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a b s t r a c t

In directed network, algebraic connectivity is defined as the second smallest eigenvalue of graph
Laplacian, and it captures the most conservative estimate of convergence rate and synchronicity of
networked systems. In this paper, distributed estimation of algebraic connectivity of directed and
connected graphs is studied using a decentralized power iteration scheme. Specifically, the proposed
scheme is introduced in discrete time domain in order to take advantage of the discretized nature of
information flow among networked systems and it shows that, with the knowledge of the first left
eigenvector associated with trivial eigenvalue of graph Laplacian, distributed estimation of algebraic
connectivity becomes possible. Moreover, it is revealed that the proposed estimation scheme still
performs in estimating the complex eigenvalues. Simulation results demonstrate the effectiveness of the
proposed scheme.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Because of its emerging potential in networked control
systems, distributed estimation of network connectivity became
an attractive topic in the past decade [1]. Common challenge
in this venue is that each system estimates the global criteria
of the overall network using only the local measurements and
information received from its connected peers. Such global criteria
could be eigenvalues and its associated eigenvectors, or most
recently the first left eigenvector (corresponding to eigenvalue 0 of
graph Laplacian). Among them, the most prominent and essential
one is the second smallest eigenvalue of graph Laplacian, also
known as algebraic connectivity, which captures the synchronicity
and convergence rate of networked systems [2,3]. Hence, it shall
be both theoretical interesting and practically useful if algebraic
connectivity can be known explicitly and locally in the absence of
global information.

In the event that network is either undirected or directed
but balanced, algebraic connectivity is defined as the second
smallest eigenvalue of graph Laplacian (i.e., Fiedler value [4]).
Since analytical solution to Fiedler value is known [3,5], numerical
solution can thus be readily applied to estimate or improve its
value. For instance, a decentralized orthogonal iteration approach
is proposed in [6] to estimate the leading k eigenvectors, but
this approach is not scalable and also requires a centralized
initialization, similar work on this topic can be found in [7];
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another breakthrough worth noting is using the Fast Fourier
Transform (FFT) [8] by constructing distributed oscillators whose
states oscillate at frequencies corresponding to the eigenvalues
of graph Laplacian, however FFT is not appropriate for real-
time implementation nor for handling switching topologies. The
arguably most effective schemes in estimating Fiedler value
are [9] and [10]. Specifically, a decentralized power iteration
approach is introduced in [9] to estimate components of the
Fiedler eigenvector and then the Fiedler value in a continuous-
time fashion, but the proposed estimation scheme requires global
initialization and cannot handle switching topologies. In [10],
power of adjacency matrix are used to calculate the upper and
lower boundary of algebraic connectivity. In terms of improving
Fiedler value or algebraic connectivity, a centralized semi-definite
programming (SDP) solver is proposed in [11] to maximize Fiedler
value directly; and a similar approach can be found in [12], where
relay locations are selected to optimize the connectivity. As an
extension, a decentralized supergradient algorithm is proposed in
[13], but this requires the a priori knowledge of Fiedler eigenvector
and communication overhead during each iteration. Components
of distance-dependent graph Laplacian are optimized in [14] by
driving mobile robots to appropriate locations, and algebraic
connectivity has been maximized as a result.

However, it should bepointed out that all of the aforementioned
results on distributed estimation and control are restricted
to undirected or directed but balanced network. For directed
networks, the most notable work is focused on distributed
estimation of the first left eigenvector and its applications in
improving network convergence [15–17]. To be more precise, a
supervisory node with global information of network topology is
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introduced in [15] to improve network convergence by making
time derivatives of cooperative control Lyapunov functions more
negative; extensions of this approach can be found in [16,17],
where network performance is enhanced distributively with local
estimation of the first left eigenvector, consensus vector, and
consequently the cooperative control Lyapunov function. To the
best of our knowledge, little is available on distributed estimation
of algebraic connectivity of directed network.

In this paper, algebraic connectivity of directed graph is es-
timated using a decentralized power iteration scheme, whose
effectiveness has already been verified in calculating eigenstruc-
ture [9,18]. It is shown that, with local knowledge of the first
left eigenvector and affine transformation, algebraic connectivity
of directed network can be estimated distributively. It is demon-
strated that the proposed scheme overcomes the inherent short-
comings associated with power iteration. That is, despite outputs
of power iteration always being real, it is applicable in estimating
complex eigenvalues. This paper is organized as follows. In Sec-
tion 2, preliminary results of graph theory and the relevant math-
ematical results on the first left eigenvector are summarized for
directed and switching networks. In Section 3, estimation of alge-
braic connectivity of a digraph is formulated and themain findings
of this paper are presented. Section 4 focuses upon the proof of the
main theorem. More specifically, in Section 4.1, properties of the
affine transformation are studied and its relation with respect to
algebraic connectivity is explicitly found. Then, in Section 4.2, the
proof of main theorem is carried out for digraphs with simple and
complex eigenvalues, and effectiveness of the proposed scheme is
verified by numerical examples. In Section 5, conclusion of the un-
derlying problem is reached.

2. Preliminaries on algebraic graph theory

In this paper, we consider a digraph D = (V, E), where V =

{1, 2, . . . , n} and E denote the sets of vertices/nodes and directed
edges, respectively. Unless otherwise specified, vertex j is said to
be adjacent to vertex i if there exists a directed edge (j, i) ∈ E
with i being tail of the edge and j being the head. Analogously,
neighborhood set Ni ⊆ V of vertex i is {k ∈ V | (k, i) ∈ E}, the
set of all vertices that are adjacent to vertex i. Hence, cardinality
of Ni represents the numbers of connected neighbor(s) of vertex i.
If j ∈ Ni, i ∈ Nj holds for undirected graph, but is not necessarily
valid for a digraph.

Without loss of any generality, the adjacency matrix A(D)
considered in this paper is weighted and normalized as

[A(D)]ik =


aik > 0 if (k, i) ∈ E
1 −


k≠i

aik if k = i

0 otherwise.

(1)

That is, A(D) is designed to be nonnegative and row-stochastic,
and we assume that all the non-zero and hence positive weighting
factors are both uniformly lower and upper bounded, i.e., aij ∈

[a 1], that is 0 < a ≤ aij ≤ 1, ∀j ∈ Ni. As such, the degree
matrix for the underlying graph becomes trivial (i.e., identity), and
its corresponding weighted Laplacian is

L(D) , In − A(D). (2)

Moreover, digraph D is said to be connected if it has one globally
reachable node, or equivalently A(D) is lower triangularly
complete; digraph D is called strongly connected if it contains a
directed path (could be multi-hop) from i to k and a directed path
from k to i for every pair of vertices i, k or equivalently A(D) is
irreducible [19,20].
According to (2), L(D) always has zero row sum, and if
symmetric, is also positive semi-definite. It follows that λ1 = 0 is
the smallest eigenvalue of L with right eigenvector ν1 , 1

√
n1n ,

[1,...,1]T
√
n and left eigenvector γ1, and all other eigenvalues have

positive real parts if digraph is at least connected. Suppose the
smallest non-zero eigenvalue of L is denoted by λ2(L), and [20,
21]

• λ2(L) is of multiplicity 1 if L(D) is at least connected;
• λ2(L) is real if digraph D is rooted out-branching1;
• if λ2(L) is complex, then there exists another eigenvalue λ3(L)

be its conjugate.

In addition to λ2, recent advances also prompt γ1 to describe
network connectivity of a digraph. Specifically, connectedness or
network social standings of a digraph is preserved by γ1 and its
components as summarized in the following lemma, whose proof
can be found in [16,17] and hence omitted here.

Lemma 1. Consider digraph D and its adjacency matrix A(D),
suppose γ1 is the first left eigenvector of A(D) and γ1,i be its ith
component. That is, ATγ1 = γ1. Then,

• γ1 is unique and positive if digraph D is strongly connected;
• γ1 is unique and nonnegative if digraphD is connected, and γ1,i >

0 if system i belongs to the leader group,2 and γ1,i = 0 if system i
is otherwise. �

In this paper, we attempt to find a distributive scheme to
estimate λ2 for directed and switching networks with local
knowledge of γ1, and as implied by (2), this can be accomplished
by estimating the second largest eigenvalue of adjacency matrix
A, and for the sake of notation brevity, λ2 is used to denote this
particular eigenvalue hereafter, unless otherwise specified.

3. Problem formulation

In this section, algebraic connectivity of digraph under switch-
ing topologies is formulated and its distributed estimation is mo-
tivated. Moreover, the main findings of this paper is presented
and its proof will be carried out rigorously in the next section.
In what follows, we define the time sequences {tk : k ∈ ℵ} for
ℵ = {0, 1, . . . ,∞}, and without loss of any generality, digraph D
is assumed to be time invariant during each interval [tk, tk+1), and
its corresponding A or L is piecewise-constant. That is, D(tk) =

D(t−k+1). However, D(t−k+1) = D(t+k+1) does not necessarily hold
due to the existence of switching topologies. The following as-
sumptions on connectivity and eigenstructure of digraph captured
by the underlying adjacency matrix A(D) are assumed:

Assumption 1. The digraph is assumed to be strongly connected
at each interval. Moreover, let λ1, λ2, . . . , λn be the eigenvalues of
A(D), sorted in order of decreasing magnitude. That is, 1 = λ1 >
|λ2| ≥ · · · ≥ |λn|. �

Assumption 2. Time sequence {tk : k ∈ ℵ} has the property that
(tk+1 − tk) ≥ T for some known constant T > 0.3

1 A digraph is rooted out-branching if it contains no directed cycle and there
exists a vertex ι such that for any other vertex κ ∈ E, there is a directed path from
ι to κ .
2 System i is said to be a leader if all edges initiated at system i are tails. In contrast,

system i is said to be a follower if all edges are heads.
3 If (tk+1 − tk) ≥ T does not hold most of the time, there is little chance for any

online estimation scheme to work.
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In addition, the unity4 right and left eigenvectors associated
with eigenvalue λi are defined as νi and γi, respectively. That is,

Aνi = λiνi, and ATγi = λiγi. (3)

Assumption 1 implies that A(D) is irreducible and eigenvalue
λ1 = 1 is of multiplicity 15 at each interval, and γ1 is unique
and γ1 > 0 [17], while Assumption 2 ensures switching
frequency is bounded by 1/T such that distributed estimation
of connectivity is plausible. However, it should be pointed out
that, unlike undirected or directed but balanced networks, being
strongly connected does not guarantee λ2 be real in a digraph,
rather it ensures the real part of λ2 be positive, but no restrictions
can be made on its complex part, which makes estimation of λ2
even more challenging.

As is well established, λ2(L) is commonly known as Fiedler
value or algebraic connectivity if the underlying graph is undi-
rected [4], and it is the most cited and prominent factor when de-
scribing network connectivity. To be more precise, convergence
rate as well as algebraic connectivity is determined by λ2(L) in
this case [22], while, for digraphs, determination of convergence
rate is rather involved, it depends on not only λ2(L), but also
the current state and the state space to which it belongs [17].
Nonetheless, λ2(L) of a digraph captures the essence of network
performance and represents the most conservative estimate of
convergence rate, as well as synchronicity of the overall network
[2]. In other words, though λ2(L) of digraph cannot be used
directly to quantitatively characterize network performance, its
value, if obtained, can be treated as a criterion to network perfor-
mance and as an inspiration to motivate higher-level control, in
order to enhance convergence rate of networked systems. There-
fore, a distributive knowledge of λ2 is not only necessary, but also
intuitive in studying directed networks.

While the expression of algebraic connectivity is unique for
undirected networks, however, its corresponding form in digraph
varies due to the complexity of its eigenstructure. In what follows,
definition of algebraic connectivity in undirected network is
generalized to a digraph, and [2]:

Definition 1. For a digraph with adjacency matrix A(D), let λ2
is its second largest eigenvalue. Then, algebraic connectivity α of
digraph D is the real number defined by

α =


(1 − |λ2| cos θ2)2 + |λ2|

2 sin2 θ2 (4)

where |.| is the absolute value operator, and θ2 is the phase angle
of λ2(A).

The above definition is reduced to Fiedler’s version of algebraic
connectivity when restricted to undirected and connected graphs.
As is well known [18], power iteration is an effective and widely
applied approach in calculating dominant (in terms of magnitude)
eigenvalue of any particular matrix. Specifically, power iteration
estimates eigenvector associated with the dominant eigenvalue
at first, then the underlying eigenvalue can be calculated
consequently as a result. Indeed, it does not require performing
matrix decomposition at each system nor is it necessary, thus
making its distributive implementation possible. For instance,
suppose λ′ and ν ′ are dominant eigenvalues (with strictly greater
magnitude compared to other eigenvalues) and its associated

4 In this paper, a vector x ∈ ℜ
n is said to be unity if ∥x∥ = 1 and unit-sum if

xT1n = 1, where ∥.∥ represents Euclidean norm.
5 In the case that multiplicity of λ1 is η and η > 1, network is consisted of η

subgraphs, the proposed distributed estimation scheme can be readily applied in
each subgraph provided it is strongly connected.
eigenvectors of matrix D. It follows that, ν ′ can be estimated by
power iteration and at the kth step,

ν̂ ′(k) =
Dν̂ ′(k − 1)

∥Dν̂ ′(k − 1)∥
(5)

where ν̂ ′(k) is estimate of ν ′ at the kth iteration, and ν̂ ′(0) is the
initial vector with ν̂ ′(0) · ν ′

≠ 0.
Apparently that power iteration is a recursive procedure with

a strict requirement on initial conditions, and a normalization
(i.e., deflation) is inevitable at each step in order to make sure ν̂ ′

converge to a finite vector. Therefore,what prevents its distributive
implementation is the normalization, and as will be shown later,
this can be resolved with proper design. Another fact worth noting
is that its outputs are always real, which precludes its application
in estimating the complex eigenvector/eigenvalue. In principle,
should L(D) or A(D) be symmetric, λ2 is real and positive
if the underlying undirected graph is connected, it follows that
power iteration fits intuitively in estimatingλ2 of undirected graph
successful examples can be found in [9,10].

In this paper, we focus on application of power iteration (5)
to estimate λ2(A) of a digraph. It should be pointed out that
such application is not trivial because of possible complex eigen-
structure of A(D) and admittance of switching topologies. Once
successful, convergence rate of overall network becomes available
at each system, such that correlative behavior can be carried
out distributively to improve network performance. Moreover,
rather than designing a continuous-time observer, estimation in
this paper will be carried out in the discretized-time domain by
taking advantage of the discrete nature of information flow among
networked systems as well as the knowledge of the first left
eigenvector γ1. The following lemma summarizes existing results
on distributed estimation of γ1, its proof is omitted here since it
combines results in [17,20].

Lemma 2. Consider adjacency matrix defined in (1) and its first left
eigenvector γ1 ∈ ℜ

n,6 satisfying ATγ1 = γ1 and γ T
1 1n = 1. Then,

• If A is non-irreducible, and there exists a permutation matrix P,
such that

PAPT
=


E11 0
E21 E22


where E11 is irreducible, systems of block E11 form a leader
group, and if E21 ≠ 0 and E21 is irreducible (otherwise, the
same argument can recursively be applied to block E22), systems
corresponding to block E22 form a follower group.

• γ1 can be estimated distributively at system i by

γ̂
(i)
1 (ℓ + 1) =

n
k=1

aikγ̂
(k)
1 (ℓ), γ̂

(i)
1 (0) = ei (6)

where γ̂
(i)
1 is estimated γ1 at system i, ei ∈ ℜ

n is a vector of zeros
except its ith entry being 1, and γ̂

(i)
1 (ℓ) is updated according to, at

interval [tk, tk+1),

γ̂
(i)
1 (ℓ) = γ̂

(i)
1 (tk + ℓT ∗

s ), ℓ = 0, 1, . . . ,N(ℓ) (7)

where 0 < T ∗
s ≪ 1 is the sample period of observer (6), and N(ℓ)

will be specified later. �

6 In this paper, the unit-sum first left eigenvector and unity first left eigenvector
are assumed to be interchangeable for the sake of notation brevity.
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In essence, observer (6) allows each system have local
knowledge of γ1, which, as will be revealed later, is critically
important in distributed estimation ofλ2 in a digraph.Without loss
of any generality, γ1 and its various forms are assumed to be known
locally hereafter.

In what follows, λ2 and ν2 are defined of the form

λ2 , |λ2| (cos θ2 + j sin θ2) (8)

ν2 ,

ν2,1
...

ν2,n

 ,

|ν2,1|(cosφ1 + j sinφ1)
...

|ν2,n|(cosφn + j sinφn)

 (9)

where φi is phase angle of ν2,i, and j =
√

−1 is the imaginary unit,
apparently that λ2 and ν2 are real if θ2 = φi = 0.

Moreover, suppose ν̂2(0) is the initial condition for power
iteration, and it can be decomposed along the eigenspace [23]

ν̂2(0) = c1ν1 + c2ν2 + · · · + cnνn (10)

where ci are gains to be specified, and if ν2 is complex and of the
form (9), then

c2 = |c| (cos θc + j sin θc) (11)

where |c| and θc are absolute value and phase angle of c2, respec-
tively.

In this paper, a consensus observer as well as a decentralized
power iteration scheme will be introduced to estimate λ2
and consequently α at each system. The main results are
summarized into the following theorem, its proof will be carried
out successively in the next section.

Theorem 1. Consider the adjacency matrix defined in (1) satisfy-
ing Assumptions 1 and 2, and λ2 is the second largest eigenvalue of
A(D) defined in (8). Then, algebraic connectivity of the underlying
digraph can be estimated distributively at each system. Specifically, at
system i

α(i)
=


1 − |λ

(i)
2 (k)| cos θ̂2(k)

2
+ |λ

(i)
2 (k)|2 sin2 θ̂2(k) (12)

with

|λ
(i)
2 (k)| =

cos

(k − 1)θ̂2 + φ̂i + θ̂c


cos(kθ̂2 + φ̂i + θ̂c)

ν̂2,i(k + 1)
|ν̂2,i(k)|

∥Υ −1ω̂i(k)∥ (13)

and

ν̂2,i(k + 1)

=
1

∥Υ −1ω̂i(k)∥


n

k=1

aik(k)ν̂2,k(k) − γ1,i(k)ω̂T
i (k)1n


(14)

and ν̂2,i(k) is updated according to, at interval [tk, tk+1)

ν̂2,i(k) = ν̂2,i(tk + kTs), k = 0, 1, . . . ,M(k)

where Ts is the sample period of observer (14), M(k) = (tk+1 −

tk)/Ts − mod((tk+1 − tk)/Ts), and

• α(i) is the estimated α at system i
• λ

(i)
2 is the estimated λ2 at system i,

• θ̂2 is the estimated phase angle of λ2,
• ν̂2,i is the estimated ith entry of ν̂2,
• φ̂i is the estimated phase angle of ν2,i,
• θ̂c is the estimated phase angle of c2,
• Υ , diag[γ1]
• ω̂i ∈ ℜ

n is an observer established at system i, and

ω̂i(ℓ + 1) =

n
k=1

aik(ℓ)ω̂k(ℓ) (15)

and ω̂i(ℓ) is updated according to, at interval t ∈ [tk + kTs tk + (k +

1)Ts]

ω̂i(ℓ) = ω̂i(tk + kTs + ℓT ∗

s ), and ω̂i(0) = ν̂2,i(k)ei (16)

where ei is the unity vector defined in (6), and ℓ = 0, 1, . . . ,N(ℓ)
with N(ℓ) = Ts/T ∗

s − mod(Ts/T ∗
s ). �

It follows that, in order to estimate algebraic connectivity
distributively, each system requires local estimation of not only the
magnitude of λ2, but also its phase angle as well as phase angles
of ν2. Note that, phase angle calculation is numerical and will be
introduced in the next section. As a special case, should λ2 be real,
Theorem 1 is reduced to the following corollary:

Corollary 1. Consider the same set up as of Theorem 1 and under
the assumption that λ2 is real. Then, algebraic connectivity can be
estimated distributively at each system. That is, at system i

α(i)
= 1 − ∥Υ −1ω̂i(k)∥ (17)

where ω̂i is the same observer as defined in (15).

In principle, the proposed scheme consists of two observers,
observer (14) is essentially a decentralized and discrete power
iteration scheme, dedicated to approximating eigenvector ν2,
while system (15) is a consensus observer, designed to propagate
current estimates of ν̂2 over the entire network. Both observers
utilize the same topological protocol, yet evolve at a different pace.
More specifically, convergence of system (15) should be achieved
within a time period of Ts such that estimates of (14) can be
broadcast accurately to all the systems, provided that digraph is
strongly connected. That is, Ts ≫ T ∗

s . To be more precise, a
conservative estimate of how small T ∗

s should be to satisfy the
underlying restriction will be provided in the next section, as well
as performance of both observers.

4. Proof of the main theorem

In this section, proof of Theorem 1 is carried out. Special
attention will be paid to decentralized implementation of power
iteration and its application in estimating complex eigenvalues.
As indicated in (5), classical power iteration dictates that
a normalization/deflation should be performed at each step
with explicit knowledge of the current estimates. However, in
networked control systems, such recursive deflations can not
be executed locally nor is it possible. On the other hand, for
undirected network, due to the fact that its first left eigenvector
is trivial (i.e., γ1 = 1/

√
n), deflation of power iteration can be

fulfilled with a continuous observer [9], however, this solution
is no longer applicable in directed network simply because γ1
is no longer trivial. In this section, we propose a modified
power iteration approach, whose deflation is performed without
the current estimates, rather estimates of the last step is used
instead. As will be shown later, this one-step-back power iteration
scheme is permissible and its distributive implementation is
possible with the propose consensus-based observer (15). Note
that, (15) is designed to propagate information over the entire
network, and it could be considered as an auxiliary observer
operated distributively under digraph D , does not require any
physical motion, thus its convergence can be made arbitrarily fast.
Performances of consensus observer (15) are summarized into the
following lemma; its proof follows immediately.
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Lemma 3. Consider nonnegative and row-stochastic adjacency ma-
trix A(D) defined in (1) satisfying Assumption 1, and suppose ω̂i
is the observer established at system i and it evolves according
to (15) and is updated by (16). Then, at interval t ∈ [tk, tk+1)

lim
ℓ→∞

ω̂i(ℓ) = Υ ν̂2(ℓ)

can be ensured at system i. Moreover, convergence of (15) can be
made arbitrarily fast with sufficiently small sampling period T ∗

s , and a
conservative estimate of T ∗

s can be chosen by

T ∗

s ≤
a(n−1)

4(n − 1)
Ts (18)

where a is defined in (1).

Proof. According to (15), the closed-loop system for observer ω̂i isω̂1
...

ω̂n


  

ω̂

(ℓ + 1) = A(k) ⊗ In

ω̂1
...

ω̂n

 (ℓ)

where ⊗ denotes Kronecker product.
Since [17,20],

lim
ℓ→∞

Aℓ
= 1n ⊗ γ T

1 .

Hence

lim
ℓ→∞

ω̂(ℓ) =

1n ⊗ γ T

1


⊗ In


ω̂(0). (19)

Since ω̂i(0) = ν̂2,i(k)ei for any i, yields

lim
ℓ→∞

ω̂i(ℓ) =

γ1,1
. . .

γ1,n


  

Υ

ν̂2(k).

It follows from Assumption 1 that γ1 > 0, as such Υ −1ω̂i = ν̂2(k).
Moreover, in order for observer (15) to converge, N(ℓ) should
satisfy [17]

N(ℓ) ≥
4

1 − max |λj(A)|
1

n−1

 , ∀j ≠ 1

and since [24,25]

|λj(A)| ≤
1 − a
1 + a

for any eigenvalue λj ≠ 1. Hence, one conservative estimate of T ∗
s

can be chosen by (18), which concludes the proof of Lemma 3. �

The proposed consensus observer works intuitively to broad-
cast last step estimate ν̂2,i to the entire network. Shall network
be strongly connected at each interval, each system has explicit
knowledge of last estimates ν̂2 such that ∥ν̂2(k)∥ can be performed
and deflation of power iteration becomes possible. Moreover, with
help of (18), convergence of observers (15) and (14) is effectively
separated. Consequently, the closed-loop system of observer (14)
becomes

ν̂2(k + 1) =
1

∥ν̂2(k)∥


A(k) − γ̂1(k)γ̂ T

1 (k)

ν̂2(k). (20)

It is obvious that system (20) is a discretized power iteration
approach, dedicated to estimating eigenvector associated with the
dominant eigenvalue of matrix


A(k) − γ1(k)γ T

1 (k)

, which, as
Table 1
Eigenstructures after affine transformations.

A AL1 AR1

λ Left Right λ Left Right λ Left Right

1 γ1 1/
√
n 0 γ1 ν ′

1 0 γ ′

1 1/
√
n

λ2 γ2 ν2 λ2 γ ′

2 ν2 λ2 γ2 ν ′

2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

λn γn νn λn γ ′
n νn λn γn ν ′

n

will be shown later, preserves the eigenstructure of matrix A(k),
thus makes estimation of λ2 possible.

4.1. Invariance of eigenstructure under affine transformation

In this section, affine transformation of adjacency matrix A
is studied under both right and left eigenvectors. It is revealed
that eigenstructure of adjacency matrix A is preserved if affine
transformation is performed with left eigenvector and such
property will sever as the basis of distributed estimation of
algebraic connectivity.

The results of affine transformation are summarized in the
following lemma:

Lemma 4. Consider adjacency matrix A ∈ ℜ
n×n defined in (1) satis-

fying Assumption 1. Define the affine transformations:

AL1 = A − γ1γ
T
1 , AR1 = A − ν1ν

T
1 . (21)

Then, matrices AL1 and AR1 have the properties of eigenstructure
invariance as shown in Table 1, where left and right are specifications
of the eigenvector.
Proof. It follows from ATγ1 = 0 and ∥γ1∥ = 1 that

AT
L1γ1 = γ1 − γ T

1 γ1γ1 = 0,

which implies that the pair of 0 and γ1 is one of the eigenvalues
and left-eigenvector pairs for AL1 .

It follows from (3), that

γ1γ
T
1 νi =

1
λi

γ1γ
T
1 Aνi =

1
λi

γ1γ
T
1 νi,

or equivalently,
1 −

1
λi


γ1γ

T
1 νi = 0.

Since |λi| > 0, we know that, for i = 2, . . . , n,

γ1γ
T
1 νi = 0. (22)

Consequently,

AL1νi = Aλi = λiνi, i = 2, . . . , n,

which implies that λi and νi are eigenvalue and right-eigenvector,
respectively, for AL1 .

The proof of Lemma 3 is completed by applying the same
argument to AR1 . �

Clearly that λ2 is the dominant eigenvalue of AL1 and AR1 .
Hence, with the local knowledge of γ1, AL1 fits intuitively in the
underlying problem.Moreover, the proposed affine transformation
can be extended further with the inclusion of eigenvalues λj,
∀j > 1. In particular λk+1 is the dominant eigenvalue of matrix
ALk = [A−

k
i=1 λiγiγ

T
i ] andARk = [A−

k
i=1 λiνiν

T
i ]. Therefore,

estimation of eigenvalue λi(A) can be accomplished provided
left eigenvectors up to γi−1 are known explicitly. In other words,
estimation of left eigenvector(s) should be performed before any
decentralized power iteration approach can be applied to estimate
any eigenvalue.
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4.2. Proof of Theorem 1

We start the proof by noticing that, under Assumption 1, AL1
can be decomposed into the following form

AL1 =

ν ′

1 ν2 . . . νn
  

z


0

λ2
. . .

λn


  

J


ν ′

1 ν2 . . . νn
−1  

z−1

. (23)

Therefore, system (20) can be rewritten to

ν̂2(k + 1) =
Ak

L1
ν̂2(0)

∥Ak−1
L1

ν̂2(0)∥
(24)

where ν̂2(0) is the initial condition defined in (10) with ν1 replaced
by ν ′

1.
Consequently, due to the fact that Ak

L1
= zJk z−1, yields

ν̂2(k + 1) =
(zJk z−1)(c1ν ′

1 + c2ν2 + · · · + cnνn)

∥(zJk−1 z−1)(c1ν ′

1 + c2ν2 + · · · + cnνn)∥
. (25)

Since λ2 is defined in (8), it follows that λ3 should be its conjugate
eigenvalue. In addition, c2 and c3 in (10) should be conjugate to
each other as well. Hence, according to (8) and (9), results

λ3 = |λ2|(cos θ2 − j sin θ2),

ν3 =

|ν2,1|(cosφ1 − j sinφ1)
...

|ν2,n|(cosφn − j sinφn)

 (26)

and since c2 is defined by (11), yields

c3 = |c| (cos θc − j sin θc) .

As such, the power of λ2 or λ3 can be written in the form

λk
2 = |λ2|

k
[cos(kθ2) + j sin(kθ2)]

λk
3 = |λ2|

k
[cos(kθ2) − j sin(kθ2)].

Consequently,

lim
k→∞

1
λk
2
zJk z−1 νi =


03 if i ≠ 2, 3
ν2 if i = 2

λ3

λ2

k

ν3 if i = 3
(27)

where 03 is a vector of zeros.
As a result, (25) becomes

lim
k→∞

ν̂2(k + 1) =
c2λk

2ν2 + c3λk
3ν3

∥c2λk−1
2 ν2 + c3λk−1

3 ν3∥
. (28)

In addition, let ϕi = θc + φi, yielding

c2λk
2ν2 + c3λk

3ν3 = 2|c||λ2|
k

|ν2,1| cos(kθ2 + ϕ1)
...

|ν2,n| cos(kθ2 + ϕn)

 .

It is again verified that, albeit the expected value, output of
power iteration (i.e., ν̂2(k)) is always real and its absolute value
is time varying and changes periodically according to the phase
angles. Before proceeding further, consider the special case where
λ2 is real and matrix A(k) satisfies Assumption 1. As such, (27)
becomes

lim
k→∞

1
λk
2
zJk z−1 νi =


03 if i ≠ 2
ν2 if i = 2 (29)
and (28) is reduced to

lim
k→∞

ν̂2(k + 1) = λ2


λ2

|λ2|

k c2
|c2|

ν2

∥ν2∥
. (30)

That is,

lim
k→∞

ν̂2(k + 1) = ±λ2ν2. (31)

Consequently,

lim
k→∞

∥ν̂2(k)∥ = |λ2|. (32)

Therefore, under the proposed conjecture, Euclidean norm of
output of power iteration is |λ2| instead of unity. With local
knowledge of ω̂i(ℓ), α(i) can be calculated by (17), which verifies
the Corollary 1. In this case, an alternative approach to calculate λ2
is, if ν̂2,i(k) ≠ 0

λ
(i)
2 (k) =

n
k=1

aikν̂2,k(k)

ν̂2,i(k)
.

As implied by (32), the proposed scheme still performs when
ν̂T
2 (0)ν2 = 0, which implies that performance of discretized

power iteration is independent of initial conditions, and such
independence is attributed to the nature of one-step-back power
iteration. Ifλ2 be complex, substituting (9) and (26) into (28), yields

lim
k→∞

ν̂2(k + 1) =
|λ2|

n
ℓ=1

ν2
2,ℓ cos2 [(k − 1)θ2 + ϕℓ]

×

|ν2,1| cos(kθ2 + ϕ1)
...

|ν2,n| cos(kθ2 + ϕn)

 . (33)

That is,

ν̂2,i(k + 1)
ν̂2,ℓ(k + 1)

=

 ν2,i

ν2,ℓ

 cos(kθ2 + ϕi)

cos(kθ2 + ϕℓ)
. (34)

Consequently,

ν̂2,i(k + 1)ν̂2,ℓ(k)
ν̂2,ℓ(k + 1)ν̂2,i(k)

=
cos(kθ2 + ϕi) cos [cos(k − 1)θ2 + ϕℓ]
cos(kθ2 + ϕℓ) cos [(k − 1)θ2 + ϕi]

. (35)

Moreover, (33) can be rewritten as, at system i

lim
k→∞

ν̂2(k + 1) =
|λ2| cos(kθ2 + ϕi)

cos [(k − 1)θ2 + ϕi]


n

ℓ=1

 v2,ℓ
v2,i

2 cos2[(k−1)θ2+ϕℓ]
cos2[(k−1)θ2+ϕi]

×



ν2,1

ν2,i

 cos(kθ2 + ϕ1)

cos(kθ2 + ϕi)
...ν2,n

ν2,i

 cos(kθ2 + ϕn)

cos(kθ2 + ϕi)

 . (36)

Therefore, |λ2| can be calculated at system i by

|λ
(i)
2 (k)| =

cos [(k − 1)θ2 + ϕi] ν̂2,i(k + 1)
cos(kθ2 + ϕi)

×

 n
j=1

v2,j

v2,i

2 cos2

(k − 1)θ2 + ϕj


cos2 [(k − 1)θ2 + ϕi]

. (37)
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Substituting (34) into the above relation, yields

|λ
(i)
2 (k)| =

cos [(k − 1)θ2 + ϕi] ν̂2,i(k + 1)
cos(kθ2 + ϕi)


n

ℓ=1
ν̂2
2,ℓ(k)

|ν̂2,i(k)|
. (38)

Hence, after invoking Lemma 2, (38) can be further simplified to
(13). In addition, if λ2 and ν2 are real (i.e., θ2 = ϕi = 0) and as
k → ∞, (13) can be further reduced to (31). This demonstrates
the consistency of the proposed scheme in estimating both real
and complex eigenvalues, and that Corollary 1 is a special case of
Theorem 1.

Therefore, additional calculation of phase angle is not only
necessary but also imperative in order to estimate the complex
eigenvalue. It follows from (35) that the value as well as tendency
of phase angles are preserved by estimates of (20) at each step.
Hence, should each system have memories of previous estimates,
a numerical approach can be proposed to solve the following
equations: suppose ℓ ∈ Ni

f1(θ2, ϕi, ϕℓ) =
ν̂2,i(k + 1)ν̂2,ℓ(k)
ν̂2,j(k + 1)ν̂2,i(k)

−
cos(kθ2 + ϕi) cos [(k − 1)θ2 + ϕℓ]
cos(kθ2 + ϕℓ) cos [(k − 1)θ2 + ϕi]

f2(θ2, ϕi, ϕℓ) =
ν̂2,i(k)ν̂2,ℓ(k − 1)
ν̂2,ℓ(k)ν̂2,i(k − 1)

−
cos [(k − 1)θ2 + ϕi] cos [(k − 2)θ2 + ϕℓ]
cos [(k − 1)θ2 + ϕℓ] cos [(k − 2)θ2 + ϕi]

f3(θ2, ϕi, ϕℓ) =
ν̂2,i(k − 1)ν̂2,ℓ(k − 2)
ν̂2,ℓ(k − 1)ν̂2,i(k − 2)

−
cos [(k − 2)θ2 + ϕi] cos [(k − 3)θ2 + ϕℓ]
cos [(k − 2)θ2 + ϕℓ] cos [(k − 3)θ2 + ϕi]

.

(39)

As such, θ2, ϕi and ϕℓ can be calculated numerically by solving
f1 = f2 = f3 = 0. It should be pointed out that the existence and
uniqueness of a solution to (39) can be proved trivially by noting
that all functions are smooth and its corresponding Jacobianmatrix
is not singular [23]. Note that choice of system ℓ should satisfy that
∆ , ν̂2,ℓ(k)ν̂2,ℓ(k− 1)ν̂2,ℓ(k− 2) ≠ 0. Should ∆ = 0 occur for any
ℓ ∈ Ni, calculation of (39) will be halted and estimates of previous
iterations will be applied until next initiation.

In the event that ν̂T
2 (0)(ν2 + ν3) = 0 or equivalently

ν̂T
2 (0)Re(ν2) = 0 (i.e., ϕi = π/2, ∀i), (34) is rendered to

ν̂2,i(k + 1)
ν̂2,ℓ(k + 1)

=
|ν2,i|

|ν2,ℓ|

sin(kθ2)
sin(kθ2)

. (40)

In this case, (39) can still be applied in finding θ2, with which
|λ

(i)
2 | can be calculated by (13), which again implies that the

proposed estimation scheme works for any initial condition.
Hence, with local knowledge of |λ(i)

2 | and θ̂2, algebraic connectivity
can be known explicitly and locally at each system. The proof of
Theorem 1 is completed by noticing the above argument. �

Specifically, implementation of theproposed estimation scheme
is fully decentralized, and it requires an exchange of a compos-
ite vector xi = [ω̂i ν̂2,i(k) ν̂2,i(k − 1) ν̂2,i(k + 1)]T of dimension
(n + 3) at each system, which indicates that the proposed scheme
performs at the expense of communication overheads. Also, accu-
rate estimation demands distributive calculation of θ2 and ϕi; this
can be accommodated with onboard DSP chip. In other words, the
proposed estimation scheme captures a tradeoff between commu-
nication and possible computational overhead and connectivity
self-awareness. If γ1 and |λ2| are known locally, each system will
not only have explicit knowledge of topological structure or social
standing of the entire network, but also the criterion of conver-
gence rate of overall network, which potentially enables and mo-
tivates high-level corrective control strategies carried out at each
system, to improve network performance.

Remark 1. In the case that λ2 is not unique, or in other words, the
multiplicity of λ2 is larger than 1, it can be easily verified that (28)
still applies, consequently it is safe to conclude that the proposed
scheme still performs in this case.

Remark 2. As stated in Assumption 1, the proposed scheme only
works if A is irreducible, any less restrictive topology will pre-
clude the convergence of consensus observer (15). However, the
proposed estimation scheme is still applicable if matrix A is non-
irreducible. To be more precise, as suggested in Lemma 1, alge-
braic connectivity of irreducible blocks E11 and E22 are independent
when A is lower triangularly incomplete. As such, the proposed
estimation scheme can be applied straightforwardly at each irre-
ducible block. Moreover, if A is non-irreducible and lower trian-
gularly complete or the corresponding digraph has a spinning tree,
each system can distributively identify its own social standing as
well as its connected neighbors’ based on γ1. Then, systems of both
leader block E11 and follower block E21 can perform the same esti-
mation procedure such that algebraic connectivity of each respec-
tive block is known locally. In addition, |λ2(E11)| can be broadcast
to systems of E22 such that systems in block E22 know explicitly the
convergence rate of the overall network.

The performance of the proposed scheme is illustrated in the
following simple example:

Example 1. Given the following adjacency matrices

A1 =

0.5 0 0.5
0 0.5 0.5
0.5 0.2 0.3


, A2 =

0.3 0 0.7
0.5 0.5 0
0.2 0.2 0.6


Note that λ2(A1) = 0.5, λ2(A2) = 0.2 + 0.2236j. Therefore,

α(A1) = 0.5, α(A2) = 0.83.

Simulation is initiated with ν̂2(0) = [0.1 0.8 1.5]T , and the sample
period is chosen as Ts = 0.1 s and T ∗

s = 0.01 s, respectively. And,
Eq. (39) is solved by ‘‘fsolve’’ inMatlab/Simulink. Estimation of α of
Ai, ∀i are provided in Fig. 1. It is clear that all estimations converge
to the expected value with acceptable accuracy, albeit the initial
deviation, and the convergence is prompt.

5. Conclusion

This paper investigates distributed estimation of algebraic
connectivity of a digraph. The proposed scheme is based on a
decentralized power iteration and affine transformation of the
first left eigenvector. It is shown that, with knowledge of the first
left eigenvector and the proposed consensus observer, distributed
estimation of algebraic connectivity is possible, even when eigen-
structure is complex. Indeed, the proposed scheme, together with
numerical calculation, is also applicable when the eigenvalue (to
be estimated) is complex.
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