditions can be derived, but

detailed expressions of the conditions are omitted due to

space limitation.

Theorem 3. Consider syster(B89) under Assumptions—7.
Suppose thdtoutput function(x) and Lyapunov function
Vi (¢, Z3) can be chosen such thdbr any0 < 6 < 1 and for
some class? « functiony,,(-),

/

. B, By = B
IZall <en Vi "o Vie<cen2®UIZal), 17z, Vall <cnsVy,°,

ViVh + [V% Vh] A< — ki V(1 ), (50)
where f5, Bg, Bos Bus Chys Chys Chas kn > 0. Then stability
conditions can be found in terms of gaibs &, gain func-
tion k,(x, x), and relevant constants such that augmented

©(p,q)<0 Vp,q>0.

The argument can be repeated to establish three cases of
©'(p, q,s) <0 for polynomial

©'(p,q,s) = —apt + bp™q"2s™3 — cq'2 — ds"

with a, b, ¢, d, l;, m; > 0.

It follows from Lemma 2 (or Theorem 2.15 @u (1998)
that the three cases mentioned above but established for
correspond to the three types of stability in the statement
of theorem, respectively. Thus, stability conditions can be
concluded by grouping the last expression’dhto several
polynomials (each of which contains one cross-product term
and a fraction of the negative definite terms 9f, ||X||
and V), by finding the conditions of three cases for each
polynomial, and by combining all the conditions[]
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Functioni(-) in control (44) should be chosen primarily  Grossman, S. (1986)Multivariable calculus linear algebra and

to satisfy (50), and the process of selecting) is essen- differential equationg2nd ed.) New York: Academic Press.

tially the same as that ag(-) in the observer design. Thus Isidori, A. (1995 & 1999).Nonlinear control systems | & IIBerlin:

all the discussions in preceding sections are applicable Springer.
Khalil, H. (1996). Nonlinear systemg2nd ed.) Englewood Cliffs, NJ:
here. Prentice-Hall.

Khalil, H. K. (1996). Adaptive output feedback control of nonlinear
systems represented by input-output mod#<EE Transactions on
Automatic Contral 41(2), 177-188.

Khalil, K. H., & Esfandiari, F. (1993). Semiglobal stabilization of a class

. . . . . of nonlinear systems using Output feedbatikEE Transactions on
In this paper, the robust estimation problem is studied , . = .- Contral 38(9), 1412-1415.

by introducing the concept' of convergept Command'to"State Krstic, M., Kanellakppoulos, I., & Kokotovic, P. V. (1995Nonlinear
mappings and by developing a Jacobian system equivalent and adaptive control desigiNew York: Wiley.
to error dynamicgverywherén the state space and for both ~ Lohmiller, W., & Slotine, J. J. (1998). On contraction analysis for nonlinear
analysis and design. Conditions are found on designing any | SIVStLem(ZQg;‘)’mgt'ca 34' 683‘69%] te ndevendent L

: . raly L. . On observers with state independent error Lyapunov
nonl!near observgr (from a general class of candujates) for function. NOLCOS1425-1430.
non“_n'ear uncertain systems with mea;grernent noise. Thels%u, Z. (1992). Global stabilization of nonlinear systems with a class of
conditions are then restated as stabilization conditions in  unmatched uncertaintieSystems & Control Letterl8, 301—307.
terms of an algebraic Lyapunov matrix equation. Itis shown Qu, Z. (1993). Robust control of nonlinear uncertain systems under
that the conditions can be used to search for an appropri- gezne(rfggg)dRmsmT'”g ‘;OTd']E'O”ALI‘_mmat'Ca 29{ .985'519?@ Vork

. P . , L. .RO control or nonlinear uncertain e W YOrK:

ate Lyapunov function (whether it is quadratic or not) and QUW” o us ! SYs
to constructively design a (g!ObaW cqnvergent) observer N Qu, Z. (2002). Robust control of nonlinear systems by estimating time
ways parallel to those used in designing robust and/or opti-  variant uncertaintieSEEE Transactions on Automatic Contrel7(1),

mal state-feedback controls. Itis also shown that, for systems  115-121. _ _
whose uncertainties are generated by an exogenous systemgu' Z., & Jin, Y. (2001). Robust control of nonlinear systems in the

5. Conclusions

robust control can be designed by designing an observer to

estimate the uncertainties.
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