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Abstract The small size, extensively dispersed and decentralized, and high penetra-
tion level of renewable energy sources in the future smart grids make the application
of conventional optimal power flow (OPF) neither practical nor economical. In this
paper, a practical approach is proposed to realize high penetration of distributed gen-
erators (DGs) by organizing them in some groups within a microgrid and dispatching
the generated power aggregately. Each group may have virtual leaders which define
the power policy of the group, and all other DGs cooperatively follow that policy.
A fair utilization ratio is defined and will be introduced to the group by the virtual
leaders. The utilization ratio indicates what percentage of the available power each
DG has to feed to the grid, and this ratio will also be propagated within the group
using cooperative control. As such, a smartgrid may treat microgrids as individually
dispatchable loads or generators. Meanwhile, the interaction between each microgrid
and the main grid can be formulated as a Stackelberg game. The main grid as the
leader, by offering proper energy price to the micro grid, minimizes its cost and se-
cures the power supply that the microgrid, as the follower, is willing to dispatch. It
is shown that this game theoretic approach not only guarantees profit optimization,
but also provides a convenient technique to optimize power flow from microgrids to
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the main grid. Numerical and simulation results for a case of study are provided to
demonstrate the effectiveness of the proposed techniques.

Keywords Smartgrid · Microgrid · Distributed generator · Cooperative control ·
Game theory

1 Introduction

The global increase of electricity demand combined with both economical and en-
vironmental constraints of conventional energy sources such as fossil or nuclear en-
ergy, is putting more demand on finding alternative energy sources. Renewable en-
ergy sources are of special interest as alternative energy. This has lead to the outburst
of the distributed generators (DGs) and smartgrid concepts. DGs have many different
forms such as solar or wind energy, fuel cells or even small diesel generators. To in-
crease the harness of alternative energy, DGs will be installed near the loads and be
spread widely across the distribution network.

It is believed that the high penetration of DGs, will result in the reduction of power
losses, voltage profile improvement, meeting future load demand, and optimizing the
use of non-conventional energy sources [7]. However, more serious problems will
arise if a decent control mechanism is not exploited. An improperly managed high
PV penetration, may cause voltage profile disturbance, conflict with conventional
network protection devices, interfere with transformer tap changers, and as a result,
cause network instability.

Indeed, it is feasible to organize DGs in a microgrid structure which will be con-
nected to the main grid through a point of common coupling (PCC). Microgrids are
natural innovation zones for the smart grid because of their scalability and flexibility.
A proper organization and control of the interaction between microgrid and smartgrid
is a research challenge.

In this paper, a multilevel smartgrid control strategy is offered to provide solutions
to both the DGs control in the microgrids and interaction management between the
microgrids and the main grid as follows:

1. A microgrid needs to organize its DGs to realize predetermined objectives. The
ultimate goal is to have DGs operate fairly together to help provide stability, to
keep voltage profile within the acceptable range and to provide a desired power
flow. DGs usually exploit the use of fast power electronic converters, inverters, for
getting connected to the grid.

Grid-tie inverters are at the heart of today’s renewable energy conversion sys-
tems and future smart grids. These inverters convert the energy harnessed from
the various renewable energy sources, such as wind, sun, etc., into a grid quality
AC power that can be fed into the utility grid. As such, the appropriate control and
management of inverters will have a significant effect on the performance of the
microgrids.

Currently, existing inverter control strategies include current source inverter
(CSI) [3, 36], voltage/frequency droop control [12, 13], generator emulation con-
trol (GEC) [1], and cooperative control [34]. CSI mainly has the inverter feed all
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Cooperative control and game strategies for smartgrid 25

its available power to the grid and has been shown to cause stability problems on
high penetrations [5]. Different derivatives of droop control and GEC use commu-
nicationless control to imitate the behavior of synchronous generators. However,
these controllers regulate their point of connection voltage and frequency without
considering the effect or demands on other parts of the grid and this may cause
some problems. For instance, they may cause conflict with the transformer tap
changing voltage control mechanisms [5] or may disturb the voltage profile across
long feeders.

As such, an appropriate control scheme extends far beyond just regulating in-
verters coupling point voltage and frequency. Cooperative control provides the
possibility for different agents in a networked area operate together to realize some
desired objectives [24] and already has been successfully applied to autonomous
vehicle control [28]. The application of cooperative control for DGs operation on
power systems was proposed in [34]. But it did not include main grid/microgrid
interaction, neither considered the dynamics of the inverters. In this paper, coop-
erative control design based on inverter dynamics is proposed and is shown that
based on the active power demand from the main grid, microgrid utilizes inter-
mittent, asynchronous, and low bandwidth communication links and organizes
DGs to work cooperatively together to fulfill the demand. Similarly, the excessive
power capacity of DGs will be used to produce reactive power to regulate a crit-
ical point voltage which may be a farthest point on the microgrid or a bus with
sensitive loads.

2. A proper interaction between the microgrid and the main grid is an important
aspect of the smartgrid. A microgrid should look as a dispatchable load to the main
grid and it is desired to have a power flow to the main grid to minimize the cost
and also shave the peak of the load demand. In [34], assuming a certain power flow
to the main grid is demanded, a PI controller was applied to regulate the power
produced by DGs accordingly. However, this technique may be applied once the
desired power flow is known. As such, another high level controller should be
devised to properly search and come up with the most suitable power flow from
the microgrid to the main grid, considering the different constraints including:

(i) Both the microgrid and the main grid should be able to optimize their profit
or cost.

(ii) Improvement in the main grid generated power is an objective. It is desired to
have less power fluctuations, which incur high stress and cost to the genera-
tors. To this end, the main grid generated power profile should be as smooth as
possible. This means that the microgrids should assist the main grid to shave
its power peak. To this end, microgrid may charge its storages when there is
less power demand and release energy during peak hours.

The above requirements can be met by modeling the main grid-microgrid interac-
tion as a game [6]. Game theory is briefly introduced in Sect. A.1. In terms of the
conventional electric market, some of the previous works utilize different game
theoretic approaches to deal with the optimal bidding strategy for the generating
company, optimal load pricing, and reserve management problem. Towards this
end, [8, 10, 11, 19, 25] focus on the Nash game, and [4, 16, 17, 35] focus on
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26 A. Maknouninejad et al.

the Stackelberg game. In terms of future smartgrid, [18] provided a demand-side
management based on consumption scheduling game to optimize the energy cost
and balance the load, and [33] analyzed the smartgrid management with multiple
intelligent players. However, the interaction between the main grid and microgrid
is an important aspect of the smartgrid, which has not been fully considered using
a game theoretic approach.

In this paper, main grid-microgrid interaction is modeled as a Stackelberg
game. Specifically, by offering proper energy price to the microgrid, the main grid
as the leader, can minimize its cost function and secure the power supply that mi-
crogrids, as the follower, are willing to dispatch. Once receiving the offered price
from the main grid, microgrids decide what percentage of the available power to
dispatch and how much to store. It is shown that this technique not only is helpful
in terms of optimizing the cost functions, but also helps a proper power flow from
the microgrid to the main grid to reduce load stresses and shave the peak.

The rest of this paper is organized as follows. The proposed control strategy to be
incorporated will be introduced and formulated in Sect. 2. The cooperative control
of DGs, considering the dynamics of the inverters, will be discussed in Sect. 3. The
required medium level control to manage microgrid aggregated power dispatch is
introduced in Sect. 4. The Stackelberg game between the main grid and microgrids
is formulated and solved in Sect. 5. Examples with related numerical and simulation
results are presented for the purpose of illustration in Sect. 6.

2 Problem formulation

Figure 1 shows the typical block diagram of a smartgrid. A smartgrid consists of sev-
eral generation sources including large scale renewable sources such as wind farms
or solar farms, and conventional power stations. Small sized distributed generators,
such as rooftop solar panels and home installed small wind turbines are also impor-
tant elements of the smartgrid which will be able to provide a high aggregated power
dispatch.

The best way to organize and control such highly dispersed and individually small
sized generation is to group them in the form of microgrids [23], as shown in Fig. 1.
Then, a cooperative low-level control is applied to organize and properly dispatch the
DGs.

A smartgrid consists of several buses to which loads, conventional generators and
microgrids may be connected. An example of a smartgrid based on IEEE 5-bus sys-
tem is shown in Fig. 2, where a microgrid is connected to the bus 5. The dynamics of
the synchronous generators are described as follows:{

θ̇i = ωi

Miω̇i = PDi − PGi
i = 1,2, . . .Nt

b

On the buses to which microgrids are connected, the aggregated generation on the
bus is considered in the above equation. The detailed model of an individual DG,
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28 A. Maknouninejad et al.

Fig. 2 A smartgrid diagram based on IEEE 5-bus system

operating inside the microgrid, is provided on Sect. 2.1. The power flows on the
system buses are constrained by the following power flow equations:{

PGi − PDi =∑j∈Nt
b
ViVj [Gij cos δij + Bij sin δij ]

QGi − QDi =∑j∈Nt
b
ViVj [Gij sin δij − Bij cos δij ] i, j = 1,2, . . .Nt

b (1)

To encourage the DGs to produce renewable energy, the smartgrid provides incen-
tives to the energy delivered by them. Thus, every DG tries to maximize its interest
by more generation. However, in the utility market of a smartgrid, the desire of each
participant to maximize its own profit needs to be coordinated or constrained to en-
sure the system operation and to minimize the overall cost.

The smartgrid control should be multilevel. On the microgrid level, DGs should be
organized and cooperatively operate to satisfy desired power demands and maximize
their profit. On the main grid level, main grid offers a power price to the microgrids to
secure a desired power flow and meanwhile minimize its costs. Therefore, a high level
control is needed to manage the interaction between the main grid and microgrids.
The proposed control scheme problem is formulated in detail in Sects. 2.1–2.4.

2.1 Microgrid level distributed control

The small size of DGs and their potential high penetration in the future smartgrids,
make the application of conventional optimal power flow (OPF) neither practical nor
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Fig. 3 Typical structure of a PV based DG, coupled to the grid using a three phase inverter

economical. When it comes to the control and management of such highly dispersed
and small scale generators, organizing them in the form of microgrids is the viable
solution. Microgrids are the innovation zone for a smartgrid as they provide flexibility
and scalability to control DGs and realize smartgrid objectives.

In order to improve the performance of microgrids, such as flexibility and relia-
bility, energy storages (batteries, super capacitors, etc.) will be available and bundled
with DGs. As such, the available active power on the microgrid consists of both stored
and renewable energy.

DGs are usually connected to the grid through fast responding DC/AC converters
(inverters) [13]. The typical structure of a DG, coupled to the grid by an inverter, is
shown in Fig. 3. Using PI controllers in the d −q reference frame, the following state
space equations are derived to describe the dynamics of the ith inverter:{

ẋi = Aixi + Biui

yi = Cixi,
(2)

where

xi =
[∫

(ui − Ii)dt

Ii

]
, Ii =

[
idi

iqi

]
, yi =

[
αpi

αqi

]
, ui =

[
ui1
ui2

]
,

Ai =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0
0 0 0 −1

Ki

L
0 −Kp

L
0

0 Ki

L
0 −Kp

L

⎤
⎥⎥⎥⎥⎦ , Bi =

⎡
⎢⎢⎢⎢⎣

1 0
0 1

Kp

L
0

0 Kp

L

⎤
⎥⎥⎥⎥⎦ ,

Ci =
⎡
⎣0 0 VGi

P i
0

0 0 0 −VGi

Qi

⎤
⎦ .

Here, Ii is the output current. It is noteworthy that all the measurements on the
inverter are with respect to the voltage measured at the output terminal. As such,
Vdi = VGi and Vqi = 0. Therefore, the output power of the ith inverter can be ex-
pressed as:

Pi = idiVGi, Qi = −iqiVGi.
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Typical three phase inverter dynamics and detailed space state model is derived in the
Sect. A.2.

The maximum available active power of the ith unit is as follows:

P i = PDGi
+ Psi , (3)

where PDGi
(k) is the available renewable power and Psi is the power from storage.

Assuming Esi to be the existing stored energy of the ith unit, the maximum power
provided by discharging this energy in time interval T is

Psi = Esi/T .

The microgrid power management should be in such a way not only meet cer-
tain power policies, but also provide the possibility that all DGs contribute equally.
Therefore, fair utilization ratios, αp and αq , are introduced to determine how many
percentage of the available active or reactive power is to be generated by every DG:

αpi
= Pi

PDGi
+ Psi

. (4)

Accordingly, the energy stored in the unit i at the end of time interval T is:

Esi(k + 1) = [1 − αpi
][PDGi

(k)T + Esi(k)] (5)

Assuming that the renewable power, PDGi
, is constant during time interval T .

Equations (4, 5) indicate that when there is active power available, some part of it
may be sent to the grid and the rest be stored.

Each inverter has a nominal power rating, Si . If the active power generated by DG
is less than this nominal rating, the excessive power capacity may be exploited to
generate reactive power: ⎧⎨

⎩
Qi =

√
S2

i − P 2
i

Qi = αqi
Qi,

(6)

where Qi and Qi are the generated and the maximum available reactive power of the
ith unit respectively. Equation (6) indicates what percentage of the available reactive
power is to be fed to the grid.

DGs should utilize communication links to communicate and converge to the same
operating point, αref

p and α
ref
q , provided by the virtual leaders. Virtual leaders may be

some of the inverters that have access to the higher level control and can calculate the
required utilization ratios. However, communication links may be asynchronous, in-
termittent, of time-varying topology, and of low bandwidth. The instantaneous com-
munication topology is defined by the following matrix:

S(t) =

⎡
⎢⎢⎢⎢⎢⎣

s00(t) s01(t) s02(t) · · · s0n(t)

s10(t) s11(t) s12(t) · · · s1n(t)

s20(t) s21(t) s22(t) · · · s2n(t)
...

...
...

. . .
...

sn0(t) sn1(t) sn2(t) · · · snn(t)

⎤
⎥⎥⎥⎥⎥⎦

(7)

In (7), sii = 1 for all i; sij = 1 if the output of the j th DG is known to the ith DG
at time t , and sij = 0 if otherwise. In (7), unit 0 is assumed to be the virtual leader.
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Virtual leader needs to have access to either the top level control agent, power flow
information or voltage profile of the lines. As such, if any of the operating modules
have access to such information, it may acquire the position of the virtual leader and
as such, (7) is reduced to:

S(t) =

⎡
⎢⎢⎢⎣

s11(t) s12(t) · · · s1n(t)

s21(t) s22(t) · · · s2n(t)
...

...
. . .

...

sn1(t) sn2(t) · · · snn(t)

⎤
⎥⎥⎥⎦ (8)

The communication matrix should be piecewise constant over time, and the corre-
sponding sequence should be sequentially complete [34]. The communication topol-
ogy and frequency rates affect the system convergence rate. Therefore, they should
be considered when designing the control laws.

As such, the first problem is for a group of DGs, G, how to design control inputs
ui in (2) such that they all converge to the proper α

ref
p and α

ref
q :{

αpi
→ α

ref
p

αqi
→ α

ref
q

∀i ∈ G

2.2 Medium level control and optimization

The solution to the first problem provides the possibility for the DGs on the microgrid
to converge to a desired α

ref
p and α

ref
q . However, there should be a control mechanism

to search for the right utilization ratios and satisfy power objectives. In this paper and
as proposed in [34], maintaining the downstream active power at a desired value and
regulating the voltage of a critical point are the power objectives. Such critical points
may be nodes farthest from the point of common coupling (PCC) or where more
critical and sensitive loads are located.

Following (3), for a group of DGs, G, in any microgrid of interest, the maximum
available active power to be dispatched at hour k is:∑

j∈G

[PDGj
(k) + Esj (k − 1)/T ].

The relation between the aggregated active power generated, P a
DG, at hour k and

the available renewable power, PDGj
, and the storage energy, Esj , of the j th unit are

described as follows:

P a
DG(k) =

⎧⎪⎨
⎪⎩

αp(k)
∑

j∈G [PDGj
(k) + Esj (k − 1)/T ]

if active power is available,

∈ (−∞,0] otherwise.

(9)

Accordingly, the aggregated energy stored in the microgrid, at the end of the kth
hour is:

E(k) =

⎧⎪⎪⎨
⎪⎪⎩

[1 − αp(k)]∑j∈G [PDGj
(k)T + Esj (k − 1)]

if active power is available∑
j∈G [Esj (k − 1)] − T P a

DG otherwise

(10)
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Equations (9, 10) indicate that when there is active power available, some part
of it may be sent to the grid and the rest be stored. Otherwise, some power may be
absorbed from the grid to charge the storages.

Following (6):

Qa
DG(k) = α

ref
q (k)

∑
j∈G

Qj(k). (11)

Therefore, there should be a mechanism to provide a α
ref
q in (11) to control reactive

power generation properly to regulate the critical point voltage.
The active power flow of the microgrid at bus i to the main grid is expressed as

follows:

Pμi
(k) = P a

DGi
(k) − P

μ
Li

(k) − P
μ
lossesi

(k). (12)

For simplicity, microgrid losses, P
μ
lossesi

, and load, P
μ
Li

, may be lumped together.

To secure a desired power dispatch from the microgrid, P
ref
μi

, main grid proposes
an energy price, βi . This price is subject to the generation and load demand and is
expected to increase during peak hours and be less at night and when there is less
demand in general. As such, the microgrid cost function for the hours k up to N is
calculated as follows:

Jμi
(βi(k),Pμi

(k)) =
N∑

l=k

βi(l)P
ref
μi

(l), (13)

where Jμi
is the cost function which shows the microgrid profit by generating power.

At every hour, k, based on the available power, load and the predicted generation and
load for the upcoming hours, the microgrid tries to search for the best P

ref
μi

to max-
imize its profit. Then, the required DG active power generation, P a

DGi
, is calculated

using (12). Substituting this P a
DGi

into (9), provides the α
ref
pi

. However, in case the
PV generation or load fluctuate, or real values deviated from the predicted ones, the
α

ref
pi

needs to be updated to keep the same power flow, P
ref
μi

.

As such, the second problem is how each microgrid finds the best possible P
ref
μi

at every hour k to maximize cost function (13), update α
ref
pi

to secure this power flow

and how to search for the proper α
ref
qi

to regulate the critical point voltage to the

V
ref
c = 1 P.U.

2.3 Main grid optimization

In general, at the main grid level with Nt
b buses, the real-time OPF problem of dis-

patching Pμi
is to minimize the following cost-to-go function for total power system

at hour k:

Jt (k) =
Nt

b∑
i=1

N∑
l=k

[
aiPGi

(l) + βi(l)P
ref
μi

(l)
]
, (14)

where N indicates the final stage (in this case time = 24 P.M) and a is the per unit
power price of the conventional generations, PGi

, on the main grid.
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The above optimization is subject to the power flow constraints of (1), which are
non-linear and solved numerically [14]. As in the energy market only the active power
flow is of interest, DC power flow which is a simplification of (1) can be used. The DC
power flow neglects active power losses, assumes voltage angle differences are small
and that the magnitude of nodal voltages are equal. As a result, the only variables are
voltage angles and active power injections. Therefore, the problem becomes linear
and there is no need for iterations. These assumptions cause errors as compared to
the original power flow equations (1). Subject to keeping the error below 5%, the
following constraints should be met [26]:

1. Voltage angle differences, δij , be less than 5◦,
2. Lines impedances X/R ratio be greater than 2,
3. For a X/R ratio of 2, the voltage standard deviation be less than 0.012.

In case the above constraints are satisfied, the DC power flow may be used instead
of (1) as follows:

P a
Gi

(k) − P a
Di

(k) =
Nt

b∑
j=1

Bij δij (k) i = 1, . . . ,Nt
b (15)

The optimization of (14), is also subject to the steady state constraints:

P Gi
(k) ≤ PGi

(k) ≤ P Gi
(k),

P μi
(k) ≤ Pμi

(k) ≤ P μi
(k)

(16)

and thermal constraints:

−T i ≤ Ti(k) ≤ T i. (17)

Note that P a
Gi

in (15) may be equal to 0 if there is no generation, equal to PGi
if there

is only conventional generation, equal to Pμi
if there is only microgrid connected to

the bus, or equal to PGi
+Pμi

if there are both conventional and microgrid generation.
As such, the third problem is subject to constraints of (15, 16, 17), how the main

grid should propose the power price, βi , to the microgrids to minimize its cost func-
tion (14) and secure a proper power dispatch, Pμi

, from the microgrids.

2.4 Interaction between main grid and microgrid

Within a smartgrid, there is an interaction between the main grid and the microgrids.
The main grid tries to motivate microgrids to generate power by offering appropriate
energy price, βi , to them, and at the same time, tries to minimize its cost function (14).
On the other hand, microgrids try to maximize their profits of (13) by dispatching ap-
propriate active power Pμi

. Since the optimization objectives of the main grid and
the microgrids are contradictory, such a problem can be formulated as a noncooper-
ative game [2]. The concept of noncooperative game is addressed in more detail in
Sect. A.1. For our problem, because the main grid announces hourly energy price first
and the microgrids dispatch active power after that, the game is indeed a Stackelberg
game with the main grid as the leader and the microgrids as the followers. Hence, a
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34 A. Maknouninejad et al.

Fig. 4 A simplified game model

Stackelberg solution can be obtained to secure demanded power from the main grid
and improve the performance indices (13) and (14).

By predicting possible power price βi and power dispatch Pμi
from hour 1 up to

N , it is possible to play this game for N hours at once. However, there will be a large
number of possible solutions to evaluate. For example, if N = 24, and there are five
possible Pμi

at every hour k, then there will be 524 combinations of Pμi
(and the

corresponding βi ) to perform the whole game. This approach is thus impractical.
Also, at every hour k, the calculation of performance indices (13) and (14) requires

information for all the hours k up to N . However, only data of the current hour,
k, are known and for the remaining hours of (k + 1) up to N , the predicted PV
generation and load are available. Yet, the prospective values of βi(k + 1 → N) and
Pμi

(k + 1 → N) neither are known nor have predicted profiles. These issues will
then be difficult to handle if the game problem is to be solved effectively. Hence, a
simplified game from hour k to N is proposed to carry out the original optimization
with respect to the performance indices (13) and (14).

A modification on (13) and (14) is then necessary in order to suit the simplified
game approach, which is illustrated in Fig. 4. In this case, the predicted PV genera-
tion, load profiles and the current hour choices of βi(k) and Pμi

(k) are utilized; and
the average values of the parameters for the upcoming hours are calculated and used
to estimate the performance indices from hour (k + 1) to N . Thus, the performance
indices (13) and (14) are modified as

Jμ(βi(k),Pμi
(k))

= βi(k)Pμi
(k) + (N − k)β

avg
i (k + 1 → N)P avg

μi
(k + 1 → N), (18)

and

Jt (βi(k),Pμi
(k)) = aiPGi

(k) + βi(k)Pμi
(k)

+ (N − k)
[
a

avg
i (k + 1 → N)P

avg
Gi

(k + 1 → N)

+ β
avg
i (k + 1 → N)P avg

μi
(k + 1 → N)

]
. (19)

The optimizations of (18) and (19) are subject to the condition that the storage
level of the microgrid, should return to its initial value after N hours. This require-
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ment leads to a constraint on the average increment or decrement stored energy,
�E

avg
i , as follows:

�E
avg
i (k → N) = �Ei(k) + [N − (k)]�E

avg
i (k + 1 → N)

N − (k + 1)
,

∀k ∈ [1,N − 2], (20)

where

�Ei(k + 1) = Ei(k + 1) − Ei(k). (21)

Equation (20) is a recursive expression. �E
avg
i (k → N) is calculated on the previous

hour, k−1. It represents the hourly change of average stored energy from hour k to N .
The consistency of this average for hour k and k + 1 is imposed by (20). Then, for
any proposed choice of �Ei(k) by the microgrids, a �E

avg
i (k + 1 → N) is derived

for the next hour.
When the game is not played, there is no storage involved and hence, the aggre-

gated output power P a
DGi

(k) is equal to the sum of the available power:

P a
DGi

(k) =
NDGi∑
j=1

PDGij
(k), (22)

where PDGij
is the available renewable power of the j th DG in a microgrid connected

to the ith bus. However, when the game is played between the main grid and the
microgrids, the aggregated output power P a

DGi
(k) is represented as follows:

P a
DGi

(k) =
NDGi∑
j=1

PDGij
(k) − �Ei(k)

T
, (23)

where the second term on the right hand side of (23) is accounted for the energy
storage change within time period T . Thus, by substituting (23) into (12), the con-
straint (20) can then be rewritten in terms of Pμi

and P
avg
μi

as follows:

P avg
μi

(k + 1 → N) = Pμi
(k + 1) + [N − (k + 1)]P avg

μi
(k + 2 → N)

N − k
,

∀k ∈ [1,N − 1]. (24)

Although the consistency of β
avg
i (k → N) and β

avg
i (k + 1 → N) is not imposed, but

it can be verified according to⎧⎨
⎩

β̂
avg
i (k + 1 → N) = βi(k+1)+[N−(k+1)]βavg

i (k+2→N)

N−k
, ∀k ∈ [1,N − 1]

β
avg
i (k + 1 → N) = β̂

avg
i (k + 1 → N).

(25)

The term β̂
avg
i (k + 1 → N) in (25) refers to the re-evaluation of β

avg
i (k + 1 → N)

at hour (k + 1), using βi(k + 1) and β
avg
i (k + 2 → N), which are obtained from

the game at hour (k + 1) as shown in Fig. 4b. Evaluating (25) analytically is not
straightforward and it can be checked numerically for any case of interest.

As such, the forth problem is how to calculate the performance indices (18)
and (19) and play the game.
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3 Cooperative control

Utilizing the available communication links, DGs are to converge to the utilization ra-
tios α

ref
p and α

ref
q , provided by the virtual leaders. However, the communication links

may have limited bandwidth, be intermittent and asynchronous. So a proper control
scheme needs to be applied which can tolerate the changes in a distribution network
which may have time varying topologies, its local communication can be intermittent
and of minimum bandwidth. Cooperative control has the advantage that utilizing such
non consistent communication links, can have a group of agents/modules exhibit co-
operative behaviors and make the system act as one group. Cooperative control has
been already applied to autonomous vehicle control [28] and its basic application for
DG control on power systems was introduced in [34]. In this section, to facilitate all
DGs to self-organize, the design of cooperative control with respect to the dynamics
of inverters is provided. The cooperative control law for the system of (2) for a group
of NDG inverters is as follows.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui1 = L
KpVGi

{P̄ (di0α
ref
p − αpi +∑NDG

j=1 dijαpj )

− [(V̇Gi − VGi
KP

L
)x3i + VGi

Ki

L
x1i]}

ui2 = L
KpVGi

{−Q̄(d ′
i0α

ref
q − αqi +∑NDG

j=1 d ′
ij αqj )

− [(V̇Gi − VGi
KP

L
)x4i + VGi

Ki

L
x2i]},

(26)

where

dij = sij∑NDG

j=0 sij
, i = 0,2, . . .NDG (27)

sij is a generic entry of matrix S defined in (7); di0 and d ′
i0 are defined similar to (27)

and for them, si0, s′
i0 are 1 if DGi has communication with the active and reactive vir-

tual leaders, respectively. Otherwise, si0, s
′
i0 = 0. Equation (26) provides the solution

to the problem in Sect. 2.1.

4 Medium level control

At every hour k, the P
ref
μi

is determined by a higher level control which will be

covered in Sect. 5. Then, based on (9) and (12), α
ref
pi

is calculated which will be
propagated across the microgrids through cooperative control, discussed in Sect. 2.1.
In case microgrid load changes, or the generated renewable energy fluctuates due to
environmental conditions, the P a

DGi
and as a result, Pμi

will vary according to (12).
As such, a medium level controller should be used to secure the designated power
flow, Pμi

, regardless of such disturbances.

As discussed in [34], an integrator controller may be used to update the α
ref
pi

ac-
cordingly as follows and shown on Fig. 5a.

α̇
ref
pi

= kp(P ref
μi

− Pμi
). (28)
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Fig. 5 Active/reactive power regulation mechanism

In case the load/PV severely fluctuates, a new game should be played by the top level
controller to propose relevant Pμi

and αpi
.

To regulate the critical point voltage, a similar mechanism may be used as follows
and shown in Fig. 5b:

α̇
ref
qi

= kv(V
ref
c − Vci

), (29)

where V
ref
c = 1 P.U.

The closed loop system for any microgrid of interest, can be expressed by substi-
tuting (26) in (2) as follows:

żi = kc

[
−zi + di0z0 +

NDG∑
j=1

dij zj

]
,

where zi = αpi , the fair utilization ratio of the ith inverter. As such, the overall dy-
namics of the microgrid system can be expressed as follows:

ż0 = kp

[
P ref

μ − Pμ(z1, . . . , zNDG
,Xp)

]
, (30)

żi = kc

[
−zi + di0z0 +

NDG∑
j=1

dij zj

]
, (31)

0 = gp(P1, . . . ,PNDG
,XP ), (32)

where z0 = α
ref
p and (30) is a restatement of (28) for a desired microgrid. Equa-

tion (32) is the power flow equation of the system. The stability of the closed loop
system is proved based on the following lemma.

Lemma 1 If A ∈ R
NDG×NDG is a row-stochastic, connected matrix and can be ex-

pressed as

A = D + D0,

where D ∈ R
NDG×NDG and D0 = diag{d01, d02, . . . , d0NDG

} are non-negative, then

(i) matrix (D − I ) is Hurwitz,
(ii) matrix (I − D)−1 exists and is non-negative.

The proof of the above lemma is given in Sect. A.3.

Author's personal copy



38 A. Maknouninejad et al.

Theorem 1 For a microgrid system whose dynamics is given by (30)–(32), if the
following conditions are satisfied

(1) kp/kc is sufficiently small,
(2) Communication among the DGs are cumulatively connected (sequential com-

plete),
(3) |sin(δi − δj )| 	 |cos(δi − δj )|,
the system is asymptotically stable in the sense that zi → z0.

The proof of this theorem is also given in Sect. A.3. Equations (28), (29) and
Theorem 1 provide the solution to the problem stated in Sect. 2.2.

Furthermore, for system

żi = kc

(
wi + di0z0 +

NDG∑
j=1

dij zj

)
i = 1,2, . . . ,NDG; (33)

the following theorem shows that

wi = w∗
i = −zi i = 1,2, . . . ,NDG; (34)

form a Nash equilibrium with respect to certain performance indices.

Theorem 2 If the system dynamics is given by (33), then wi = w∗
i in (34) for i =

1,2, . . . ,NDG form a Nash equilibrium with respect to the following performance
indices

Ji = 1

2

NDG∑
j=1

z2
j (tf ) +

∫ tf

t0

[
qi(z0, z1, . . . , zNDG

) + kc

2
w2

i

]
dt (35)

for i = 1,2, . . . , n, where

qi = kc

2
z2
i −

NDG∑
j=1

kcz
2
j +

NDG∑
j=1

kcdj0zj z0 +
NDG∑
j=1

[
kczj

(
NDG∑
k=1

djkzk

)]
(36)

for i = 1,2, . . . , n.

For the detailed proof, please refer to Sect. A.4.

Remark 1 According to the nature of Nash equilibrium, by suitably choosing kc,
performance index (35) can be assigned to each DG so that they have no choice but
to stick to the Nash equilibrium.

5 Game solution for smartgrid

To solve the game problem presented in Sect. 2.4, the following steps are carried out
to calculate performance indices Jμ in (18) and Jt in (19).
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1. The active power Pμi
(k), flowing from the microgrid (on the ith bus) to the main

grid at hour k is given by (12).
2. Assume that the storage level of a microgrid should return to its initial value after

N hours, then the average active power from hour (k+1) to N , P avg
μi

(k+1 → N),
is given by:

P avg
μi

(k + 1 → N) = avg[Pμi
(k + 1 → N)] +

∑k
l=1 �Ei(l)

N − k
, (37)

where avg[Pμi
(k + 1 → N)] is the predicted average power flow from historical

data without considering the storage.
3. Conventional generation PGi

(k) (on the ith bus) at hour k is given by

PGi
(k) = PDi

(k) − Pμi
(k). (38)

And the predicted average generation from hour (k + 1) to N is given by

P
avg
Gi

(k + 1 → N) = P
avg
Di

(k + 1 → N) − P avg
μi

(k + 1 → N), (39)

where P
avg
Di

(k + 1 → N) is the predicted average demand from hour (k + 1) to N .
4. Using PGi

(k) given by (38), βi(k) is computed by the following equation:

βi(k) = β0

[
1 + ηi(k)

PGi
(k) − P ∗

Gi
(k)

P ∗
Gi

(k)

]
, (40)

where P ∗
Gi

is the optimal operation power of the conventional generator (on the ith
bus), β0 is a known base price (when PGi

= P ∗
Gi

, βi = β0), and ηi(k) is a variable,
which the main grid perturbs to find different energy price offers to play the game.
Basically, equation (40) means that if PGi

is larger than P ∗
Gi

, the main grid should
increase the price βi to motivate the DGs to produce more energy, and if the PGi

is less than P ∗
Gi

, the price βi should be decreased to encourage DGs to store more
energy. This helps the generators operate near the optimal operation power, P ∗

Gi
.

5. Similarly, P
avg
Gi

(k + 1 → N) in (39) will be used to calculate β
avg
i (k + 1 → N) as

follows:

β
avg
i (k + 1 → N) = β0

[
1 + ηi(k)

P
avg
Gi

(k + 1 → N) − P ∗
Gi

(k)

P ∗
Gi

(k)

]
.

Through the above steps, for every possible choice of �Ei(k) and ηi(k), the cor-
responding values of Pμi

(k), P
avg
μi

(k + 1 → N), βi(k), and β
avg
i (k + 1 → N) are

obtained, and hence cost functions (18) and (19) can be calculated.
In order to find the game solution, a matrix game can be constructed. Specifically,

suppose that there exist M1 choices of ηi(k),

{ηi(k,1), ηi(k,2), . . . , ηi(k,M1)},
and M2 choices of �Ei(k), which result in M2 choices of Pμi

(k),

{Pμi
(k,1),Pμi

(k,2), . . . ,Pμi
(k,M2)}.

Hence, a matrix game can be constructed as Table 1, where values of ηi(k) are located
at the far left column and values of Pμi

(k) are located at the far top row. The other
entries are pairs of {Jt , Jμi

} based on corresponding ηi(k) and Pμi
(k).
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Table 1 Matrix game between the main grid and a microgrid

ηi(k) Pμi
(k)

Pμi
(k,1) · · · Pμi

(k,M2)

ηi (k,1)

{
Jt [ηi (k,1),Pμi

(k,1)],
Jμi

[ηi (k,1),Pμi
(k,1)]

}
· · ·

{
Jt [ηi (k,1),Pμi

(k,M2)],
Jμi

[ηi(k,1),Pμi
(k,M2)]

}

.

.

.
.
.
.

. . .
.
.
.

ηi (k,M1)

{
Jt [ηi (k,M1),Pμi

(k,1)],
Jμi

[ηi (k,M1),Pμi
(k,1)]

}
· · ·

{
Jt [ηi (k,M1),Pμi

(k,M2)],
Jμi

[ηi(k,M1),Pμi
(k,M2)]

}

Table 2 Matrix game for
Example 1, where {	, 	} stands
for {Jμ,Jt }

ηi (k) Pμi
(k)

0.8 1

1 {8,10} {10,9}
1.2 {7,5} {6,7}

Using such a table, either the Nash equilibrium or the Stackelberg solution can be
found. Since the main grid acts as a leader and the microgrids act as the followers, the
search algorithm for Stackelberg solution is presented here (please refer to Sect. A.5
for the counterpart of Nash equilibrium).

1. For each ηi(k, j) for j = 1,2, . . . ,M1, a corresponding Pμi
(k) can be found

such that Jμi
[ηi(k, j),Pμi

(k)] is maximized and that Pμi
(k) is denoted as

P S
μi

[ηi(k, j)].
2. The Stackelberg solution of the main grid is ηi(k, l) for some l such that

Jt [ηi(k, l),P S
μi

(ηi(k, l))] ≤ Jt [ηi(k, j),P S
μi

(ηi(k, j))]
for all j = 1,2, . . . ,M1.

To illustrate this algorithm, a simple example is provided as follows:

Example 1 Suppose that the matrix game is shown in Table 2.
The Stackelberg solution with the main grid as the leader is obtained as follows:

1. For ηi(k) = 1, Pμi
(k) = 1 maximizes Jμi

because

Jμi
(1,1) = 10 is greater than Jμi

(1,0.8) = 8.

For ηi(k) = 1.2, Pμi
(k) = 0.8 maximizes Jμi

because

Jμi
(1.2,0.8) = 7 is greater than Jμ(1.2,1) = 6.

2. Since

Jt (1.2,0.8) = 5 is less than Jt (1,1) = 9,

the Stackelberg solution of the main grid is ηi(k) = 1.2.
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The Nash equilibrium counterpart of this particular example is also shown in
Sect. A.5. Note that for a game problem, a Nash equilibrium may happen to be the
same as the Stackelberg solution, which is the case in Sect. 6.

This section provided solution to problems stated on Sects. 2.3 and 2.4.

6 Illustrative examples

To illustrate the smartgrid control algorithm discussed earlier, the design and appli-
cation of game and cooperative control for the case of a microgrid versus one bus
main grid is discussed in this section as shown in Fig. 6. A modified version of the
bus system proposed by IEEE 399-1997 standard is used to represent the microgrid.
There are 5 feeders and 8 DGs are distributed across the microgrid with a total of
8MVA generation capacity. The microgrid connects to the main grid through point of
common coupling (PCC).

Main grid is represented by a single bus into which an aggregated load and con-
ventional generator is connected. Two set of examples are provided in this section. At
Sect. 6.1, simulations for evaluating the performance of the cooperative control are
provided. Section 6.2 shows the game approach and numerical results for managing
the smartgrid.

6.1 Application of cooperative control on microgrid

In this example, eight DGs are spread across the microgrid and are organized by the
cooperative control. DG8 is the agent which runs game negotiations with the main
grid and hence, is the active power virtual leader. Reactive power policy is to regulate
the critical point voltage, which is L21 in this case. As such, DG3 which is connected
to L21 and measures its voltage, is the virtual reactive power leader. Simulations are
performed using Simulink Simpower System Toolbox.

To show the effect of communication frequency, Fig. 7a shows the DG4 αp

convergence to α
ref
p = 0.6 under different frequency rates. Figure 7b also shows

the voltage of critical point voltage. As expected, higher frequency rates result
in faster convergence rate. The other major factor affecting the performance of
the system, is communication topology (8) through which inverters communi-
cate. Three different communication topologies have been investigated here. In all
cases

S(t) = 0, t ∈ ((k − 1)Tc + 0+, kT c], Tc = 1

fc

,

and for [(k − 1)Tc, (k − 1)T + 0+):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S0(t), Global connectivity; when all inverters have access to others information;
S1, A randomly selected topology;
S2, Neighboring connectivity; when only access to neighbors is possible.
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Fig. 7 Cooperative control
performance under different
frequency rates

where:

S0(t) = [1], S1(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 1
0 0 1 0 1 0 1 0
1 0 0 1 1 1 0 1
0 0 1 1 1 0 0 0
1 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Author's personal copy



44 A. Maknouninejad et al.

Fig. 8 Cooperative control
effect with different
communication topologies

S2(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 8a and 8b show the simulation results with the aforementioned commu-
nication topologies. It is seen that with more communication links, faster responses
are achieved. It is also noticed that if communication is limited to only neighboring
units, convergence rate is decreased. Having connection with some modules rather
far away, also improves the convergence rate.
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Fig. 9 Cooperative control and CSI comparison in regulating the critical point voltage

Figure 9 shows a side by side comparison between cooperative control and con-
ventional current source inverters (CSI). CSI is the conventional grid-tie inverter con-
troller which feeds all the available active power of the inverters to the grid. For the
cooperative control, α

ref
p = 0.6 is chosen and α

ref
q is adaptively controlled to main-

tain the line voltage. This figure illustrates the superiority of cooperative control ver-
sus CSI in regulating line voltage and damping the voltage dips.

Up to t = 4 s, there is no active power available. So CSI inverters become idle
while the cooperative control helps voltage regulation by adaptively controlling the
DG VAR generation. From t = 4 s up to t = 5 s, available active power rises linearly
from 0 up to 1 P.U. This causes voltage increase. Voltage rise by CSI is not controlled
and is not enough to regulate the line voltage. On the other hand, cooperative control
takes care of the voltage boost and regulates the voltage back by adjusting the reactive
power generation accordingly. At t = 8 s, a 300 kVA asynchronous machine starts on
feeder 1 and causes the voltage dip. Cooperative control is shown to be effective in
damping this voltage dip and rather quickly takes the voltage back.

6.2 Interaction between main grid and microgrid: Stackelberg game approach

The game approach proposed in Sect. 5 will be illustrated here by applying it for the
main grid-microgrid case of Fig. 6. Predicted PV generation and loads are provided
in the Sect. A.6. At each hour, based on the real time and predicted generation/load,
the cost functions (13) & (14) are calculated for the different prices and power flows
offered by the main grid and microgrid, respectively. Then, the Stackelberg solution
with the main grid as the leader is found.

It is assumed that the microgrid has 1 P.U storage capacity. Hence, it can supply its
local loads for about one hour in case of main grid disconnection. The initial storage
is 0.5 P.U. Charge and discharge rates are limited to 0.25 P.U. Storage level at the
end of the day (hour 24) should return to its initial value. The storage here makes
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Table 3 Cost function
optimizations Jμ(1 − 24) Jt (1 − 24)

Without game 6.4682 84.0155

With game 10.5716 81.6979

Table 4 The values of power

flow P
ref
μ and α

ref
p

Hour P
ref
μ α

ref
p Hour P

ref
μ α

ref
p

1 −0.4142 −0.5000 13 0.3123 0.4074

2 −0.3822 −0.3333 14 0.3519 0.4402

3 −0.1162 0 15 0.4113 0.5463

4 −0.0602 0 16 −0.0163 0.2352

5 0.0064 0.0481 17 0.0038 0.2446

6 −0.0746 0.0647 18 −0.0483 0.2500

7 0.1910 0.2853 19 −0.0670 0.3333

8 0.2360 0.3656 20 −0.0691 0.5000

9 0.3138 0.4239 21 −0.0490 1.0000

10 0.2494 0.3674 22 −0.2596 −
11 0.3485 0.4074 23 −0.4606 −
12 0.3998 0.4221 24 −0.4142 −1.0000

the difference when the game is played or not. If there is no game in the smartgrid
control, all the available active power is fed to the grid. When the game is played,
to optimize the cost functions, sometimes some power is used to charge the storages
(this power will come either from renewable sources (DGs) or the main grid) and
sometimes storages are discharged. It is expected that during the night time when
there is less power demand, microgrid buys power from the main grid to charge and
during the day time when there is power peak demand, storages are released. As such,
power peak shaving and improved power flow is expected.

As explained earlier in Sect. 5, the game is played between η in (40) and microgrid
power flow Pμ. Table 3 shows the improvements in the cost functions by running
the game for 24 hours. It is seen that the game has reduced the main grid cost Jt

and increased the microgrid profit Jμ. The power flow of the main grid is shown
in Fig. 10a. The dashed line is the power flow without game and the solid one is
the one with game. It is seen that the game has increased the load when originally
was less load and has decreased the load when originally power demand is high.
It is clear that this game strategy not only has helped cost optimization, but also
resulted in peak power shave and improved power flow. For this particular case, the
Nash solution was also considered which showed the same results of the Stackelberg
solution.

Playing a 24-hours game, results in P
ref
μ and α

ref
p as presented in Table 4. Note

that at hour-22 and hour-23, the values of α
ref
p (computed using (9) and (10)) do

not exist because the active power is not available during those hours. Based on the
data in Table 4, Fig. 10b is then presented to graphically show a 24-hour profile
of the power flow P

ref
μ . Positive value of P

ref
μ means that power flows from the
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Fig. 10 The effect of the
proposed game approach on
power flow and peak power
shaving

microgrid to the main grid. It is shown that at night hours and when there is less
power demand, power flow to the main grid has decreased as compared with the time
that there is no game. That is because, at these time periods, when less power prices
are offered by the main grid, the game results in charging the storages so that they
may be released at the peak hours when power prices increase. As an illustration, the
game procedure for hour-1 is shown in the Sect. A.7 and the process is similar for the
next hours.

Equation (25) is used to verify the accuracy of the estimations provided in
Sect. 2.4. The values of β,βavg and β̂avg are presented in Table 5; where βavg and
β̂avg match well except at hour-11, 20 and 22 where there are discrepancies. The
mismatch is less than 15% and as such, the estimation of (18, 19) has an acceptable
accuracy.
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Table 5 The energy prices: βi , β
avg
i

, and β̂
avg
i

Hour βi β
avg
i

β̂
avg
i

Hour βi β
avg
i

β̂
avg
i

1 7.2204 7.9977 7.9977 13 11.6484 10.0497 10.0497

2 6.6757 8.0578 8.0578 14 11.9087 9.8638 9.8638

3 5.9779 8.1569 8.1569 15 13.0408 9.5108 9.5108

4 5.0247 8.3135 8.3135 16 10.0867 9.4388 9.4388

5 4.6663 8.5054 8.5054 17 10.6869 9.2605 9.2605

6 6.3299 8.6263 8.6263 18 9.9557 9.1447 9.1447

7 6.8643 8.7299 8.7299 19 10.9106 8.7915 8.7915

8 8.8114 8.7248 8.7248 20 11.0179 8.2349 8.0783

9 9.2273 8.6913 8.6913 21 8.6638 7.8831 7.8831

10 8.6529 8.6941 8.6941 22 8.4187 7.6153 6.8357

11 8.6000 8.7013 10.1040 23 8.0102 5.6613 5.6613

12 9.1565 10.1829 10.1829 24 5.6613 – –

7 Conclusions

In this paper, a multilevel control strategy for managing a smartgrid is proposed. On
microgrid level, cooperative control is used to organize and have DGs operate and
converge to the same reference utilization ratios. At the medium level control, there
are virtual leaders for active and reactive powers, respectively. The active power vir-
tual leader searches for the appropriate active power utilization ratio, α

ref
p , to se-

cure a desired power flow, P
ref
μ , from microgrid towards the main grid. The reac-

tive power virtual leader tries to adjust the reactive power utilization ratio, α
ref
q , to

regulate the critical point voltage of the microgrid. Meanwhile, the top level con-
trol is the one handling the interaction between the main grid and the microgrids.
The interests of the main grid and microgrids are different. The main grid tries
to minimize its cost while has to secure a demanded power flow from the micro-
grids. It does that by proposing proper energy prices to the microgrids. Microgrids
try to maximize their profits by properly handling their renewable power genera-
tion and storage. This is formulated as a Stackelberg game problem, in which the
main grid as the leader, announces its hourly energy prices and the microgrids as
the followers, have to decide the amount of power to dispatch. It is shown that this
game strategy not only optimizes the performance indices of both sides, but also
improves power flow on the main grid and microgrid in term of peak power shav-
ing.
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Appendix

A.1 Introduction to the game theory

The game models strategic situations, in which an individual’s success in making
choices depends on the choices of others [20]. The modern game theory was first
proposed by von Neuman and Morganstern in 1944. Basically, there are two major
types of game. One is the cooperative game, where players collaborate with each
other to achieve a common goal. The other is the non-cooperative game, which was
developed by Nash in 1950s [21, 22], where each individual pursues its own interest
or objective. For non-cooperative game, most of the results are summarized in [2]. In
the non-cooperative game, if the players make their decisions simultaneously, then
the game is called Nash game, and if the players make their decisions sequentially,
then the game is called Stackelberg. The Stackelberg game was first established by
the German economist, Heinrich von Stackelberg [32], and was extended to dynamic
case by Simaan and Cruz [30, 31].

In a n-player Nash game, the strategy set {γ N
1 , γ N

2 , . . . , γ N
n } for the n players is

called a Nash equilibrium if and only if the following inequalities hold.

J1(γ
N
1 , γ N

2 , . . . , γ N
n ) ≤ J1(γ1, γ

N
2 , . . . , γ N

n ),

J2(γ
N
1 , γ N

2 , . . . , γ N
n ) ≤ J2(γ

N
1 , γ2, . . . , γ

N
n ),

...

Jn(γ
N
1 , γ N

2 , . . . , γ N
n ) ≤ Jn(γ

N
1 , γ N

2 , . . . , γn)

where γ1, γ2, . . . , γn are the decision variables for the n players belonging to
the strategy space �1 × �2 × · · · × �n of all the admissible strategies, and
Ji(γ1, γ2, . . . , γj , . . . , γn) is the objective function or performance index for the ith
player. The philosophy of the Nash equilibrium is that if the players’ strategies form
a Nash equilibrium, then no player intends to unilaterally change its strategy. If it
does so, its objective function or performance index will worsen.

In a 2-player Stackelberg game, the strategy set {γ S
1 , γ S

2 } is a Stackelberg solution
with player 1 as the leader if and only if

γ S
1 = arg min

γ1∈�1
J1(γ1, γ2(γ1)) and γ S

2 = γ2(γ
S
1 ),

where

γ2(γ1) = arg min
γ2∈�2

J2(γ1, γ2).

The philosophy of the Stackelberg solution is that if the leader knows the optimal
response of the follower, then it can play the Stackelberg strategy to optimize its
objective function or performance index.

A.2 Inverter model

The system equation of Fig. 3 is as follow:{
Vabc = L

diabc

dt
+ VGabc

Vabc = KVcabc
,

(41)
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where K is the inverter gain and Vcabc
is the overall controller output which is ap-

plied to the inverter. In power systems, it is customary to take variables in the d − q

reference frame and have calculation in terms of the d − q variables. That is because
sinusoidal variables turn into constants at the d − q frame and this makes it easy to
work, especially makes the application of simple PI controllers viable [3, 12, 36]. Ap-
plying the park transformation on the above equations provides the d − q equivalent
equations [12, 29]:

di

dt
=
[

0 ω

−ω 0

]
i + 1

L
(KVc − VG), (42)

where

i = [id iq ]T , Vc = [Vcd Vcq ]T , VG = [VGd VGq ]T .

Here, i is the output current, Vc is the input voltage command to the inverter, K is the
inverter PWM gain, and VG is the grid voltage at the inverter terminals.

The model (42) indicates that current components id,q are coupled through ωid
and ωiq terms. This coupling can be eliminated by introducing the new variables V ,
as given by:

V = KVc − VG + ωL[iq − iq ]T , (43)

where V = [Vd Vq ]T . Substituting (43) in (42) yields:

di

dt
= 1

L
V

This equation represents decoupled id,q currents. Once the decoupled variables have
been defined as in (43), a PI controller may be applied to control the overall system.
This system block diagram is shown in Fig. 11.

Combining the inverter plant, decoupling section and controller in Fig. 11, inverter
state space dynamic model of (2) is obtained.

Fig. 11 Inverter model block diagram with PI control
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A.3 Proofs of Lemma 1 and Theorem 1

The proof of Lemma 1 is given as follows.

Proof For (i), a square matrix is called a Hurwitz matrix if all its eigenvalues have
strictly negative real parts [15]. Toward that, since A is row-stochastic and con-
nected, the spectral radius ρ(A) is equal to 1. Suppose that the eigenvalues of A

are λ1, . . . , λNDG
. Then, the eigenvalues of (I − A) are

1 − λ1, . . . ,1 − λNDG
.

Hence, the eigenvalues of (I − A) are either zero or have positive real parts, and ma-
trix (I − A) is called a singular M-matrix [27]. According to Corollary 4.33 in [27],
matrix

I − A + D0

is a non-singular M-matrix. Since

I − A + D0 = I − D − D0 + D0 = I − D,

matrix (I − D) is a M-matrix. Therefore, (D − I ) is Hurwitz.
For (ii), since (I − A) is a singular M-matrix, according to Theorem 4.27(c)

in [27],

(I − A + D0)
−1 = (I − D)−1

exists and is non-negative for positive diagonal matrix D0. �

The proof of Theorem 1 is presented as follows:

Proof The equilibrium of the system (30) and (31) is obtained by setting the right
hand side of them to zero, that is, in vector form,

0 = P ref
μ − Pμ(z1, . . . , zNDG

,Xp), (44)

0 = −

⎡
⎢⎢⎢⎣

z1
z2
...

zNDG

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

d10
d20
...

dNDG0

⎤
⎥⎥⎥⎦ z0 +

⎡
⎢⎣

d11 · · · d1NDG

...
. . .

...

dNDG1 · · · dNDGNDG

⎤
⎥⎦

⎡
⎢⎢⎢⎣

z1
z2
...

zNDG

⎤
⎥⎥⎥⎦ . (45)

From (44), it is straight forward to obtain

Pμ(z1, . . . , zNDG
) = P ref

μ ,

which gives the equilibrium of z0 denoted by z∗
0. From (45), if d0 = [d10 d20

· · · dNDG0]T and D = [dij ] ∈ R
NDG×NDG for i, j = 1,2, . . . ,NDG, then (45) can be

expressed as

(−I + D)

⎡
⎢⎢⎢⎣

z1
z2
...

zNDG

⎤
⎥⎥⎥⎦+ d0z0 = 0. (46)

Author's personal copy



52 A. Maknouninejad et al.

Then, based on (27), one can verify the following relationship:

d0 = (I − D)1NDG
, (47)

where 1NDG
is a NDG-by-1 vector with all the elements being equal to 1. Substitut-

ing (47) into (46) yields

(−I + D)

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

z1
z2
...

zNDG

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

z0
z0
...

z0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠= 0 �⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1 = z0
z2 = z0
...

zNDG
= z0.

Therefore, the equilibrium of the system is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z0 = z∗
0

z1 = z∗
0

...

zNDG
= z∗

0.

Near the equilibrium, linearizing the system (44) and (45) yields⎧⎨
⎩

ż0 = −kp

∑NDG

j=1 ej (zj − z∗
0)

żi = kc[−zi + di0z0 +∑NDG

j=1 dij zj ],
(48)

where

ej = ∂Pμ

∂zj

∣∣∣∣
zj =z∗

0

> 0, ∀j = 1,2, . . . ,NDG.

The derivatives at the equilibrium is positive because in the microgrid, Pμ increases
as zj increases. Applying the following coordinate transformations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = z0 − z∗
0

x1 =

⎡
⎢⎢⎢⎣

z1 − z∗
0

z2 − z∗
0

...

zNDG
− z∗

0

⎤
⎥⎥⎥⎦

and denoting τ = kct , the linearized system (48) can be expressed as[ dx0
dτ

dx1
dτ

]
=
[

0 − kp

kc
eT

d0 D − I

][
x0
x1

]
, (49)

where e = [e1 · · · eNDG
]T . Since kp/kc is sufficiently small, the dynamics of x1 is

much faster than that of x0. According to singular perturbation theory [9], if x0 would
be constant, then x1 will be asymptotically stable and converge to

x1 = −(D − I )−1d0x0, (50)

since (D − I ) is Hurwitz from (i) in Lemma 1. Substituting (50) to the dynamics of
x0 in (49) yields

dx0

dτ
= kp

kc

eT (D − I )−1d0x0. (51)
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According to (ii) in Lemma 1, (D − I )−1 is a non-positive matrix. Since kp

kc
, eT , and

d0 are all positive, kp

kc
eT (D − I )−1d0 is negative. Hence, x0 is asymptotically stable

and converge to 0. Therefore, zi → z0 for i = 1,2, . . . ,NDG. �

A.4 Proof of Nash equilibrium

Proof of Theorem 2 is presented as follows.

Proof Consider the following Lyapunov functions

V = 1

2

NDG∑
j=1

z2
j .

Differentiating V yields

V̇ =
NDG∑
j=1

zj żj

=
NDG∑
j=1

[
kczj

(
wj − w∗

j − zj + dj0z0 +
NDG∑
k=1

djkzk

)]

=
NDG∑

j=1,j 
=i

[kczj (wj − w∗
j )] + kczi(wi − w∗

i ) −
NDG∑
j=1

kcz
2
j +

NDG∑
j=1

kcdj0zj z0

+
NDG∑
j=1

[
kczj

(
NDG∑
k=1

djkzk

)]

=
NDG∑

j=1,j 
=i

[kczj (wj − w∗
j )] + kczi(wi − w∗

i ) −
NDG∑
j=1

kcz
2
j +

NDG∑
j=1

kcdj0zj z0

+
NDG∑
j=1

[
kczj

(
NDG∑
k=1

djkzk

)]

+ kc

2
(wi − w∗

i )
2 − kc

2
(wi − w∗

i )
2. (52)

Since

kc

2
(wi − w∗

i )
2 = kc

2
w2

i + kc

2
(w∗

i )
2 − kcwiw

∗
i

= kc

2
w2

i + kc

2
z2
i + kcwizi, (53)

substitute (53) into (52) yields

V̇i =
NDG∑

j=1,j 
=i

[kczj (wj − w∗
j )] + kczi(wi − w∗

i ) −
NDG∑
j=1

kcz
2
j +

NDG∑
j=1

kcdj0zj z0
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+
NDG∑
j=1

[
kczj

(
NDG∑
k=1

djkzk

)]

+ kc

2
(wi − w∗

i )
2 − kc

2
w2

i − kc

2
z2
i − kcwizi

=
NDG∑

j=1,j 
=i

[kczj (wj − w∗
j )] + kc

2
(wi − w∗

i )
2 − kc

2
w2

i − qi(z0, z1, . . . , zNDG
),

where qi is defined in (36). By integrating the above equation over [t0, tf ] and using
(35), we have

Ji = Vi(t0) +
∫ tf

t0

⎡
⎣kc

2
(wi − w∗

i )
2 +

NDG∑
j=1,j 
=i

kczj (wj − w∗
j )

⎤
⎦dt. (54)

Since (54) is applicable for all i = 1,2, . . . ,NDG, we can conclude that

Ji(w
∗
1,w∗

2, . . . ,w∗
i , . . . ,w

∗
NDG

) ≤ Ji(w
∗
1,w∗

2, . . . ,wi, . . . ,w
∗
NDG

)

for all i = 1,2, . . . ,NDG. Therefore, (w∗
1,w∗

2, . . . ,w∗
NDG

) form a Nash equilib-
rium. �

A.5 Search algorithm for Nash equilibrium

Search algorithm for Nash equilibrium is as follows:

1. For each ηi(k, j) for j = 1,2, . . . ,M1, Pμi
(k, l) can be found for some l such that

Jμi
[ηi(k, j),Pμi

(k)] is maximized under Pμi
(k) = Pμi

(k, l).
2. For Pμi

(k, l), a corresponding ηi(k,m) can be found for some m such that
Jt (ηi(k),Pμi

(k, l)) is minimized under ηi(k) = ηi(k,m).
3. If ηi(k, j) = ηi(k,m), then the pair {ηi(k,m),Pμi

(k, l)} is a Nash equilibrium.

Applying the above algorithm to example 1 yields:

1. For ηi(k) = 1, Pμi
(k) = 1 maximizes Jμi

because

Jμi
(1,1) = 10 is greater than Jμi

(1,0.8) = 8.

Then, for Pμi
(k) = 1, ηi(k) = 1.2 minimizes Jt because

Jt (1.2,1) = 6 is less than Jt (1,1) = 9.

However, ηi(k) = 1.2 
= ηi(k) = 1.
2. For ηi(k) = 1.2, Pμi

(k) = 0.8 maximizes Jμi
because

Jμi
(1.2,0.8) = 7 is greater than Jμi

(1.2,1) = 6.

Then, for Pμi
(k) = 0.8, ηi(k) = 1.2 minimizes because

Jt (1.2,0.8) = 5 is less than Jt (1,0.8) = 10.

Since ηi(k) = 1.2 = ηi(k) = 1.2, {ηi(k),Pμi
(k)} = {1.2,1} is the Nash equilib-

rium.
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A.6 Profiles used in the simulation

There are 8 DGs spread across the microgrid on Fig. 6. Usually, solar power of DGs
differ from each other due to variable environmental conditions, such as a passing
cloud or storm. Especially, if the microgrid is geographically expanded, the sun-
shine intense for different DGs will also be different. As such, PV profiles should
account for such non consistencies. Figure 12 provides proposed PV profiles used
in the numerical example. These profiles, reflect the environmental and geographical
differences, which may exist among DGs.

The microgrid case of study of Fig. 6, has five feeders. To account for the different
kinds of possible consumers, different loads have been assumed to be connected to
each feeder as follows and shown in Fig. 13. Each plot in the figure means:

(1) Loads on feeder 1 represent industrial two shift workday.
(2) Loads on feeder 2 are assumed to be of a commercial area.
(3) Loads on feeder 3 represent an active night life area.
(4) Loads on feeders 4 and 5 are assumed to be of small residential areas.

Load profile of the main grid is also shown in Fig. 14.
The per unit cost of the conventional generators of the main grid is shown in

Fig. 15. In this figure, P ∗
G is the optimal operation point of the generators; that is

the load on which they have the lowest cost. Due to the extra required fuel, the price
increases quadratically beyond this point. Below this point also the cost per unit in-
creases, however with a lower rate, due to the constant and permanent expenditures
of generator stations such as human resources, maintenance fees and etc.

A.7 Details of finding game solution for the first hour

Here, the game approach for the first hour is provided to illustrate the game solution
process. For the value of �E, microgrid chooses five values between higher and
lower bounds to play the game. Higher and lower bounds are determined by the facts
that storage cannot be charged beyond 1 P.U or be discharged below 0. Also, |�E| ≤
0.25 P.U, which is the charge and discharge rate limitation. As such, and regarding
the initial storage of 0.5 P.U, the chosen values for the first hour are as follows:

�E(1) = [−0.25 − 0.125 0 0.125 0.25].
For every �E, the microgrid power flow, Pμ, can be calculated using (12) and (23).
As such and according to the PV/Load profiles:

Pμ(1) = [0.0938 − 0.0312 − 0.1562 − 0.2812 − 0.4062]. (55)

To calculate the cost function for the remaining hours, the P
avg
μ should be evalu-

ated using (24) and PV profiles in Fig. 12:

P avg
μ (2 → 24) = [0.0021 0.0076 0.013 0.0184 0.0239].

Then, according to the load profile of Fig. 14, the microgrid offers of Pμ(1) in (55)
and using (38, 39), PG(1) and P

avg
G (2 → 24) are calculated as:

PG(1) = [1.384 1.509 1.634 1.759 1.884],
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Fig. 13 Load profiles of different feeders
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Fig. 14 Main grid load profile

Fig. 15 Conventional generation cost per unit

P
avg
G (2 − 24) = [2.3816 2.3762 2.3708 2.3653 2.3599].

The price, β(1), that the main grid offers to the microgrid is calculated using (40). The
default value of η = 1. To get the best possible price to offer, η is perturbed around
the default value. The following five values of η are played against the microgrid
proposed Pμ:

η(1) = [0.5 0.75 1 1.25 1.5].
To calculate βavg(2 − 23), P

avg
G (2 − 23) is substituted into (40).

Moreover, a(1) and aavg(2 − 23) are calculated from Fig. 15 for the PG(1) and
P

avg
G (2 − 24), respectively. As such, (18, 19) are written as follows for the first hour:

Jμ(1) = β(1)Pμ(1) + 23βavg(2 − 23)P avg
μ (2 − 23),

Jt (1) = a(1)PG(1) + β(1)Pμ(1) + 23{aavg(2 − 23)P
avg
G (2 − 23)
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Table 6 Jμ cost function game table

Jμ(1) Pμ(1)

0.0858 −0.0392 −0.1642 −0.2892 −0.4142

η(1) 0.5 3.0126 3.2084 3.3487 3.4336 3.4629

0.75 2.9479 3.2417 3.4522 3.5794 3.6234

1 2.8833 3.2750 3.5556 3.7253 3.7839

1.25 2.8187 3.3083 3.6591 3.8712 3.9445

1.5 2.7541 3.3416 3.7626 4.0170 4.1050

Table 7 Jt cost function game table

Jt (1) Pμ(1)

0.0858 −0.0392 −0.1642 −0.2892 −0.4142

η(1) 0.5 59.1290 59.2822 59.3825 59.4315 59.4309

0.75 59.0644 59.3155 59.4860 59.5774 59.5914

1 58.9998 59.3488 59.5894 59.7233 59.7519

1.25 58.9352 59.3821 59.6929 59.8691 59.9125

1.5 58.8705 59.4154 59.7963 60.0150 60.0730

+ βavg(2 − 23)P avg
μ (2 − 23)}.

Therefore, the game matrix will be found as in Tables 6, 7 for the first hour. The
Stackelberg solution for these matrices with the main grid as the leader yields η = 0.5
and Pμ = −0.4142 as the solution. The same process is used for the remaining hours.
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