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Abstract

In this paper, a new cascaded feedback linearization problem is formulated and a set of conditions on the cascaded feedback linearizability
are established for a class of two-input affine nonlinear systems. The proposed cascaded feedback linearization method enlarges the classes
of nonlinear systems which can be dealt with using the feedback linearization technique. In particular, the proposed design can be applied to
address the feedback stabilization problem for a few classes of nonlinear systems which have uncontrollable linearization and do not satisfy
the standard feedback linearization conditions. As an illustrative application, the proposed cascade feedback linearization concept is used to
solve the feedback stabilization problem of nonholonomic systems within the framework of continuously differentiable state feedback control.
Simulation results are provided to illustrate the proposed method.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Feedback linearization technique has been one of the most
important tools in the study of nonlinear control systems. Dif-
ferent from the Jacobian linearization of a nonlinear system,
the purpose of feedback linearization is to transform a given
nonlinear system into a linear system via feedback control and
states transformations. The exact state feedback linearization
problem was pioneered and elegantly solved in [13,9,8,6], and
sufficient and necessary conditions for exact feedback lineariza-
tion of large classes of affine nonlinear systems were estab-
lished and documented in texts [7,17]. To enlarge the class of
nonlinear systems which can be handled using the differential
geometric approach, the dynamic feedback linearization prob-
lem was initiated and addressed in [4] by introducing dynamic
compensators and searching for the corresponding state and
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control transformations in the augmented state spaces. Suffi-
cient conditions for dynamic feedback linearization were given
in [5] and necessary conditions were established in [26]. Partial
feedback linearization problem was formulated and studied in
[15,25] by identifying the largest feedback linearizable subsys-
tems, where conditions were given to transform a portion of the
nonlinear system into a linear part. When the relative degree of
the considered nonlinear system is less than system dimension,
feedback linearization based nonlinear control can also render
the transformed system consisting of a nonlinear zero dynamics
plus a linear controllable system (the so-called normal form)
[7]. The difference between the normal form and the partial
feedback linearizable form is that the nonlinear zero dynamics
in the normal form is only driven by the states of the linear
controllable system while the nonlinear part in partial feedback
linearizable system can contain control inputs. More recently,
nonregular feedback linearization problem was defined in [27],
where the purpose is to transform the nonlinear system into the
linear controllable form with reduced control input dimensions.

On the other hand, to enhance the robustness and take
advantage of the beneficial nonlinearities in the design of
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nonlinear controls, the Lyapunov direct method has also been
extensively explored for nonlinear control [11], such as recur-
sive backstepping design for nonlinear systems in the strict-
feedback form [14], and nonlinear robust design for nonlinear
systems with unmatched and/or generalized matched uncer-
tainties [20,21,23,19,22]. While Lyapunov direct method has
been proven to be effective for solving nonlinear control prob-
lem, the difficulty usually comes from the construction of a
suitable Lyapunov function. In particular, for some classes of
inherently nonlinear systems, such as nonlinear systems with
uncontrollable linearization [2] and with topological obstruc-
tions to smooth (even continuous) state feedback stabilization
[3], neither standard feedback linearization technique nor Lya-
punov direct method can be straightforwardly applied for con-
trol design. In such a case, the discontinuous and/or time-
varying feedback controls have to be sought. A typical such
class of nonlinear systems are nonholonomic systems [12],
which are not feedback linearizable and their feedback stabi-
lizing control design is challenging due to Brockett’s necessary
condition [3].

In this paper, to deal with the feedback control problem for
a class of more general nonlinear systems which are not exact
or dynamic feedback linearizable, we propose a new cascaded
feedback linearization approach by adopting the merits of both
feedback linearization technique and Lyapunov direct method.
The novelty of the proposed cascaded feedback linearization
concept lies in that by properly introducing exogenous dynam-
ics and defining the state and input transformations, the nonlin-
ear systems can be transformed into the cascaded linear con-
trollable subsystems with nonlinear coupling terms. Then, upon
the appropriate design of the controls for the cascaded linear
nominal systems, the Lyapunov direct method can be invoked
to conclude the asymptotic stability of the overall closed-loop
system. It is shown that under certain conditions on the choice
of exogenous dynamics, the feedback linearization technique
reduce to the standard (dynamic) feedback linearization or is
equivalent to partial feedback linearization. In addition, the
flexibility in the choice of exogenous dynamics provides extra
benefits for the control design using the cascaded feedback lin-
earization technique particularly for nonlinear systems which
do not satisfy Brockett’s necessary condition. In this paper, as
an illustrative application, the cascaded feedback linearization
method is applied in the feedback stabilization of nonholo-
nomic chained systems [16]. In contrast to the existing control
designs for nonholonomic systems [1,10,24,18], the proposed
cascaded feedback linearization control design is simple and
also renders smooth control.

The paper is organized as follows. In Section 2, the cascaded
feedback linearization problem is formulated. Section 3 pro-
vides a set of conditions for solvability of the cascaded feed-
back linearization problem of a class of two-input nonlinear
systems, and its stabilizing control design is explored in Section
4. In Section 5, the choice of exogenous dynamics is discussed
and illustrated through examples. Section 6 presents an appli-
cation to the stabilization of nonholonomic systems, and sim-
ulation results are given in Section 7. Section 8 concludes the
paper.

2. Problem formulation

Consider the class of multi-input affine nonlinear systems
given by

ẋ = f (x) +
m∑

i=1

gi(x)ui = f (x) + G(x)u, (1)

where x ∈ Rn is the state, u ∈ Rm is the input, f (0) = 0,
m < n, the entries of f (x) and G(x) are analytic functions of
x, and rank G(x) = m for all x ∈ Rn.

Let pair {A, B} (or lower-dimensional sub-pairs {Ai, Bi})
denote the linear time-invariant controllable canonical form of
proper dimension. Then, the standard feedback linearization
problem is to find a state transformation z = �(x) ∈ Rn and a
control mapping u = �(x) + �(x)v with v ∈ Rm such that the
resulting transformed system is given by ż = Az + Bv. Con-
ditions under which nonlinear system (1) is feedback lineariz-
able can be found in texts such as [7,17]. For those systems
that are not exact feedback linearizable, the problem of partial
feedback linearization was studied in [15] to transform system
into a partially linear controllable form as

ż1 = Az1 + Bv, ż2 = �(z1, z2) + �(z1, z2)v,

where z1 ∈ Rp and z2 ∈ Rn−p. As a more general extension to
exact feedback linearization, the dynamic feedback lineariza-
tion problem was studied in [5,26,7] by using the following
dynamic compensator:

ẇ = a(x, w) + b(x, w)v, u = �(x, w) + �(x, w)v,

with a(0, 0) = 0 and �(0, 0) = 0. Clearly, feedback lineariza-
tion is closely related to controllability and, when applicable,
renders simple solution to the stabilization problem.

However, many systems of practical importance are not
(exact or dynamic) feedback linearizable even they are partial
feedback linearizable, for instance, nonholonomic systems.
Nonetheless, for nonlinear systems in the partial feedback
linearizable form (the conditions were obtained for the con-
struction of the largest feedback lineariable subsystem [15]),
it remains in general to be difficult to solve the control design
problem from the obtained partial feedback linearizable sys-
tem due to the complexity involved with nonlinear subsystem.
In this paper, we introduce a new concept of cascaded feed-
back linearization as defined below, which can be viewed as
a special case of general partial feedback linearization form
but with the characteristic of the cascaded structure of linear
controllable subsystems coupled by nonlinear dynamics. The
advantage of cascaded feedback linearization is that, with
the proposed cascaded structure, the feedback control design
can be readily performed using Lyapunov direct method. It
is shown in this paper that a few classes of these systems
(including nonholonomic systems) are cascaded feedback lin-
earizable, and in particular for a class of two-input nonlinear
systems the conditions of cascaded feedback linearization are
explicitly given.
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Definition 1. Nonlinear system (1) is cascaded feedback lin-
earizable if there exist

• exogenous dynamics ẇ=q(w) ∈ Rp whose state w(t) stays
in a bounded set �w for all t ∈ [t0, ∞),

• state transformation z
�=[zT

1 , . . . , zT
m]T = [�T

1 (x, w), . . . ,

�T
m(x, w)]T �= �(x, w) ∈ Rn (with zi ∈ Rni ),

• control mappings ui = �i (x, w, u1, . . . , ui−1) + �i (x, w)vi

with vi = vi(zi) ∈ R

such that, for all x ∈ Rn and all w ∈ �w,

(i) entries of �i (·), �i (·) and �i (·) are analytic, and the trans-
formation z = �(x, w) : Rn+p → Rn has an inverse
x = �−1(z, w) in the sense that �−1(�(x, w), w) = x,

(ii) under the state transformation and control mapping, system
(1) is mapped into

ż1 = A1z1 + B1v1, (2)

żi = Aizi + Bivi +
∑
j<i

Zij (zi−1, zi, w)zj , 1 < i�m,

(3)

where pairs {Ai, Bi} are of Brunovsky controllable form,

zi−1
�=[zT

1 , . . . , zT
i−1]T, and Zij (·) are locally uniformly

bounded functions in terms of their arguments and sat-
isfy the growth condition of ‖Zij (zi−1, zi, w)‖��i1 +
�i2‖zi−1‖�i3 +�i4‖zi‖ for some constants �i1, �i2, �i4 �0
and �i3 > 0.

Clearly, if w=0 and if Zij (·)=0 for all 1 < i�m, cascaded
feedback linearizable systems reduce to (dynamic) feedback
linearizable systems. If w = 0 but Zij (·) �= 0, cascaded feed-
back linearizable systems are equivalent to the partial feedback
linearizable systems with the linear part in (2) and the nonlin-
ear part in (3). Generally speaking, the cascaded feedback lin-
earization concept proposed in this paper is related to but dif-
ferent from the partial feedback linearization method studied
in [15]. Instead of seeking a set of feedback invariant control-
lability indices for the largest feedback linearizable subsystem,
we constructively introduce exogenous dynamics which pro-
vide some kind of flexibility in rendering the system into the
cascaded structure, from which the globally stabilizing control
in the original state space can be designed and it is possible that
the continuous/smooth feedback control design can be done for
nonlinear systems which fail to satisfy the Brockett’s necessary
condition. The method is also different from the dynamic feed-
back linearization technique because the introduced exogenous
dynamics are not taken as additional new states and feedback
linearization is still sought in the original state space instead of
doing that in the augmented state space. Hence, the concept of
cascaded feedback linearization enlarges the classes of systems
that can be handled using the standard feedback linearization
methodology. The following examples are used to illustrate the
basic idea of cascaded feedback linearization. Specifically, Ex-
ample 1 shows that the cascaded feedback linearization is pos-

sible without introducing control augmentation or exogenous
dynamics, and Example 2 illustrates a more sophisticated case
in which the cascaded feedback linearization is realized with
the aid of exogenous dynamics.

Example 1. Consider the system:

ẋ1 = u1, ẋ2 = x4 + x3u1, ẋ3 = x3 + x4, ẋ4 = u2, (4)

which is neither static feedback linearizable nor globally dy-
namic feedback linearizable. It is apparent that the system is
cascaded feedback linearizable to

ż1 = v1,

ż2 =
⎡
⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎦ z2 +

⎡
⎢⎣

0

0

1

⎤
⎥⎦ v2 +

⎡
⎢⎣

0 −1 0

0 0 0

0 0 0

⎤
⎥⎦ z2v1

under the following transformations:

z1 = x1, v1 = u1, z2 = [x2 − x3, −x3, −x3 − x4]T,

v2 = −u2 − x3 − x4.

Example 2. Consider the system:

ẋ1 = u1, ẋ2 = x3x1 + x3u1, ẋ3 = u2. (5)

It follows that f =[0, x3x1, 0]T, g1 =[1, x3, 0]T, and g2 =
[0, 0, 1]T. By checking that adg1g2 = [0, −1, 0]T /∈ span
{g1, g2}, we know that system (5) is not feedback linearizable.
One can also check that system (5) is not dynamic feedback
linearizable. This can be seen by simply introducing new state
x4 = u1 and adding one integrator ẋ4 = v1, and then checking
the feedback linearization condition under the new vector fields
given by

f = [x4, x3x1 + x3x4, 0, 0]T, g1 = [0, 0, 0, 1]T,

g2 = [0, 0, 1, 0]T,

from which the constructed distribution {g1, g2, adf g1, adf g2}
does not have a constant rank. Nonetheless, system (5) is cas-
caded feedback linearizable. This can be seen by introducing
exogenous dynamics ẇ = −w/2 with w(0) > 0 as well as the
following transformations1 :

z1 = �1(x, w) = x1 + w

w
, v1 = 2u1 − w

2w
,

z2 = [z21 z22 ]T = �2(x, w) =
[ x2

w
x3

]T
, v2 = u2.

It is obvious that bounded set for w(t) is �w = (0, w(0)]
in which the above transformations are analytical and have

1 In the case that there are round-off errors or measurement noises
in the values of xi and w, the calculation of the transformations need to
be properly saturated in a small neighborhood around the origin in order
to ensure boundedness of z, in which case the state x can be made to be
uniformly ultimately bounded with respect to a small neighborhood around
the origin. Such a stability result is the best achievable under any control in
the presence of noises and/or round-off errors.
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inverse as

x1 = �−1
1 (z, w) = wz1 − w, u1 = wv1 − 0.5w,

[x2 x3 ]T = �−1
2 (z, w) = [wz21 z22 ]T, u2 = v2.

It is straightforward to verify that, under the state transformation
and control mapping, the system becomes

ż1 = z1

2
+ v1,

ż2 =
[1/2 −1/2

0 0

]
z2 +

[
0

1

]
v2 +

[
0 1

0 0

]
z2(z1 + v1),

which are in the form of (2) and (3).
It should be noted that inverse state transformation has the

property of �−1(0, 0) = 0 and that, even though w → 0 as
t → ∞, the existence of transformation �(x, w) at w = 0 (i.e.,
either �(x, 0) or �(0, 0)) is not required in Definition 1. This
is because 0 /∈ �w (thus no singularity problem for t ∈ [t0, ∞))
and, under an appropriately designed control, z → 0 as t → ∞.
In other words, the existence of �(0, 0) is achieved by control
design in the sense that x is forced to converge faster than that
of w.

In the next section, the conditions of cascaded feedback lin-
earization for a class of two-input nonlinear systems are devel-
oped. Upon satisfying these conditions, control design can be
proceeded in a manner similar to that for feedback linearizable
systems.

3. Conditions of cascaded feedback linearization

To avoid unnecessary complexity, let us consider the follow-
ing class of two-input nonlinear systems:

ẋ = f (x) + g1(x)u1 + g2(x)u2. (6)

The following theorem presents a set of conditions on cascaded
feedback linearizability of a two-input nonlinear system given
by (6). In the proof of the theorem, the following generalized
Lie derivative with respect to a sub-vector is used for notational
convenience: given a scalar function �1(	) and a vector field
�2(	) ∈ Rn′

with 	′ ∈ Rn′
and 	′ ⊆ 	,

L0
	′

,�2
�1

�= �1,

L	′
,�2

�1
�= ��1

�	′ �2, . . . ,L
k

	′
,�2

�1
�=

�Lk−1
	′

,�2
�1

�	′ �2, k�1.

Theorem 1. For two-input affine nonlinear system (6), suppose
that there exist an integer n1 and exogenous dynamics ẇ=q(w)

with w ∈ �w for t ∈ [t0, ∞) such that: for all x ∈ Rn and for
all w ∈ �w,

(i) the matrix [G10,G11, . . . ,G1,n1−1] has rank n1;
(ii) the distribution D(x, w) = span{G10,G11, . . . ,G1,n1−2,

G20, G21, . . . ,G2,n1−1} is involutive,

where

G10(x, w)
�= g1,

G1k(x, w)
�= �G1,k−1

�x
f − �f

�x
G1,k−1 + �G1,k−1

�w
q, k�1,

G20(x, w)
�= g2,

G2k(x, w)
�= �G2,k−1

�x
f − �f

�x
G2,k−1 + �G2,k−1

�w
q, k�1.

Then, system (6) is cascaded feedback linearizable if and only if
there exist diffeomorphic state transformations 
1 =
1(x, w) ∈
Rn1 and 
2 = 
2(x, w) ∈ Rn2 with n1 + n2 = n such that the
following conditions are satisfied: for all x ∈ Rn and for all
w ∈ �w,

(iii) the matrix [G′
20,G

′
21, . . . ,G

′
2,n2−1] has rank n2;

(iv) the distribution D′(
1, 
2, w) = span{G′
20,G

′
21, . . . ,

G′
2,n2−2} is involutive,

where

G′
20

�= �
2

�x
g2,

G′
2k

�= �G′
2,k−1

�
2
f ′

2 − �f ′
2

�
2
G′

2,k−1 + �G′
2,k−1

�w
q, k�1,

where f ′
2 = (�
2/�x)f + (�
2/�w)q −(�
2/�x)g1(L

n1

x,f
h1/

Lx,g1L
n1−1
x,f

h1) with x = [xT, wT]T and f = [f T, qT]T.

Proof. It follows from conditions (i) and (ii) and from Frobe-
nius theorem that there exists a sufficiently smooth scalar func-
tion h1(x, w) such that

Lx,G10h1 = Lx,G11h1 = · · · = Lx,G1,n1−2h1 = 0

and

Lx,G20h1 = Lx,G21h1 = · · · = Lx,G2,n1−1h1 = 0.

Taking time derivative of h1(x, w) along the trajectory of sys-
tem (6) yields

�h1(x, w)

�x
[G10,G11, . . . ,G1,n1−1] = [0, . . . , 0,Lx,G1,n1−1h1].

Since rank of the matrix [G10 G11 · · · G1,n1−1] is n1 and
since �h1(x, w)/�x �= 0 (otherwise, function h1(·) is indepen-
dent of x and thus trivial), we have Lx,G1,n1−1h1 �= 0.

On the other hand, using the following extended version of
Jacobi identity:

Lx,Gi1h1=Lx,fLx,Gi0h1+Lw,qLx,Gi0h1−Lx,Gi0Lx,f h1

− Lx,Gi0Lw,qh1, i = 1, 2,
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it is easy to verify that

Lx,g1h1 = Lx,g1Lx,f h1 = · · · = Lx,g1L
n1−2
x,f

h1 = 0,

Lx,g1L
n1−1
x,f

h1 �= 0

and that

Lx,g2h1 = Lx,g2Lx,f h1 = · · · = Lx,g2L
n1−1
x,f

h1 = 0.

Thus, a partial state transformation 
1 =[
11, 
12, . . . , 
1n1
]T ∈

Rn1 with


11 = h1, 
12 = Lx,f h1, . . . , 
1n1
= Ln1−1

x,f
h1

and control mapping

v1 = Ln1

x,f
h1 + Lx,g1L

n1−1
x,f

h1u1

can be calculated, and their dynamics are described by


̇1 = A1
1 + B1v1, (7)

where the pair {A1, B1} is of Brunovsky canonical form. Upon
having 
1, it is always possible to find the remaining part of the
state transformation, 
2, such that there is a diffeomorphism
between x and [
T

1 , 
T
2 ]T and that the remaining dynamics be-

come


̇2=f ′
2(
1, 
2, w)+g′

21(
1, 
2, w)v1+G′
20(
1, 
2, w)u2, (8)

where g′
21 = (1/Lx,g1L

n1−1
x,f

h1)(�
2/�x)g1.

In what follows, cascaded feedback linearizability of system
(6) is investigated. Note that subsystem (7) is of the form (2) by
setting z1 = 
1. Subsystem (8) is feedback linearizable into (3)
if and only if a sufficiently smooth function h2(
1, 
2, w) ex-
ists such that, under coordinate transformation z2(
1, 
2, w) =
[z21, . . . , z2n2 ]T ∈ Rn2 ,

z21 = h2, z2i = L
2,f
′
2
z2,i−1, i = 2, . . . , n2,

ż2i = �z2i

�
2

̇2 + �z2i

�w
ẇ + �z2i

�
1

̇1

=L
2,f
′
2
z2i + L
2,G

′
20

z2iu2 + L
2,g
′
21

z2iv1

+ �z2i

�
1
(A1
1 + B1v1)

= z2,i+1 + L
2,g
′
21

z2iv1 + �z2i

�
1
(A1
1 + B1v1),

i = 1, . . . , n2 − 1,

ż2n2 = L
2,f
′
2
z2n2 + L
2,G

′
20

z2n2u2 + L
2,g
′
21

z2nv1

+ �z2n2

�
1
(A1
1 + B1v1), (9)

that is, if and only if the following set of conditions are met:

L
2,G
′
20

h2 = 0,

L
2,G
′
20
L
2,f

′
2
h2 = 0, . . . ,L
2,G

′
20
Ln2−2


2,f
′
2
h2 = 0,

L
2,G
′
20
Ln2−1


2,f
′
2
h2 �= 0, (10)

where 
2 = [
T
2 , wT]T and f

′
2 = [(f ′

2)
T, qT]T. Therefore, we

only need to show that existence of function h2(·) satisfying
(10) is equivalent to conditions (iii) and (iv).

Sufficiency: Suppose that conditions (iii) and (iv) are satis-
fied. By Frobenius theorem, there exists function h2(·) such
that

L
2,G
′
20

h2 = L
2,G
′
21

h2 = · · · = L
2,G
′
2,n2−2

h2 = 0.

Furthermore, it follows that

�h2

�
2
[G′

20,G
′
21, . . . ,G

′
2,n2−1] = [0, . . . , 0,L
2,G

′
2,n2−1

h2].

Since rank of the matrix [G′
20 G′

21 · · · G′
2,n2−1] is n2 and

since �h2/�
2 �= 0, we have L
2,G2,n2−1h2 �= 0. Thus, using
the following extended version of Jacobi identity

L
2,G
′
21

h2 = L
2,f
′
2
L
2,G

′
20

h2 + Lw,qL
2,G
′
20

h2

− L
2,G
′
20
L
2,f

′
2
h2 − L
2,G

′
20
Lw,qh2,

all the expressions in (10) can be verified.
Necessity: Suppose that function h2(·) satisfies the expres-

sions in (10). We first prove the following result by an induction
in terms of j:

L
2,G
′
2j
Lk


2,f
′
2
h2

=
{

0 0�j + k < n2 − 1,

(−1)jL
2,G
′
20
Ln2−1


2,f
′
2
h2 �= 0 j + k = n2 − 1.

(11)

Note first that, at j = 0 and for k = 1, . . . , n2 − 1, the result in
(11) is implied by the expressions in (10). Next, assume that
(11) hold for some j �0 in order to show (11) also holds for
j + 1. At j + 1, it follows from the Jacobi identity that, for any
real-valued function � and integer j �0,

L
2,G
′
2,j+1

� = L
2,f
′
2
L
2,G

′
2j

� + Lw,qL
2,G
′
2j

�

− L
2,G
′
2j
L
2,f

′
2
� − L
2,G

′
2j
Lw,q�

and

L
2,G
′
2,j+1

Lk


2,f
′
2
h2 = L
2,f

′
2
L
2,G

′
2j
Lk


2,f
′
2
h2

+ Lw,qL
2,G
′
2j
Lk


2,f
′
2
h2

− L
2,G
′
2j
L
2,f

′
2
Lk


2,f
′
2
h2

− L
2,G
′
2j
Lw,qL

k


2,f
′
2
h2. (12)
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Since result (11) is assumed to hold at j, it follows from (12)
that

L
2,G
′
2,j+1

Lk


2,f
′
2
h2

= −L
2,G
′
2j
L
2,f

′
2
Lk


2,f
′
2
h2 − L
2,G

′
2j
Lw,qL

k


2,f
′
2
h2

= −L
2,G
′
2j
Lk+1


2,f
′
2
h2

=
{

0, 0�j+k+1<n2−1,

(−1)j+1L
2,G
′
20
Ln2−1


2,f
′
2
h2 �= 0, j + k + 1 = n2 − 1,

(13)

which is the same result (11) but at j + 1.
To show the necessity, it follows that⎡

⎢⎢⎢⎢⎢⎢⎣

�h2

�
2
...

�Ln2−1


2,f
′
2
h2

�
2

⎤
⎥⎥⎥⎥⎥⎥⎦

[G′
20 · · · G′

2,n2−1]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L
2,G
′
20

h2 L
2,G
′
21

h2 · · · · · · L
2,G
′
2,n2−1

h2

L
2,G
′
20
L
2,f

′
2
h2 L
2,G

′
2,n2−2

L
2,f
′
2
h2 ∗

...
...

L
2,G
′
20
Ln2−1


2,f
′
2
h2 ∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 �0

0 �1 ∗
...

...

0 �n2−2 ∗
�n2−1 ∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

in which the entries

�i = L
2,G
′
2,(n2−1−i)

Li


2,f
′
2
h2

are all nonzero according to (11). Hence, matrix [G′
20,G

′
21, . . . ,

G′
2,n2−1] has rank n2, which implies that distribution D′ is

nonsingular and has dimension n2 − 1. On the other hand, it
follows that

�h2

�
2
[G′

20,G
′
21, . . . ,G

′
2,n2−2] = 0,

which implies that D′ is completely integrable and, by Frobe-
nius theorem, D′ is involutive. �

Theorem 1 states the conditions of cascaded feedback lin-
earizability for the class of two-input affine nonlinear systems,
and it can be extended to multi-input systems. As shown in
the proof, the key steps are to solve for scalar functions h1(·)
and h2(·) from a set of first-order partial differential equations,

which is generally a difficult task. Fortunately, for many prac-
tical physical systems, it is often straightforward to find func-
tions h1(·) and h2(·). Moreover, the introduction of exogenous
dynamics w adds flexibility to finding the solutions, which will
be discussed in Section 5.

Next, we consider the case that system (6) is already of the
cascaded structure as given by

ẋ1 = f1(x1) + g11(x1)u1, (15)

ẋ2 = f2(x) + g21(x)u1 + g22(x)u2, (16)

where x1∈Rn1 and x2∈Rn2 . It follows that x=[xT
1 , xT

2 ]T∈Rn,

f = [f T
1 , f T

2 ]T, g1 = [gT
11, g

T
21]T, and g2 = [0, gT

22]T. Should

its cascaded structure render feedback linearization of two in-
dividual subsystems, the following theorem can be concluded.
Unlike those in Theorem 1, the conditions in Theorem 2 are suf-
ficient but may not be necessary since the state transformations
in this case are limited to z1 = �1(x1, w) and z2 = �2(x2, w)

(instead of the more general expressions of z1 = �1(x, w) and
z2 =�2(x, w) used in Theorem 1). Proof of Theorem 2 is anal-
ogous to that of Theorem 1.

Theorem 2. Consider the two-input affine nonlinear system in
(15) and (16) and suppose that exogenous dynamics ẇ = q(w)

with w ∈ �w for t ∈ [t0, ∞) such that the following conditions
are satisfied: for all x ∈ Rn and for all w ∈ �w,

(i) the matrix [G10, G11, . . . , G1,n1−1] has rank n1;
(ii) the distributionD1(x1, w)=span{G10, G11, . . . , G1,n1−2}

is involutive;
(iii) the matrix [G20, G21, . . . , G2,n2−1] has rank n2;
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(iv) the distribution D2(z1, x2, w) = span{G20, G21, . . . ,

G2,n2−2} is involutive,

then, there exist smooth scalar functions h1(x1, w) and h2
(z1, x1, w) such that (15) and (16) are cascaded feed-
back linearizable with the following transformations: z1 =
[z11, . . . , z1n1 ]T ∈ Rn1 , z2 = [z21, . . . , z2n2 ]T ∈ Rn2 ,

z11 = h1(x1, w), z1i = Li−1
x1,f 1

h1, i = 2, . . . , n1 − 1,

u1 =
v1 − Ln1

x1,f 1
h1

Lx1,g11L
n1−1
x1,f 1

h1

z21 = h2(z1, x2, w), z2i = Li−1
x2,f 2

h2, i = 2, . . . , n2 − 1,

u2 =
v2 − Ln2

x2,f 2
h2

Lx2,g22L
n2−1
x2,f 2

h2
,

where

G10(x1)
�= g11,

G1k(x1)
�= �G1,k−1

�x1
f1 − �f1

�x1
G1,k−1 + �G1,k−1

�w
q, k�1,

G20(z1, x2)
�= g22,

G2k(z1, x2)
�= �G2,k−1

�x2
f ′

2 − �f ′
2

�x2
G2,k−1 + �G2,k−1

�w
q, k�1,

with x1 = [xT
1 , wT]T, x2 = [xT

2 , wT]T, f 1 = [f T
1 , qT]T,

f 2
�=[(f ′

2)
T, qT]T, and f ′

2 = f2 − g21
Lx1,f 1

z1n1
Lx1,g11z1n1

.

4. Stabilization of cascaded feedback linearizable systems

It is shown in this section that, under the proposed controls,
cascaded feedback linearized systems are exponentially con-
vergent and so are their original systems.

Theorem 3. Suppose that system (6) is cascaded feedback lin-
earizable, that asymptotically stable exogenous dynamics ẇ =
q(w) with w ∈ �w for t ∈ [t0, ∞) have been found, and that,
under transformations z=�(x, w) and u=�(x, w)+�(x, w)v,
the system has been transformed into the following canonical
form: for all x ∈ Rn and for all w ∈ �w,

ż1 = A1z1 + B1v1, (17)

ż2 = A2z2 + B2v2 + Z(z1, z2, w)z1, (18)

where nonlinear term Z(z1, z2, w) is bounded as

‖Z(z1, z2, w)‖��1 + �2‖z1‖�3 + �4‖z2‖ (19)

for constants �1, �2, �4 �0 and �3 > 0. Then, under the control

v1 = −r−1
1 BT

1 P1z1, v2 = −r−1
2 BT

2 P2z2, (20)

where r1 > 0 and r2 > 0 are design parameters, and Pi > 0 are
the solutions to algebraic Riccati equations PiAi + AT

i Pi −
PiBir

−1
i BT

i Pi + Qi = 0 for any choices of Qi satisfying
0 < qI �Qi �qI , the transformed state z is exponentially

convergent. If the inverse transformation x = �−1(x, w) has
the property that �−1(0, 0) = 0, the original state x(t) also
convergence to the origin asymptotically.

Proof. Consider Lyapunov function V = V1 + V2 where Vi =
zT
i Pizi . It follows that, along any trajectory of subsystem (17)

and under control (20),

V̇1 = −zT
1 Q1z1 � − q

�max(P1)
V1

�= −�V1,

from which exponential stability of ‖z1‖ can be concluded as

‖z1(t)‖� �max(P1)

�min(P1)
‖z1(t0)‖e−�(t−t0). (21)

Now, consider subsystem (18) under control (20). It follows
that

V̇2 � − zT
2 Q2z2 + 2zT

2 P2Zz1

� − q‖z2‖2 + 2‖z2‖‖P2‖(�1 + �2‖z1‖�3 + �4‖z2‖)‖z1‖
�[−2�0 + 2�2�e−�(t−t0)]V + 2�1

√
V e−�(t−t0), (22)

where

c0 = �max(P1)

�min(P1)
‖z1(t0)‖, �0 = q

2�max(P2)
,

�1 = �max(P2)√
�min(P2)

(�1 + �2c
�3
0 )c0, �2 = c0

�

�max(P2)

�min(P2)
.

The solution to inequality (22) is√
V (t)�

√
V (t0)e

∫ t
t0

(−�0+�2�e−�(−t0)) d

+
∫ t

t0

e
∫ t
s (−�0+�2�e−�(−s)) d�1e−�(s−t0) ds

�
√

V (t0)e
�2 e−�0(t−t0)

+ �1e�2

�0 − �
[e−�(t−t0) − e−�0(t−t0)],

from which exponential convergence of ‖z2‖ is obvious.
Asymptotic convergence of ‖x‖ can be concluded by not-
ing the convergence of z and w and using the property of
�−1(0, 0) = 0. �

5. Roles of exogenous dynamics

In this section, the roles of exogenous dynamics are studied
for the proposed cascaded feedback linearization methodology
and its associated problems of stabilization and control design.
Generally, whether to introduce exogenous dynamics and what
are their choices depend upon structural properties of the non-
linear system under investigation. Nonetheless, it is possible
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to point out the benefits of introducing exogenous dynamics.
Specifically, exogenous dynamics are introduced to alleviate
the difficulties in the following aspects:

(a) Rank conditions on distribution of vector fields.
(b) Singularity encountered in a backstepping control design.
(c) Brockett’s necessary condition on the existence of smooth

feedback control.

Item (a) is most relevant to feedback linearization. It has been
shown in Example 2, exogenous dynamics can be introduced
to meet the rank conditions required for cascaded feedback
linearization. As will be shown in the next section, exogenous
dynamics facilitate cascaded feedback linearization of classes
of nonholonomic systems.

With or without carrying out feedback linearization, exoge-
nous dynamics can be introduced to avoid a possible singular-
ity problem that may be encountered in a backstepping control
design. Example 3 is provided below to illustrate item (b). For
the problem of stabilization, it is preferred that exogenous dy-
namics be chosen to be asymptotically/exponentially stable.

Besides the singularity problem, the control design problem
also involves the choice of controllers. It is well known that, for
nonlinear system ẋ =f (x, u) with f (0, 0)=0, the existence of
smooth feedback control requires the so-called Brockett neces-
sary condition [3]. That is, there is no smooth feedback control
if the algebraic mapping (x, u) �→ f (x, u) is not onto a neigh-
borhood around the origin. In the case that the system can be
stabilized but the mapping (x, u) �→ f (x, u) is not onto, one
has to search for a state feedback discontinuous control or a
smooth time-varying state feedback control, and those designs
are often less systematic. Example 4 is included below to illus-
trate item (c). That is, the Brockett necessary condition is met
by introducing exogenous dynamics and hence a smooth con-
trol depending upon exogenous dynamics (or simply upon time)
can be proceeded with. As a result, the same control design
procedure can be applied without regard to the Brockett nec-
essary condition so long as the condition, if not met originally,
can be satisfied by the introduction of exogenous dynamics.

Example 3. Consider the stabilization problem of the follow-
ing cascaded nonlinear system:

ẋ1 = u1, (23)

ẋ2 = x3x1, ẋ3 = u2. (24)

It is apparent that, due to the singularity when x1 =0, the back-
stepping method is not directly applicable to design control u2.
To alleviate this problem, we introduce the following exoge-
nous dynamics: for some w(t0) > 0,

ẇ = −w.

It follows that, for t ∈ [t0, ∞), w ∈ (0, w(t0)]. Thus, the
following transformations can be defined for t ∈ [t0, ∞):

z1 = x1 − w

w
, v1 = u1 + x1

w
, (25)

under which the system becomes

ż1 = v1, (26)

ẋ2 = x3w + x3wz1, ẋ3 = u2. (27)

Since w(t) �= 0 for t ∈ [t0, ∞), the backstepping design can
be applied to (27), that is, we choose for t ∈ [t0, ∞)

z2 = x2, z3 = x3 + x2

w
, v2 = u2 + z3 + x3z1, (28)

by which the equations in (27) can be rewritten as

ż2 = −z2 + [z3w + (z3w − z2)z1], ż3 = v2. (29)

It is clear that controls v1 = −z1 and v2 = −z3 stabilize the
transformed system of zi , as a result, transformations (25) and
(28) are well defined for all t and original state variables xi

asymptotically converge to zero.

Example 4. Consider again the chained system:

ẋ1 = u1, ẋ2 = x3u1, ẋ3 = u2.

The system fails to satisfy the Brockett’s necessary condition.
For any exogenous dynamics ẇ = q(w), the following trans-
formations can be applied:

x′
1 = x1 − w, x′

2 = x2, x′
3 = x3, u′

1 = u1 − q(w),

u′
2 = u2,

under which the system becomes

ẋ′
1 = u′

1, ẋ′
2 = x′

3q(w) + x′
3u

′
1, ẋ′

3 = u′
2.

Hence, the mapping (x′
1, x

′
2, x

′
3, u

′
1, u

′
2) �→ f ′ = [u′

1, x
′
3q(w)+

x′
3u

′
1, u

′
2]T is onto a small neighborhood of x′=[x′

1, x
′
2, x

′
3]T=0,

that is,

f ′ = 	 = [	1, 	2, 	3]T with 0 < ‖	‖>1

provided that

u′
1 = 	1, u′

2 = 	3, x′
3 = 	2

q(w) + 	1
.

Clearly, the above solution exists and hence the Brockett’s nec-
essary condition is made valid with the aid of w if exogenous
dynamics are chosen such that q(w) + 	1 is a lower-order in-
finitesimal than 	2.

6. Application to the stabilization of nonholonomic systems

The proposed cascaded feedback linearization method can be
directly applied to the stabilization problem of nonholonomic
systems. Consider the class of chained systems: ẋ =g1(x)u1 +
g2u2, or,

ẋ1 = u1, (30)

ẋ2 = g21(x)u1 + g22u2, (31)
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where x = [x1, x
T
2 ]T ∈ Rn, x1 ∈ R, x2 = [x21, . . . , x2,n−1]T ∈

Rn−1, g21 = [x22, x23 · · · x2,n−10]T, g22 = [0 0 · · · 0 1]T, g1 =
[1, gT

21]T, and g2 = [0, gT
22]T. By checking that

[g1, g2] = [0, −1 − 1 · · · , −10]T /∈ span{g1, g2},

we know that a chained system given by (30) and (31) is not
feedback linearizable. In what follows, its stabilization problem
is solved using the proposed cascaded feedback linearization
method.

Lemma 1. A chained system given by (30) and (31) is cascaded
feedback linearizable. In particular, if the exogenous dynamics
are chosen to be

ẇ = −w ∈ R, w(0) �= 0, (32)

the chained system is transformed into

ż1 = z1 + v1,

ż2=A′
2z2+B ′

2v2+(A′
2−diag{n−2, n−3, . . ., 1, 0})z2v1, (33)

where

z1 = x1 − w

w
, v1 = u1 + w

w
,

z2 =
[ x21

wn−2 · · · x2,n−2

w
x2,n−1

]T
, v2 = u2, (34)

A′
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n − 2 1 0 · · · 0

0 n − 3 1
. . . 0

...
. . .

. . .
. . .

. . .

0
. . .

. . . 1 1

0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(n−1)×(n−1),

B ′
2 = [0 0 · · · 1]T ∈ R(n−1)×1,

and the pair {A′
2, B

′
2} is controllable.

Proof. It follows from Theorem 2 that, under the state and
input transformations with

z1 = x1 − w

w
, v1 = u1 + w

w
,

f ′
2 =−g21w and the corresponding distributions of vector fields

are

[G10] = 1,

and

[G20 G21 · · · G2,n−2 ]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 (−1)n−1wn−2

0 0 0 0 · · · (−1)n−2wn−3 ∗
...

...
...

...
...

...
...

0 0 0 w3 · · · ∗ ∗
0 0 −w2 ∗ · · · ∗ ∗
0 w ∗ ∗ · · · ∗ ∗
1 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which are of rank 1 and n−1, respectively. It is trivial that {G10}
is involutive. In addition, it follows from adG2i

G2j = 0 for all
i, j = 0, . . . , n − 3 that {G20 G21 · · · G2,n−3} is involutive.
Thus, by Theorem 2, the chained system is cascaded feedback
linearizable.

It is straightforward to verify that, under the transformation,
the chained system is mapped into (33) which can further be
transformed into the canonical form (2) and (3). �

The following theorem on stabilization of the chained system
follows directly from Lemma 1 and Theorem 3.

Theorem 4. Consider a chained system given by (30) and (31).
Then, the system state converges to the origin exponentially
under the following control:

u1 = −r−1
1 p1(x1 − w) + w, (35)

u2 = −r−1
2 B ′T

2 P2z2, (36)

where w and z2 are defined by (32) and (34) with w(0) =
‖x(0)‖� for some constant 0 < � < 1; r1 > 0, r2 > 0, q1 > 0 and

q2 > 0 are design constants; p1 = r1 +
√

r2
1 + q1r1, P2 is the

solution to algebraic Riccati equation

P2A
′
2 + A′T

2 P2 − P2B
′
2r

−1
2 B ′T

2 P2 + C′T
2 q2C

′
2 = 0,

and C′
2 = [1, . . . , 0, 0] ∈ R1×(n−1).

It is worthy mentioning that, with little change, the pro-
posed method is applicable to the following generalized non-
holonomic systems [27]:

ẋ1 = u1, ẋ2 =

⎡
⎢⎢⎢⎢⎢⎣

1

	2(x1)

...

	n(x1)

⎤
⎥⎥⎥⎥⎥⎦ u2,

where 	i (x1) are analytic functions vanishing at the origin
with �i−1	i/�xi−1

1 �= 0 for i = 2, . . . , n. The proposed cas-
caded feedback linearization idea is also applicable to high-
order chained system. For instance, consider the second-order
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Fig. 1. Simulation results: (a) State trajectories; (b) Control inputs.

chained form system given by

	̈1 = u1, 	̈2 = u2, 	̈i = 	i−1u1, i = 3, 4, . . . , n,

where 	 = [	1, 	2, . . . , 	n]T ∈ Rn and 	̇ = [	̇1, 	̇2, . . . , 	̇n]T ∈
Rn denote the configuration variables and their derivative, re-
spectively, and [u1, u2]T ∈ R2 is the vector control inputs.
Defining the coordinates transformation:

x1 = 	1, x2 = 	̇1, x3 = 	n,

x4 = 	̇n, . . . , x2n−1 = 	2, x2n = 	̇2,

we have

ẋ1 = x2, ẋ2 = u1, (37)

ẋ3 = x4, ẋ4 = x5u1, . . . , ẋ2i−3 = x2i−2,

ẋ2i−2 = x2i−1u1, ẋ2n = u2. (38)

By following the same arguments for system (30) and (31), it
can be shown that system (37) and (38) is cascaded feedback
linearizable.

7. Simulation

In this section, a simulation result is given for smooth feed-
back stabilization of the (4, 2) chained system according to the
control designed in Theorem 4. In the simulation, the initial
states are given by x(0) = [0, −3, 4, −2]T. Fig. 1(a) shows the
convergence of the states and the boundedness of the control
inputs is depicted in Fig. 1(b).

8. Conclusion

In this paper, the problem of cascaded feedback lineariza-
tion has been formulated and addressed for a class of nonlin-
ear systems which are not standard feedback linearizable. A
set of conditions have been found to check the cascaded feed-
back linearizability for a class of two-inputs affine nonlinear

systems. As an illustrative application, the proposed cascaded
feedback linearization technique renders a new solution to the
stabilization problem (and smooth feedback control design) of
nonholonomic chained systems.
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