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SUMMARY

In this paper, the inverse optimal control designs for chained systems are investigated. The presented
designs are based on the thorough study of controllability of chained systems. Particularly, two methods
are proposed to recover uniform complete controllability for the chained system. One involves a global
singularity-free state-scaling transformation, the other is based on a time transform, and both of them require
an innovative design of dynamic control component for its subsystem. Using either of the approaches,
the chained system is mapped into a controllable linear time-varying system for which control can
systematically be designed to ensure exponential convergence or asymptotic stability. Both state-feedback
and output-feedback designs are presented and literally shown to be inversely optimal. Simulation results
are used to verify the effectiveness of the proposed controls. Copyright q 2008 John Wiley & Sons, Ltd.

Received 30 October 2006; Revised 26 November 2007; Accepted 28 November 2007

KEY WORDS: nonlinear systems; nonholonomic systems; inverse optimality

1. INTRODUCTION

In this paper, we consider the feedback stabilization of the following 2-input and n-dimensional
nonholonomic chained system:

ẋ1=u1, ẋ2= x3u1, . . . , ẋn−1= xnu1, ẋn =u2 (1)
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2 Z. QU ET AL.

where x=[x1 . . . xn]T∈�n is the state,u=[u1 u2]T∈�2 is the control input, and y=[x1 x2]T∈�2

is the output. The feedback stabilization problem of nonholonomic chained systems has been studied
by many researchers, and a variety of controls have been proposed, for instance, see a survey [1]
and references therein. It is well known that the main difficulty in stabilizing chained system
is due to its inherent topological obstructions to the existence of continuous and time-invariant
state-feedback controls [2]. In addition, although the chained system is known to be nonlinearly
controllable (i.e. small-time controllable [3]), its linearization around the origin is not control-
lable, nor is its linear time-varying (LTV) subsystem by itself linearly controllable considering
the cascaded structures of two subsystems for the chained system due to the vanishing control
component u1(t) (which is required for the stabilization problem). The current existing stabiliza-
tion controls typically rely upon the use of either discontinuous [4–8] or time-varying feedback
[9–11] or both [1]. Other than asymptotic or exponential stabilization, there has been few results
on optimal control of nonholonomic systems. New design methodologies to render simpler designs
and better controls can be developed by investigating the ways of recovering linear controllability.

In this paper, we concentrate on the problem of investigating controllability and designing
controllability-motivated and performance-oriented feedback controls for nonholonomic chained
systems. Since many practical nonholonomic systems can be transformed into the chained form by
coordinate and input transformations, the proposed control designs based on chained form ensure
their wide applicability. Specifically, we attempt to provide positive answers to the following
questions: Can the controllability dichotomy aforementioned be reconciled? Is the chained system
uniform complete controllable in some time domain (transformed from time t)? Is there a global
singularity-free transformation that maps the chained system into a controllable linear system? Are
there smooth optimal controls to stabilize the chained system? Using and extending the concept of
uniform complete controllability, we show how to construct a global state-scaling transformation
and a time-scaling transform to recover linear controllability in the transformed state or time
space. In particular, upon presenting a new dynamic control design for component u1(t), a global
nonlinear state transformation is found or a time transform is found to transform the chained
system into a controllable LTV system. Accordingly, the well-known Riccati equation and linear
optimal control design can then be applied to provide systematic and straightforward solutions to
the stabilization problem of the chained system. Both state-feedback and output-feedback controls
are presented with explicit illustration of their inverse optimality. The proposed results bridge the
gaps between linear and nonlinear controllability, between linear and nonlinear control designs,
and between discontinuous stabilization (using state-scaling transformation with singularity) and
continuous time-varying stabilization (with singularity-free transformation).

This paper is organized as follows. In Section 2, the control problem for chained systems is formu-
latedwithmotivation and background for the present study. Section 3 gives the state-feedback control
using state-scaling method and Section 4 presents the time-scaling method-based state-feedback
control. In Section 5, the output-feedback controls based on the proposed two design methods are
presented. Simulation results are provided in Section 6, and Section 7 concludes the paper. The
related discussions on uniform complete controllability of LTV-systems are collected inAppendixA.

2. PROBLEM FORMULATION

The objective of this paper is to present two design methods of time-varying and continuous feed-
back controls that globally stabilize system (1) and are optimal with respect to certain performance

Copyright q 2008 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2009; 30:1–25
DOI: 10.1002/oca



CONTINUOUS AND INVERSE OPTIMAL CONTROL DESIGNS 3

indices. It is straightforward to extend the proposed results to m-input nonholonomic systems that
can be transformed into the chained form.

2.1. Motivation and background

Chained system (1) can be decomposed into the following two interconnected subsystems:

ẋ1=u1 (2)

and

ż=u1A
∗
2z+B2u2 (3)

where z=[z1 z2 . . . zn−1]T�[x2 x3 . . . xn]T, and

A∗
2�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

As such, it is well known that the chained system has several nice properties: (i) subsystem (2) is
linear, and u1 can easily be designed to stabilize x1; (ii) subsystem (3) is a chain of u1-weighted
integrators; and (iii) system (1) is nonlinearly controllable everywhere as Lie brackets on its vector
fields are of full rank.

On the other hand, stabilization of chained system (1) remains to be a difficult and interesting
problem because of the following technical issues: (i) Topologically, the chained system cannot be
stabilized under any continuous control u=u(x) due to its nonlinear characteristics [2]; (ii) While
the system is nonlinearly controllable everywhere, the system is not globally feedback linearizable
(although local feedback linearizable is possible as shown by the �-process but singularity mani-
fold remains in all the neighborhoods around the origin), and nonlinear controllability does not
necessarily translate into systematic control design; and (iii) system (1) is not linearly controllable
around the origin. The apparent dichotomy between nonlinear and linear controllability properties
is of particular importance as it characterizes both difficulty of control design and need of having
systematic design and improving control performance.

In contrast to the stabilization problem, the tracking problem is generally easier to be solved
for the chained system. This is because tracking control component u1 designed for subsystem (2)
is often nonvanishing, in which case subsystem (3) is uniformly completely controllable. Hence,
the tracking control can be systematically designed not only to ensure exponential stability for the
tracking error but also to achieve near-optimal performance (the best achievable real time) [12]. In
the stabilization problem, subsystem (3) is never uniformly completely controllable. Nonetheless,
it is shown in this paper that either state- or time-scaling transformation can be used to recover
uniform complete controllability for subsystem (3). By removing the controllability dichotomy,
we are able to systematically design continuous controls to globally stabilize the chained system
and to achieve optimal performance with respect to certain performance index. In the following
subsections, the state- and time-scaling transformations are motivated.
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2.2. Existing transformations and their singularity

Among the approaches used to stabilize nonholonomic chained systems, discontinuous control
designs are more straightforward. This is because discontinuous stabilizing control u=u(x) does
exist and typically consists of two switching laws. One of the laws is to stabilize the system in
a nonsingular subspace by applying a state transformation and mapping the system into a linear
system, and the other is to bring the system to the nonsingular subspace. Such a discontinuous
design overcomes the loss of linear controllability by switching, and it avoids the difficulty of
designing a single continuous but time-varying control.

The so-called �-process proposed by Astolfi [4] is the common representative of existing
discontinuous designs, and its nonsingular subspace is defined by �={x ∈�n : x1 �=0}. If x(t0) /∈�,
a finite-time control law of u1(t) being a constant can be selected under which x1(t0+�t) �=0 for
some �t>0. If x(t0)∈� or once x1(t0+�t) �=0 is accomplished, control component u1=−k1x1
with k1>0 is stabilizing for subsystem (2), the following state-scaling transformation:

�i = zi

xn−i
1

, 1�i�n−1 (5)

can be applied to subsystem (3) to render the linear time-invariant (LTI) controllable system

�̇i =(n−i)k1�i −k1�i+1, i=1, . . . ,n−2

and

�̇n−1=k1�n−1−k1u2

and control component u2 can easily be found to stabilize the above LTI system.
Clearly, a control design based on the �-process is quite simple. Nonetheless, such a design

has three shortcomings. First, the resulting control is discontinuous by nature. Second, the state-
scaling transformation is well defined everywhere except on the hyperplane of x1=0; although
a separate control law keeps the state off this singularity hyperplane, the transformation and the
resulting control contain such terms as �i (t)= xi+1(t)/x

n−i
1 (t), which may assume excessively

large values in the neighborhood around the singularity hyperplane and during the transient. Finally,
the calculation of �i (t)= xi+1(t)/x

n−i
1 (t) becomes numerically problematic as both xi (t) and x1(t)

are supposed to approach zero exponentially but their measurements may contain noises.

2.3. State-scaling and time-scaling methods

One of the topics studied in this paper is whether the �-process can be improved so that a
single time-varying continuous control law can be designed in a systematic and straightforward
manner to stabilize the class of nonholonomic systems. A positive answer is proposed in the
paper by proposing a new dynamic-feedback control u1(t) and a new singularity-free state-scaling
transformation. Under the proposed global state-scaling transformation, subsystem (3) is mapped
into a LTV system for which uniform complete controllability is established and a time-varying
continuous control is designed which makes the system states converge to the origin exponentially.
The proposed new approach not only overcomes the first two shortcomings but also renders an
optimal control.

On the other hand, to recover linear controllability of subsystem (3), a time-scaling method
is also used to design a continuous asymptotically stabilizing control. The time-scaling method
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requires a transform of time but not any state transformation. This alternative design overcomes
all the three shortcomings aforementioned, and it renders an optimal control as well.

3. GLOBAL STATE-SCALING TRANSFORMATION AND DESIGN OF CONTINUOUS
EXPONENTIALLY CONVERGENT OPTIMAL CONTROL

In this section, a dynamic-feedback control design of component u1 is proposed. Based on the
design, a global state-scaling transformation is introduced to overcome the singularity problem
of the existing scaling transformations. This new transformation enables the designer to recover
uniform complete controllability for the chained system and to design a class of continuous,
time-varying and optimal controls that make the system states converge to the origin exponentially.

3.1. Dynamic control component u1

The proposed control for component u1(t) is

u̇1=−(k1+�)u1−k1�x1, u1(t0)=−k1x1(t0)+‖x(t0)‖ (6)

where k1>0 is a feedback control gain, and constant 0<�<k1 is a design parameter arbitrarily
chosen.

It follows from (2) that, under (6), the closed-loop system of state variable x1 becomes

ẍ1+(k1+�)ẋ1+k1�x1=0

Therefore, the closed-loop solution is

x1(t)=c1e
−k1(t−t0)+c2e

−�(t−t0)

and

u1(t)=−k1c1e
−k1(t−t0)−�c2e

−�(t−t0) (7)

where c1(x0)�x1(t0)−c2 and c2(x0)�‖x(t0)‖/(k1−�). Clearly, through injecting u1(t0), control
(6) is the simplest controller to exciting x1 whenever ‖x(t0)‖ �=0 while making both u1 and x1
exponentially convergent (and asymptotically stable with respect not to |x1(t0)| but ‖x(t0)‖).

Since feedback control u1 in (6) is dynamic, u1 is now an internal state variable. Accordingly,
for the system consisting of (2) and (6), we can define the following ‘output’:

y1d�
1

k1−�
[k1x1+u1] (8)

It follows from (2) and (6) that

ẏ1d =−�y1d (9)

where y1d(t0)=‖x(t0)‖/(k1−�) �=0 if ‖x(t0)‖ �=0. Hence, unless ‖x(t0)‖=0, y1d �=0 for all
t ∈[t0,∞), which makes it possible to find a global scaling transformation.
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3.2. A global state-scaling transformation

Since y1d in (8) has been shown to be nonzero for all finite t , we can propose the following
scaling transformation that is differentiable and never singular: with �=[�1 . . . �n−1]T and for
i=1, . . . , (n−1)

�i =

⎧⎪⎨
⎪⎩
0 if ‖x(t0)‖=0

zi

yn−1−i
1d

= zi (k1−�)n−1−i

(u1+k1x1)n−1−i
if else

(10)

It follows from (9) that, under transformation (10), subsystem (3) is mapped into

�̇=
{
0 if ‖x(t0)‖=0

F2(t)�+B2u2 if else
(11)

where

F2(t)�diag{�(n−2), . . . ,�,0}+�(t, x0)A
∗
2 (12)

with

�(t, x0)�
u1(t)

y1d(t)
=c3e

−(k1−�)(t−t0)−� (13)

for

c3(x0)�−k1

[
(k1−�)x1(t0)

‖x(t0)‖ −1

]

It follows from (7) and (9) that, so long as ‖x(t0)‖ �=0,

lim
t→∞�(t, x0)=−�<0

which shows that �(t, x0) is uniformly nonvanishing (see the definition and discussions in
Appendix A). Using this property, design of u2 can be proceeded with to ensure global exponential
stability of the overall system.

Remark 3.1
It should be noted that control (6) is conventional, purely feedback and dynamic. Control (6) has
the key feature that, if x1(t0)=0 but ‖x(t0)‖ �=0, it moves x1(t) by injecting ‖x(t0)‖ as the initial
condition of u1(t0) while ensuring the convergence of ‖x(t)‖ through the control design of u2.

3.3. Dynamic control component u2

Let dynamic control component u2 be defined by

u2(t)=−r−1
2 (t)BT

2 P2(t)� (14)

where r2�r2(t)�r2 for some positive constants r2 and r2, and P2(t) is the solution to Riccati
equation (A4) (see Appendix A) with C2=[1 0 . . . 0]∈�1×(n−1) and with matrix F2(t) defined
from (12) to (13). The closed-loop convergence under control (6) and (14) is stated as the following
theorem.

Copyright q 2008 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2009; 30:1–25
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CONTINUOUS AND INVERSE OPTIMAL CONTROL DESIGNS 7

Theorem 3.1
Under dynamic-feedback control (6) and (14), system (1) is globally exponentially convergent
with bounded input.

Proof
It is clear from (6) and (10) that ‖x(t0)‖=0 implies u1=u2=0 and hence x(t)≡0.

Now consider the case that ‖x(t0)‖ �=0. Although Lemma A.2 in Appendix A is not applicable to
transformed subsystem (11), uniform complete controllability of pairs {F2(t), B2} and {FT

2 (t),CT
2 }

can be shown by noting that F2(∞)= limt→∞ F2(t) exists and that {F2(∞), B2} and {FT
2 (∞),CT

2 }
are constant and controllable.

Let Lyapunov function be

V (x1,u1,�)= 1
2 [u1+k1x1]2+ 1

2 [u1+�x1]2+�TP2(t)�

It follows from (2), (6), and (11) that

V̇ (x1,u1,�)=−�[u1+k1x1]2−k1[u1+�x1]2−�T[CT
2 q2C2+P2B2r

−1
2 BT

2 P2]�
from which exponential stability of x1, u1, and � can easily be concluded using Lemma A.1 in
Appendix A. It follows from (9) and (10) that exponential stability of � implies that states z
converge to the origin exponentially. From (14), the control also exponentially converge to zero
and is bounded. �

Remark 3.2
It should be noted that control (14) is also conventional, purely feedback and dynamic. Owing to
the facts that the overall system is nonlinear and that optimal performance is sought, gain matrix
P2(t) (the solution to Riccati equation (A4)) depends upon both initial condition x(t0) and time t
(as does vector F2(t)). Nonetheless, function F(t) becomes constant and independent of x(t0)
in the limit of t→∞, hence differential Riccati equation (A4) approaches the algebraic Riccati
equation in the limit, and the steady-state solution P2(t) can easily be found.

3.4. Optimal performance

To quantify performance of the proposed control, let us introduce performance index J = J1+ J2
where

J1=
∫ ∞

t0

q1
(k1−�)2

(�x1+u1)
2 dt (15)

and

J2= 1

2

∫ ∞

t0

[
q2(t)(k1−�)2n−4x22

(u1+k1x1)2n−4
+r2(t)u

2
2

]
dt (16)

for any positive constant q1 (and q1=1 can be set without loss of any generality), and positively
valued and uniformly bounded time functions q2(t) and r2(t).

Theorem 3.2
For system (1), dynamic-feedback control (6) and (14) is optimal with respect to performance
index J = J1+ J2, where Ji are defined by (15) and (16).
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8 Z. QU ET AL.

Proof
Let us define the following auxiliary variable:

�1(t)�− 1

k1−�
[�x1+u1] (17)

It follows from (2) and (6) that

�̇1=−k1�1�v1 (18)

Now, considering performance index

J1= 1

2

∫ ∞

t0
(q1�

2
1+r1v

2
1)dt (19)

for some constants r1,q1>0, we know that fictitious control v1 in (18) is optimal with respect to
(19) provided that k1= p1/r1 where p1=√

q1r1. It is straightforward to verify that differential
equations (9) and (18) are equivalent to (2) and (6). Hence, control (6) is optimal for system
(2), and the corresponding performance index (19) can then be expressed as (15) in terms of the
original variables by noting the choice of k1 and p1.

Recalling the property of uniform complete controllability revealed in the proof of Theorem 3.1,
we know that control (14) optimally stabilizes system (11) under the following performance
index:

J2= 1

2

∫ ∞

t0
[�TCT

2 q2C2�+r2u
2
2]dt

which can be expressed as (16) in terms of the original variables. �

Remark 3.3
The meaning of performance index (15) or (19) can be further explained as follows. Solving u1
from (8) and substituting the solution into (17) yields �1= x1− y1d . On the other hand, differential
equation (9) can be rewritten as ẏ1d =v1d with v1d�−�y1d . It follows from (17) and (8) and from
the definitions of v1 in (18) and v1d that u1=v1+v1d . Thus, y1d and �1 can be viewed as the ‘desired
asymptotically convergent trajectory’ and ‘tracking error’ for x1(t), respectively; v1d and v1 can be
viewed as ‘feedforward control’ and ‘incremental feedback control,’ respectively; and dynamical
control u1 is optimal under (19) to minimize the ‘tracking error.’ It is also worth mentioning that
although performance indices (15) and (16) (or (28) and (29) in Section 4) are quantified on the
states and inputs of chained systems, and their physical meaning can be pursued based on the
inverse transformations from the chained systems to the original practical nonholonomic systems
case by case.

3.5. Computational issue

Mapping (10) is new because it is globally well defined for any initial condition of x(t0). Nonethe-
less, it remains to be a state-scaling transformation and hence has a computational shortcoming
as do the existing transformations such as the �-process in (5). Specifically, although both z and
y1d are exponentially convergent, implementation of control (14) with transformation (10) calls
for computing the ratio of two infinitesimals. Such a computation is numerically unstable, which

Copyright q 2008 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2009; 30:1–25
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CONTINUOUS AND INVERSE OPTIMAL CONTROL DESIGNS 9

is unavoidable in order to achieve exponential convergence but can be avoided for asymptotic
stabilization. In the following section, a new method of time scaling is introduced to overcome
the numerical problem.

4. TIME-SCALING METHOD AND DESIGN OF CONTINUOUS ASYMPTOTICALLY
STABILIZING OPTIMAL CONTROL

To overcome the computational issue described in Section 3.5, we propose a time-scaling method
by which control can be designed to asymptotically stabilizing system (1) without using any state
transformation.

4.1. Dynamic control design

In this subsection, two dynamic-feedback control components u1 and u2 will sequentially be
designed to form the proposed asymptotically stabilizing control. As the first step, dynamic-
feedback control u1 is chosen to be of the following form:

u̇1=−2�(t)u1−�2x1, �(t)� 1

t− t0+1
(20)

where u1(t0)=cu‖x(t0)‖, �>0 is a design parameter whose value is arbitrary, cu is also a design
parameter arbitrarily chosen by the designer so long as cu �=0 whenever x1(0)=0. It is apparent
that u1≡0 if ‖x(t0)‖=0. The following lemma provides the property of subsystem (2) under
dynamic control (20).

Lemma 4.1
Under dynamic control (20), state x1 of subsystem (2) is uniformly bounded by (|cu |+�+
1)‖x(t0)‖/� and is also uniformly asymptotically convergent to zero.

Proof
It follows from (20) and (2) that the closed-loop subsystem is

ẍ1+2�(t)ẋ1+�2x1=0 (21)

Since the time function in the above differential equation is continuous and uniformly bounded,
the closed-loop subsystem has a unique solution under any given initial conditions of x1(t0) and
ẋ1(t0)=u1(t0).

It is straightforward to show by direct computations that equations (2), (20), and (21) all hold
under the following unique solution:

x1(t)=�(t)	(t, x0), u1(t)=�(t)
(t, x0) (22)

where

	(t, x0)�x1(t0)cos(�t−�t0)+ cu‖x(t0)‖+x1(t0)

�
sin(�t−�t0)

Copyright q 2008 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2009; 30:1–25
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10 Z. QU ET AL.

and


(t, x0) � {cu‖x(t0)‖+[1−�(t)]x1(t0)}cos(�t−�t0)

−
{
�(t)

cu‖x(t0)‖
�

+
[
�(t)

�
+�

]
x1(t0)

}
×sin(�t−�t0) (23)

Hence, uniform boundness and uniform asymptotic convergence are apparent. �

Let dynamic control u2 for subsystem (3) be

u2(t)�−�(t)r−1
2 (t)BT

2 P
′
2(t)z (24)

where �(t) is that in (20), 
(t, x0) is the continuous and uniformly bounded time function
defined in (23), 0<r2�r2(t)�r2, 0<q

2
�q2(t)�q2, C2=[1 0 . . . 0]∈�1×(n−1), r ′

2(�)�r2(e�+
t0−1), q ′

2(�)�q2(e�+ t0−1), 
′(�, x0)�
(e�+ t0−1, x0), P ′
2(t)= P ′

2(e
�+ t0−1)�P ′′

2 (�), and P ′′
2 (�)

with �∈[0,∞) is the positive-definite solution to the following Riccati equation:

0= dP ′′
2 (�)

d�
+
′(�, x0)P ′′

2 (�)A∗
2+(A∗

2)
TP ′′

2 (t)
′(�, x0)

− 1

r ′
2(�)

P ′′
2 (�)B2B

T
2 P

′′
2 (�)+CT

2 q
′
2(�)C2 (25)

The following theorem describes the result of asymptotic stability.

Theorem 4.1
Under dynamic-feedback control (20) and (24), system (1) is globally asymptotically stable.

Proof
It is clear from (20) and (24) that ‖x(t0)‖=0 implies u1=u2=0 and hence x(t)≡0. Next, let us
consider the case that ‖x(t0)‖ �=0 and introduce Lyapunov function

V ′(x1,u1, z, t)�V ′
1(x1,u1, t)+V ′

2(z, t)

where

V ′
1(x1,u1, t)� 1

2 [u1+�(t)x1]2+ 1
2�

2x21

and

V ′
2(z, t)�zTP ′

2(t)z

It follows from (20) and (2) that

dV ′
1

dt
=−�(t)[u1+�(t)x1]2−�(t)�2x21 =−2�(t)V ′

1

On the other hand, it follows from (3) and (22) that, letting �= ln(t− t0+1)

dz′

d�
=
′(�, x0)A∗

2z
′+B2u

′
2 (26)
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where z′(�)= z(t) and u′
2(�)=(t− t0+1)u2(t). System (26) is LTV; by Lemma A.2 in Appendix A,

its pair {
′(�, x0)A∗
2, B2} is uniformly completely controllable (in the time domain of both t and �),

and hence Riccati equation (25) has a positive-definite solution P ′′
2 (�). Recalling P ′′

2 (�)= P ′
2(t),

we can rewrite (24) as

u′
2(�)=− 1

r ′
2(�)

B2P
′′
2 (�)z′ (27)

Therefore, we know from the above expression and (26) that

V ′
2(z, t)�zTP ′

2(t)z=[z′]TP ′′
2 (�)z′�V ′′

2 (z′,�)

and

dV ′
2(z, t)

dt
= dV ′

2(z, t)

d�

d�

dt
=�(t)

dV ′′
2 (z′,�)
d�

= −�(t)(z′)T
[
CT
2 q

′
2C2+ 1

r ′
2
P ′′
2 B2B

T
2 P

′′
2

]
z′

= −�(t)zT
[
CT
2 q2C2+ 1

r2
P ′
2B2B

T
2 P

′
2

]
z

Combining the expressions of V̇ ′
1 and V̇ ′

2, we have

dV ′(x1,u1, z, t)
dt

=−2�(t)V ′
1−zT

[
CT
2 q2C2+ 1

r2
P ′
2B2B

T
2 P

′
2

]
z�0

from which asymptotic stability of x1, u1, and z can be concluded by applying Lemma A.1 in
Appendix A. �

Remark 4.1
The proof of Theorem 4.1 shows that both x(t)= x(e�+ t0−1)�x ′(�) and u(t)=u(e�+ t0−
1)�u′(�) are exponentially stable with respect to � and that x(t) and u(t) are asymptotically stable.
Control design and asymptotic stabilization are accomplished systematically and simply because
the proposed time-scaling method recovers uniform complete controllability.

Remark 4.2
Controls (20) and (24) have the properties similar to those of controls (6) and (14) and explained
in Remarks 3.1 and 3.2. One minor difference is that, since 
(t, x0) becomes periodic in the limit
of t→∞, matrix P ′

2(t) as the solution to Riccati equation (25) also becomes periodic in the limit
and hence can easily be found using well-established methods [13].

4.2. Optimal performance

The following theorem quantifies optimality of dynamic control (20) and (24).

Copyright q 2008 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2009; 30:1–25
DOI: 10.1002/oca



12 Z. QU ET AL.

Theorem 4.2
For system (1), dynamic-feedback control (20) and (24) is optimal with respect to performance
index J ′ = J ′

1+ J ′
2, where

J ′
1= 1

2

∫ ∞

t0

[
x1

u1

]T[
�3(t)+�2�(t) �2(t)

�2(t) �(t)

][
x1

u1

]
dt (28)

and

J ′
2= 1

2

∫ ∞

t0

[
�(t)q2(t)x

2
2 + r2(t)

�(t)
u22

]
dt (29)

for 0<r2�r2(t)�r2 and 0<q
2
�q2(t)�q2.

Proof
To show optimality of control (20), let us consider the following time-varying linear system:

ẋ1= A1(t)x1+B1v1 (30)

where x1�[x1 u1]T, B1=[0 1]T, and

A1(t)=
[

0 1

−�2+�2(t) −�(t)

]

Consider performance index

J ′
1= 1

2

∫ ∞

t0
[xT1Q1(t)x1+r1(t)v

2
1]dt (31)

where r1(t)=�−1(t) and

Q1(t)=
[

�3(t)+2�(t)�2 �2(t)

�2(t) �(t)

]

It is straightforward to show that Q1(t) is positive semi-definite for t�t0 and that matrix

P1(t)=
[

�2+�2(t) �(t)

�(t) 1

]

is also positive definite and satisfies the Riccati equation

0= Ṗ1(t)+P1(t)A1+AT
1 P1(t)−

1

r1(t)
P1(t)B1B

T
1 P1(t)+Q1(t)

Hence, the optimal control for system (30) is v1=v∗
1 , where

v∗
1 =− 1

r1(t)
BT
1 P1(t)x1=−�2(t)x1−�(t)u1 (32)

It is simple to show that, under control (32), performance index (31) is identical to that in (28)
and system (30) is identical to system (2) under dynamic control (20). Therefore, control (20) is
shown to be optimal with respect to performance index (28).
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To show optimality of control (24), consider performance index

J ′
2= 1

2

∫ ∞

0
{[z′(�)]TC2q

′
2(�)C2z

′(�)+r ′
2(�)[u′

2(�)]2}d� (33)

It follows from Riccati equation (25) that control (27) is optimal for system (26). Applying the
time transformation �= ln(t− t0+1) to (33) yields performance index (29). �

5. OUTPUT-FEEDBACK CONTROL DESIGN

In this section, output-feedback control designs are presented as the extensions to the state-feedback
results in Sections 3 and 4.

5.1. State-scaling method

Recall that under the state-scaling transformation (10) and the dynamic control (6), subsystem (3)
is mapped into (11), which can be further expressed as

�̇=F ′
2�+B2u2+A∗

2��′(t, x0) (34)

where �′(t, x0)=�(t, x0)+�, and

F ′
2�diag{�(n−2), . . . ,�,0}−�A∗

2

Apparently, the LTI pair {F ′
2,C2} is observable and {F ′

2, B2} is controllable. Upon the availability

of input–output information of x1, x2, u1, and u2: for any initial condition �̂(t0), we can design
the following observer:

˙̂�=F ′
2�̂+B2u2+A∗

2�̂�′+H(�1− �̂1) (35)

where H =[h1, . . . ,hn−1]T is chosen such that matrix F ′
2−HC2 is Hurwitz. It follows from (34)

and (35) that dynamics of estimation error �̃��− �̂ is given by

˙̃�=[F ′
2−HC2+A∗

2�
′]�̃ (36)

Lemma 5.1
Under the choice of H =[h1, . . . ,hn−1]T such that matrix F ′

2−HC2 is Hurwitz, the origin of
dynamics of estimation error (36) is exponentially stable. In addition, there exists a symmetric
positive-definite matrix P̃2(t) satisfying the matrix differential equation

˙̃P2(t)=−CT
2C2−[F ′

2−HC2+A∗
2�

′]T P̃2(t)− P̃2(t)[F ′
2−HC2+A∗

2�
′] (37)

Proof
Note that matrix F ′

2−HC2 is an asymptotically stable matrix, and∫ ∞

t0
‖A∗

2�
′(t)‖2 dt�‖A∗

2‖2c23
∫ ∞

t0
e−2(k1−�)(t−t0) dt= ‖A∗

2‖2c23
2(k1−�)

Thus, the exponential stability of (36) can be readily concluded by invoking Lemma 2.2 of [14].
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On the other hand, by Lyapunov converse theorem, the existence of Lyapunov function �̃T P̃2(t)�̃
satisfying (37) is ensured. �

Using the proposed state observer (35), the corresponding observer-based dynamic control
component u2 becomes

u2(t)=−r−1
2 (t)BT

2 P̂2(t)�̂ (38)

where P̂2(t) is the positive-definite solution to the following Riccati equation: for any bounded
positive-definite matrix Q2(t)

0= ˙̂P2(t)+ P̂2(t)F2(t)+FT
2 (t)P̂2(t)+Q2(t)− P̂2(t)B2r

−1
2 (t)BT

2 P2(t) (39)

Theorem 5.1
Under output-feedback dynamic control (6) and (38), the states of system (1) are globally exponen-
tially convergent and all the closed-loop system signals are bounded. In addition, dynamic-feedback
control (6) and (38) are optimal with respect to performance index Ĵ = J1+ Ĵ2, where J1 is defined
by (15) and Ĵ2 is given by

Ĵ2=
∫ ∞

t0

{
[�̂T �̃T]Q̂2(t)

[
�̂

�̃

]
+uT2 R2u2

}
dt (40)

where

Q̂2(t)=
[

Q2 −P̂2HC2

−CT
2 H

T P̂2 
CT
2C2

]

and 
̂>0 is chosen to satisfy


̂2Q2>P̂2HHT P̂2 (41)

Proof
For subsystem (34), let us consider the Lyapunov function candidate

V2= �̂T2 P̂2(t)�̂+ 
̂�̃T P̃2�̃ (42)

Its time derivative along (35) and (36) is

V̇2=−�̂TQ2�̂− �̂T P̂2B2R
−1
2 BT

2 P̂2�̂+2�̂T P̂2HC2�̃− 
̂�̃TCT
2C2�̃ (43)

By completing the square,

2�̂T P̂2HC2�̃− 
̂�̃TCT
2C2�̃� 1


̂2
�̂T P̂2HHT P̂2�̂

Equation (43) becomes

V̇2�− �̂TQ2�̂− �̂T P̂2B2R
−1
2 BT

2 P̂2�̂+ 1


̂2
�̂T P̂2HHT P̂2�̂<0 (44)
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from which the exponential stability of the closed-loop system (34) can be concluded. In turn, we
have the exponential convergence of state z.

To show optimality, substituting control u2 in (38) with an incremental term �u2 (that is,
−R−1

2 BT
2 P̂2�̂+�u2) into (40), we have

Ĵ2 =
∫ ∞

t0

{
[�̂T �̃T]Q̂2(t)

[
�̂

�̃

]}
dt

+
∫ ∞

t0
(�̂T P̂2B2R

−1
2 BT

2 P̂2�̂−2�̂T P̂2B2R
−1
2 �u2+�uT2 R2�u2)dt

= −
∫ ∞

t0
dV2+

∫ ∞

t0
�uT2 R2�u2 dt

= V2(�̂(t0), �̃(t0))+
∫ ∞

t0
�uT2 R2�u2 dt (45)

which is minimized by �u2=0. To this end, we have that the overall system is optimal with
respect to Ĵ . �

5.2. Time-scaling method

For the time-scaling method, we can also design the output-feedback counterpart of dynamic
control (24). For the ease of observer-based control design, let us redesign dynamic-feedback
control u1 to be

u̇1=−�(t)u1−[�2−0.25�2(t)]x1 (46)

where u1(t0)=cu‖x(t0)‖. Similarly, substitute (46) into (2), it is easy to obtain the closed-loop
solution as

x1(t) = 1√
t− t0+1

{
x1(t0)cos(�t−�t0)+ u1(t0)+0.5x1(t0)

�
sin(�t−�t0)

}

u1(t) = − 1

2(t− t0+1)3/2

{
x1(t0)cos(�t−�t0)+ u1(t0)+0.5x1(t0)

�
sin(�t−�t0)

}

+ �√
t− t0+1

{
−x1(t0)sin(�t−�t0)+ u1(t0)+0.5x1(t0)

�
cos(�t−�t0)

}
To this end, let us introduce the following time transformation:

� � �(t)=2
√
t− t0+1−2

t � �−1(�)=0.25(�+2)2+ t0−1
(47)

It then follows from (3) and (47) that

dz′

d�
=u′

1(�)A
∗
2z

′+B2u
′
2 (48)

where z′(�)= z(t), u′
2(�)=

√
t− t0+1u2(t), and u′

1(�)=
√
t− t0+1u1(t).
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Since the pair {u′
1(�)A

∗
2, B2} is uniformly completely controllable and the pair {u′

1(�)A
∗
2,C2}

is uniformly completely observable, we can then design the following time-varying observer:

˙̂z′ =u′
1(�)A

∗
2 ẑ

′+B2u
′
2+L(�)(z′1− ẑ′1) (49)

where L(·) is a time-varying gain vector to be selected. It follows from (48) and (49) that dynamics
of estimation error z̃′�z′− ẑ′ are given by

˙̃z′ =[u′
1(�, x0)A

∗
2−L(�)C2]z̃′ (50)

The following lemma provides a closed-form design of observer (49).

Lemma 5.2
Estimation error z̃′ of Equation (50) is globally and exponentially stable if gain vector L(�) is set
to be

L(�)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0

∫ �

�−�0
	
(s,�)ds · · ·

∫ �

�−�0

	n−2

 (s,�)

(n−2)! ds

∫ �

�−�0
	
(s,�)ds

∫ �

�−�0
	2
(s,�)ds · · ·

∫ �

�−�0

	n−1

 (s,�)

(n−2)! ds

...
... · · · ...∫ �

�−�0

	n−2

 (s,�)

(n−2)! ds
∫ �

�−�0

	n−1

 (s,�)

(n−2)! ds · · ·
∫ �

�−�0

	2n−4

 (s,�)

(n−2)!(n−2)! ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

CT
2 (51)

where 	
(�,�0)�
∫ �
�0
u′
1(s, x0)ds, �0��∗


,0 for some constant �∗

,0.

Proof
By noting the uniformly complete observability of the pair {u′

1(�)A
∗
2,C2}, the proof is identical

to that in Lemma 5 of [12]. �

It follows from (47) and (49) that the observer in the time t domain is

dẑ

dt
= dẑ′

d�

d�

dt
=u1(t)A

∗
2 ẑ+B2u2+ 1√

t− t0+1
L(�(t))(z1− ẑ1) (52)

Upon having the exponential stable observer (52), the dynamic control for u2 be

u2(t)=− 1√
t− t0+1

r−1
2 (t)BT

2 P̂2(t)ẑ(t) (53)

where P̂2(t)�P̂ ′
2(�(t)) is the solution to the following Riccati equation:

0= dP̂ ′
2(�)

d�
+u′

1(�)P̂
′
2(�)A

∗
2+(A∗

2)
T P̂ ′

2(�)u
′
1(�)−

1

r ′
2(�)

P̂ ′
2(�)B2B

T
2 P̂

′
2(�)+ Q̂2 (54)

Theorem 5.2
Under dynamic-feedback control (46) and (53) with observer (52), system (1) is globally asymp-
totically stable.
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Proof
Consider the Lyapunov function candidate

V ′(x1,u1, z, t)�V ′
1(x1,u1, t)+V ′

2(z, t)

where

V ′
1(x1,u1, t)� 1

2 [u1+0.5�(t)x1]2+ 1
2�

2x21

and

V ′
2(z, t)�zT P̂2(t)z

It follows from (46) and (2) that

dV ′
1

dt
=−0.5�(t)[u1+0.5�(t)x1]2−0.5�(t)�2x21 =−�(t)V ′

1

On the other hand, note that

u2(t)=− 1√
t− t0+1

r−1
2 (t)BT

2 P̂2(t)z(t)+
1√

t− t0+1
r−1
2 (t)BT

2 P̂2(t)z̃(t)

and

u′
2(�)=− 1

r ′
2(�)

BT
2 P̂

′
2(�)z

′(�)+ 1

r ′
2(�)

BT
2 P̂

′
2(�)z̃

′(�)

It then follows that

dV ′
2(z, t)

dt
= dV ′

2(z, t)

d�

d�

dt
= 1√

t− t0+1

dV ′′
2 (z′,�)
d�

= − 1√
t− t0+1

(z′)T
[
Q̂2+ 1

r ′
2
P̂ ′
2B2B

T
2 P̂

′
2

]
z′+ 2√

t− t0+1
(z′)T P̂ ′

2B2
1

r ′
2
BT
2 P̂

′
2 z̃

′

= − 1√
t− t0+1

(z′)T
[
Q̂2+ 1

r ′
2
P̂ ′
2B2B

T
2 P̂

′
2

]
z′+ 2√

t− t0+1
(z′)T P̂ ′

2B2
1

r ′
2
BT
2 P̂

′
2 z̃

′

To this end, recall the exponential stability of z̃′(�), the exponential stability of z(t) can easily be
concluded by Lemma 2 of [15]. �

Following the similar discussions as those in Theorem 4.2 and procedures as those in Theorem 5.1
for state-scaling method, it is easy to show that controls (46) and (53) are optimal with respect to
the performance indices Ĵ = Ĵ1+ Ĵ2, where

Ĵ1(t)=
∫ ∞

t0
[x1 u1]W1(t)

[
x1

u1

]
dt (55)

and

Ĵ ′
2(�)=

∫ ∞

t0

⎧⎨
⎩

[
ẑ′(�)
z̃′(�)

]T

W2(�)

[
ẑ′(�)
z̃′(�)

]
+r ′

2[u′
2]2

⎫⎬
⎭d� (56)
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with

W1(t) =
⎡
⎣0.25�3(t)+�(t)�2 0.5�2(t)

0.5�2(t) �(t)

⎤
⎦

W2(�) =
⎡
⎣ Q′

2(�) −P̂ ′
2(�)L

′(�)C2

−CT
2 L

′(�)P̂ ′
2(�) 
̂CT

2C2+ 
̂�T
0C

T
2C2�0

⎤
⎦

and �0(�−�,�) is the state transition matrix with respect to matrix u′
1(�, x0)A

∗
2, and positive

constant 
̂′ is chosen to satisfy

(
̂′
)2Q′

2>P̂ ′
2L

′L ′T P̂ ′
2 (57)

6. SIMULATION

In this section, simulation results are provided to illustrate the effectiveness of the proposed
state-feedback and output-feedback controls, respectively.

6.1. State-feedback control results

The proposed continuous state-feedback controls are applied to stabilize a front-steering back-
driving mobile robotic vehicle. Its kinematic model consists of four equations:

ẋc = �c cos(�c)�c1

ẏc = �c sin(�c)�c1

�̇c = �c
lc

tan(�c)�c1

�̇c = �c2

where (xc, yc) are Cartesian coordinates of the guidepoint at the center of the rear wheel of the
vehicle, �c is the orientation angle of the car body with respect to the xc axis, �c is the steering
angle, �c is the driving wheel radius, lc is the distance between the two wheel-axle centers, �c1
is the angular velocity of the driving wheel, and �c2 is the steering rate. Under the following
transformations of coordinates and inputs [16, 17]:

x1 = xc

x2 = yc

x3 = tan(�c)

x4 = tan(�c)

l cos3(�c)
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and

�c1 = u1
�c cos(�c)

�c2 = − 3sin(�c)

l cos2(�c)
sin2(�c)u1+l cos3(�c)cos

2(�c)u2

the kinematic model can be transformed into chained form (1) with n=4.
In the simulation, initial condition of the state is set to be x(t0)=[0,−1,�,0]T. In the proposed

state-scaling control, design choices are set to be r1=1, q1=10, r2=1, q2=10, �=1, u1(t0)=10,
and P2(t) is set to be the steady-state solution to Riccati equation (A4). In the proposed time-
scaling control, design choices are selected to be r2=1, q2=10, �=1, u1(t0)=10, and P ′

2(t) is
set to be the steady-state solution to Riccati equation (25).

In Figure 1, simulation results of the proposed continuous controls under perfect feedback
are shown. Clearly, despite of x1(t0)=0, exponential and asymptotic stabilities are achieved,
respectively. The transient under the state-scaling control is somewhat larger but converges faster
than that under the time-scaling control, which is a trade-off between transient overshoot and
convergence rate. In Figure 2, simulation results are presented for the case that a small variation
of 0.01∗sin(t) added to the measurements of x2, x3, and x4 as noises, and they verify that the
time-scaling control is computationally robust in the presence of measurement noises.

6.2. Output-feedback control results

For illustrating the output-feedback controls, let us consider the stabilization of third-order chained
system. In the simulation, initial condition of the state is set to be x(t0)=[0,−0.5,0.5]T. In the
proposed state-scaling output-feedback control, design choices are set to be r1=1, q1=10, r2=1,
q2=10, �=1, u1(t0)=1. The initial conditions for observer is set to [0,0]T. In the proposed
time-scaling control, design choices are selected to be r2=0.1, q2=50, �=0.2, u1(t0)=0.1, and
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Figure 1. Simulation in the absence of any measurement noise: (a) state trajectories under the state-scaling
control and (b) state trajectories under the time-scaling control.
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Figure 2. Simulation results in the presence of a small measurement noise: (a) state responses under the
state-scaling control and (b) state responses under the time-scaling control.
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Figure 3. Simulation results for state-scaling output-feedback control: (a) state responses under the output-
feedback state-scaling control and (b) state estimation errors.

P2(t) is set to be the steady-state solution to Riccati equation (25). The choices for observer are:
initial condition ẑ(t0)=[0,0]T, �0=2, and observer gain vector L(t) in (51). Simulation results in
Figures 3–6 illustrate the effectiveness of the proposed designs.

7. CONCLUSION

In this paper, feedback stabilization problem of nonholonomic chained systems is studied by
investigating uniform complete controllability and developing relevant results. It is shown using
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Figure 4. State-scaling output-feedback controls.
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Figure 5. Simulation results for time-scaling output-feedback control: (a) state responses under the
output-feedback time-scaling control and (b) state estimation errors.

two illustrative examples that linear controllability does not hold for stabilization of the chained
system but can be recovered under either a state-scaling transformation or a time-scaling transfor-
mation. Based on the idea of recovering linear controllability, two new design methodologies using
state- and time-scaling transformations are proposed, and both of them require innovative designs
of dynamic control component u1. The newly proposed state-scaling transformation is globally
singularity free and enables the design of a continuous exponentially convergent control, and the
time-scaling method yields a continuous asymptotically stabilizing control without the need of
using any state transformation. Both methods are used in the state-feedback and output-feedback

Copyright q 2008 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2009; 30:1–25
DOI: 10.1002/oca



22 Z. QU ET AL.

0 50 100 150 200 250 300 350

0

1

2

3

4

5

6

Time (sec)

Figure 6. Time-scaling output-feedback controls.

control designs. All the results are shown to be systematic and straightforward as well as to render
controls of optimal performance.

APPENDIX A: UNIFORM COMPLETE CONTROLLABILITY

Chained system (1) can be expressed as the following LTV system:

ẋ1=u1, ż=u1(t)A
∗
2z+B2u2 (A1)

where matrices A∗
2 and B2 are those defined in (4), x=[x1 zT]T∈�n is the state, and u1 and u2

are control input components. Although control u1 can easily be designed, it is shown in [12] that
systematical design of control u2 calls for thorough study of controllability. Specifically, although
system (A1) is known to be nonlinear small-time controllable [3], better controllability property
needs to be developed for systematic control design. To this end, consider the following generic
LTV system:

�̇=F2(t)�+B2u2 (A2)

where F2(t) is uniformly bounded. Let us define

�̇(t, t0) = F2(t)�(t, t0)

Wc(t0, t f ) =
∫ t f

t0
�(t0,�)B2B

T
2 �T(t0,�)d�

(A3)

which can be viewed as open-loop state transition matrix and controllability Grammian of system
(A2), respectively. Hence, the following standard definition can now be adopted from [12, 18].
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Definition A.1 (Kalman [18])
System (A2) is uniformly completely controllable if the inequalities

0<�c1(�)I�Wc(t, t+�)��c2(�)I

and

‖�(t, t+�)‖��c3(�)

hold for some constant �>0, for some fixed positively valued functions �ci (·), and for all t .

Definition A.2 (Qu et al. [12])
A time function w(t) : [t0,∞)→� is said to be uniformly right continuous if, for every �>0,
there exists �>0 such that t�s�t+� implies |w(s)−w(t)|<� for all t ∈[t0,∞). Time function
w(t) : [t0,∞)→� is said to be uniformly nonvanishing if there exist constants �>0 and w>0 such
that, for any value of t , |w(s)|�w holds somewhere within the interval [t, t+�].

The following lemmas summarize the relevant results in [12].
Lemma A.1 (Kalman [18] and Qu et al. [12])
Consider the solution to the following differential Riccati equation: for some P2(∞)>0 and for
any given 0<q

2
�q2(t)�q2 and 0<r2�r2(t)�r2

0= Ṗ2(t)+P2(t)F2(t)+FT
2 (t)P2(t)+CT

2 q2(t)C2−P2(t)B2r
−1
2 (t)BT

2 P2(t) (A4)

If both pairs {F2(t), B2} and {FT
2 (t),CT

2 } are uniformly completely controllable, solution P2(t)
exists and is uniformly bounded, V (�, t)=�TP(t)� is positive definite, and �T[CT

2 q2(t)C2+
P2(t)B2r

−1
2 (t)BT

2 P2(t)]� is also positive definite.

Lemma A.2 (Qu et al. [12])
Suppose that component u1(t) is designed to be uniformly right continuous, uniformly bounded,
and uniformly nonvanishing. Then, system (A1) is uniformly completely controllable.

To solve the problem of trajectory tracking, u1(t) being nonvanishing can usually be assumed,
and state-feedback and output-feedback controls are designed in [12] to ensure near optimality.
For stabilization (and regulation), control component u1(t) has to be vanishing. For the case that
u1(t) is vanishing, it can be shown that system (A1) is not uniformly completely controllable,
detailed analysis and control design are not carried out in [12] except for providing the following
two interesting examples. Particularly, Example A.1 shows that controllability of (A1) can be
recovered by state transformation (state scaling), whereas Example A.2 provides a case of using
time folding (time scaling) to recover the controllability of (A1).

Example A.1
Consider system (A1) with

u1(t)= 1

�(t)
u′
1(t) (A5)
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where u′
1(t) is uniformly nonvanishing, �(t)>0 for any finite time t�t0, limt→∞ �(t)=+∞, and

1/�(t)∈L1. Obviously, signal u1(t) is vanishing. Nonetheless, uniform complete controllability
can be recovered by a state transformation. For instance, consider system (A1) with (A5),

�(t)=et , u′
1(t)=1, A∗

2=
[
0 1

0 0

]
and B2=

[
0

1

]

Under the time-unfolding state transformation:

z=
[
e−t 0

0 1

]
z′

subsystem of z in (A1) is transformed into

ż′ =
[
1 1

0 0

]
z′+B2u2

which is uniformly completely controllable and can be exponentially stabilized.

Example A.2
Consider system (A1) with u1(t) defined by (A5) except that 1/�(t) /∈ L1. Although signal u1(t)
is vanishing, uniform complete controllability can be recovered by a simple time-scaling transfor-
mation. Specifically, consider the case that �(t)=√

t− t0+1. Let us introduce the following time
scaling:

�=2
√
t− t0+1−2

Under the time-scaling transformation, the subsystem of z in (A1) is mapped into

dz(�)

d�
=u′

1A
∗
2z(�)+B2u

′
2 (A6)

where u′
2=√

t− t0+1·u2. Clearly, system (A6) is uniformly completely controllable for exponen-
tial stabilization.

The objective of this paper is to show that the ideas exposed by the above examples render new
and systematic designs of continuous and optimal controls for stabilizing nonholonomic chained
systems.
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