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Abstract: The problem of determining an optimal feasible trajectory, for a fixed wing flying vehicle moving in a dynamical three-
dimensional space, is addressed in this paper, and an analytical solution is proposed. With explicitly considering the boundary conditions
and kinematic constraints as well as by satisfying the collision avoidance criterions, trajectories are described in terms of three param-
eterized polynomials, and the family of feasible trajectories are found. Then, the desired near shortest trajectory is chosen from the
feasible trajectories by optimizing a performance index with respect to L, norm. This trajectory and its associated steering controls are
achieved analytically. Computer simulations validate that this approach is computationally efficient and real-time implementable.
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Introduction

A lot of research efforts have been directed toward trajectory
planning, and many techniques have been proposed. Among
them, the method of potential field pioneered in Khatib (1986) is
widely used, and its basic idea is that in planning a trajectory,
potential fields are built around obstacles and pathways to expel
the trajectory from obstacles and to bring the trajectory close to
the final destination. Follow-up work can be found in Warren
(1990), Hwang and Ahuja (1992), Kyriakopoulos et al. (1995),
and Wang and Lane (1997), and these results address only the
trajectory planning problem in two-dimensional environments
while three-dimensional (3D) planning can be similarly done but
would require much more computation capability. This problem
together with the issue of local minima often existed in the po-
tential fields makes the potential field method less than an ideal
candidate for real-time path planning in the 3D space.

Also popular are the spline method (Judd and Mclain 2001,
Nikolos et al. 2004) and exhaustive search methods (Fujimura
1989; Herman 1986; Chung and Saridis 1989; Bortoff 2000). In
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the spline method, a sequence of splines are used to generate a
trajectory based on nominal paths in 3D space and no moving
obstacles are presented in the environment. Liking the spline
method, parametrized polynomial methodologies (Lu 1996; Lu
1997; Shen and Lu 2003) are used for getting constrained trajec-
tories but these papers focus on trajectories generation without
considering obstacles. Nonetheless, the underlining idea of pa-
rametrization and optimization is quite general and useful. On the
other hand, in an application of a search-based algorithm, the
space is typically divided into regions and a safe path is found for
the vehicle by starting at the initial condition and successively
searching adjacent regions to the goal. To avoid the need of com-
plete prior knowledge about the environment, an improvement
has been proposed in Kitamura et al. (1995), which combines a
exhaustive search with the potential field method for 3D path
planning in a dynamic environment. Unfortunately, the extension
in Kitamura et al. (1995) does not take kinematic constraints into
account, and a collision-free 3D path planned may not be feasible
for a flying vehicle to follow.

There have been efforts in applying numerical iteration meth-
ods to address the presence of vehicle kinematics and dynamics in
3D trajectory planning. In these methods, obstacle avoidance cri-
terion and kinematic model are typically converted into a set of
inequality and equality constrains, and numerical iterations are
used to approximate or determine the path that satisfies all the
constraints. In particular, semidefinite programing is used in Fraz-
zoli et al. (2001), nonlinear point-mass model is studied in Menon
et al. (1999), and nonlinear dynamic programing is applied in
Raghunathan et al. (2003). All these approaches provide a feasible
and collision free trajectory, but they require perfect knowledge
of the environment and their numerical iterations make them ad-
equate only for off-line path planning.

Many of modern day applications involve vehicles that are
equipped with sensors of limited range but are required to fly
through a dynamically changing environment. In these applica-
tions, it is critically necessary to real-time plan a 3D trajectory
that is collision-free, satisfies motion constraints and boundary
conditions, and is optimized in terms of some operational require-
ments (if possible). To solve this problem, new methodologies are
needed because of the aforementioned limitations of the existing
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methods. To the best of our knowledge, no result has been re-
ported on analytically solving an optimized 3D trajectory in the
presence of both kinematic constraints and static/moving
obstacles.

The objective of this paper is to present a real-time optimized
trajectory generation algorithm for flying vehicles. The algorithm
is based upon polynomial parametrization and online optimiza-
tion. First, by explicitly satisfying kinematic constraints and
boundary conditions, a family of feasible trajectories are analyti-
cally derived by applying polynomial parameterizations. Then,
the free parameter(s), representing the family of collision-free tra-
jectories, are mapped into appropriate intervals, satisfying the col-
lision avoidance criteria. Finally, according to a distance measure
with respect to L, norm, the free parameter is optimized within its
intervals of avoiding obstacles. The optimal solution is analytical
and near shortest. Therefore, the resulting trajectory can be up-
dated real-time as the environment changes are detected.

This paper is organized into five sections. In the “Problem
Formulation™ section, the problem of the real-time trajectory
planning in 3D space and the kinematic model of the fixed wing
flying vehicle are described. In the “Optimal Real-Time Trajec-
tory Planning for Flying Vehicle” section, the real-time trajecto-
ries are expressed by polynomial parametrizations; then, the
optimal collision-free trajectory is determined. In then “Simula-
tion” section, simulations are performed for demonstrating effec-
tiveness of the proposed approach. The conclusion is drawn in the
“Conclusion” section.

Problem Formulation

A typical scenario of trajectory planning is that for any given
fixed wing flying vehicle, its sensing range is limited and its en-
vironmental changes are to appearance/disappearance and/or mo-
tion of obstacles in the vicinity. The vehicle moves from initial
configurations qg=(xg, Yo, /9,00, Yo, W) at time #, to terminal con-
figurations q,= (xf,yf,hf,vf,'yf,lbf) at time t; (tf>to), where
(x,y,h) is vehicle’s coordinates, v stands for its velocity, y refers
to the flight-path angle, and {s denotes the heading angle. For the
illustrative example, the 3D version is depicted in Fig. 1 in which
the vehicle is represented by the sphere centered at
O(7)=(x,y,h) and of radius r, its sensor range is also spherical

and of radius R,, and its velocity is v(z)2[%,y,h]”. The ith ob-
stacle (i=1,...,n) are represented by the sphere centered at point
O,(1)=(x;,y;,h;) and of radius r;. For moving objects, the origin
O,(1) is moving with linear velocity vector vi(1) £ [v, ,v;,.v;.]-
A trajectory is said to be feasible if it satisfies the boundary
conditions, the kinematic model constraint, and the collision
avoidance criterion. The real-time trajectory planning problem is
to find trajectory q(z) to satisfy kinematic model constraint, which
could be described by M(q,q)=0 as detailed shortly in the
“Model of flying vehicle” section, to meet the boundary condi-
tions of q, and qy, and to avoid all the obstacles in the environ-
ment during the motion. To ensure solvability and to simplify the
technical development, the following conditions are introduced:
C-1: Physical envelopes of the vehicle and all the obstacles are
known. Unless stated otherwise, the envelopes are assumed to be
their smallest circumscribing spheres.
C-2: Sampling period T, used by onboard sensors and steering

controls is chosen such that T, is small, that k= (ty=1)/ T is an
integer, that position O, [i.e., O,=(x*,y¥) at t=1,+kT,] of all the
obstacles within the sensing range are detected at the beginning of

3 A .
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Fig. 1. Flying vehicle moving in a dynamic environment

each sampling period, and that their velocities Vfé[vfx,vﬁ 7 are
known and (approximately) constant for e [to+kT,,to+ (k
+1)T,).

C-3: All obstacles must be avoided. The obstacles do not form an
unescapable trap, nor does any of the obstacles prevent the flying
vehicle arriving at q; indefinitely, and the vehicle can avoid any
of the obstacles by moving faster than them. If needed, interme-
diate waypoints (and their configurations) can be found such that
the feasible trajectory can be expressed by segments parameter-
ized by a class of polynomial functions. Furthermore, the feasible
trajectory is updated with respect to sampling period 7 in order
to accommodate the environmental changes.

C-4: Boundary configurations q, and qy have the properties free
of kinematic model’s singularities or intermediate waypoints
could be assigned to avoid these singularities.

C-5: For simplicity, no consideration is given to any of additional
constraints such as maximum speed, minimum turning radius, etc.
Under these conditions, an optimized trajectory planning algo-
rithm can be developed as will be shown in the following sec-
tions.

In applications, Conditions C-1-C-5 can be relaxed in the fol-
lowing ways. Collision avoidance is achieved by imposing an
appropriate minimum distance between any two objects of certain
physical envelopes. If the envelopes are all spherical, the mini-
mum distance is in terms of distance between two centers. Con-
dition C-1 can relaxed to polygonal envelopes since they can be
treated as compositions of small spheres. Though small sampling
period T is required to detect the changes in obstacles position
and velocity, the velocities in Condition C-2 may be estimated
from position measurements. The intermediate waypoints re-
quired in Conditions C-3 and C-4 can be determined by applying
the heuristic approach of either A* or D* search (Stentz 1994,
Stentz 1995). Should the vehicle velocity be limited, it may not
successfully avoid a fast-moving constant-speed obstacle unless
the sensing range is properly increased. Should the vehicle be
subject to certain minimum turn radius and velocity bounds, Con-
dition C-5 can be relaxed by combining the Dubins algorithm
(Dubins 1957; Sussmann and Tang 1991; Boissonnat et al. 1992).
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Fig. 2. Coordinate systems and forces

Graphically, vehicle operations can be represented by Fig. 1,
and the above abstraction accounts for most of the issues encoun-
tered in practice. Also, sampling intervals could vary except that
notations would become more complicated. A performance index
J(q,q) should be chosen to satisfy some physical requirements
such as the shortest path, the minimal energy, and the least time.
To this end, the trajectory planning problem of this paper is math-
ematically formulated as the following optimization problem:

min J(q,q)
s.t. q(t)) = qo
Q(tf) =qr
M(q.q)=0

(x=x)*+(v=y)*+(h=h)>=(ro+r)% i=1,...,n (1)

Model of Flying Vehicle

The investigation in this paper focuses upon a fixed wing flying
vehicle as shown in Fig. 2 (Vinh 1993).

Here force T is the thrust from the engine along the flying
vehicle fuselage. The angle « is the angle of attack. Force L is the
aerodynamic lift which is normal to the direction of velocity v
and in the symmetric plane (lift-drag plane) of the flying vehicle
fuselage. Force D is the aerodynamic drag against the direction of
velocity v. The relationship of the forces is shown in the coordi-
nate systems in Fig. 3.

Point mass M is the origin of two coordinate systems: the
local-horizon system x’—y’—z’ and the wind-axis system x;—y,
—z;. The two rotations from x’' -y’ -z’ to x;—y,;—z, are the head-
ing angle ¥ (about x’) and flight-path angle vy (about negative z,).
The coordinate 7 in the figure is measured from the center of the
Earth. The location of M is expressed by the topocentric (Earth
surface) Cartesian coordinates (x,y,h), where x axis is parallel to
y' axis; y axis is parallel to z’ axis; h=r—rg, where rg is the
radius of the Earth. The angle o, which is the angle between the
vector L and the (r,v) plane, is referred to as the roll, or bank
angle. The resultant force F'; along the velocity vector is given by

Vertical
Plane

zl\
\

r alpha Horizontal
4

(sigma )
Lift-Drag Plane
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A, “."".
Lsin (sigma )\ %
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\U\

Fig. 3. Coordinate systems and forces

Fr=Tcosau—D

The resultant force F normal to the velocity vector and in the
lift-drag plane is given by

Fy=Tsina+L.

The equations of kinematics and motion are

X=v cosy cos s

Y =0 cosy sin s

h=vsinvy
._Fr .
U=— —gsin

M gsmy

. Fycosa gcosvy
T M v

_ Fysino 2)

Mv cos vy

where g=gravitational acceleration; the controls are F, Fy, and

bank angle o. To the pilot, such controls are called “throttle,”
“stick pull-push,” and “stick left-right.”

If x and & are parametrized in terms of ¢, and y is expressed by

x in a closed-form expression, F'r, Fy, and bank angle o could be

solved analytically. Therefore, let X and /& denote the second order
time derivatives of x and &, respectively, and assume dy/dx and
d*y/dx* exist. Given the doubly differential trajectory (x,y,h),
the controls are solved as follows:

M)hj}/cos s
M~x/(cos s cos y) + Mg cos y

o = arctan
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My
Fy=—"T"7"
sin o cos s

 M(E+ i tan 1)

+M(g+ 1)siny+ Fysiny (3)
cos 7y cos s

where

h cos lb)

Y= arctan( -
X

v_f.l.)&COS3lIJ—/l).C.COSl11+/’.le!.JSinlIJ

Y .
2+ h%cos? ¢

Remark 0.1: The coordinate system used, local-horizon, is the
one commonly used in orbital mechanics. The equations of mo-
tion actually represent a flat-earth model. Thus, they can be used
for any airplane.

Remark 0.2: Kinematic model (2) has singularity at vy
=+ /2, which does not occur mathematically or in practice if
the range of v is limited to (—mw/2,7/2); expression (3) also has
singularity at Yi= *= /2, which can be fixed by rotating the coor-
dinate systems.

Optimal Real-time Trajectory Planning for Flying
Vehicle

In this section, the proposed method of trajectory planning is
developed in three steps. First, without considering obstacles,
three parametrized polynomials are employed to describe the tra-
jectories satisfying the boundary condition and kinematic model.
Then, to handle the dynamically moving obstacles, the polynomi-
als are made piecewise and a simple collision avoidance criterion
is developed. These techniques result in the family of feasible
trajectories. Finally, by introducing a L, norm performance index,
the problem is re-formulated as a constrained optimization prob-
lem. The optimal solution is analytical and near shortest so that it
is efficient for real-time implementation.

Trajectory Planning without Considering Obstacles

It follows from Eq. (2) that for the flying vehicle, the kinematic
constraints in horizontal plane are

X=v cosy cos s
Yy =0 cosysiny

- Fysino

= 4
Mv cosy “

and the constraint on vertical axis is

fz:vsin'y. (5)

The state variables x, y, &, and {s are directly affected by v, y, and
Fy gin o Without considering kinematic constraints on v and vy, we
assume v cos vy, v sinvy, and Fy , , to be surrogate controls. It is
obvious that (x,y,{) and & could be controlled independently; in
other words, they are allowed to be planned separately. The fol-
lowing lemma shows the property of the horizontal projection of
the vehicle’s trajectories.

Lemma 1: (Qu et al. 2004) Consider a flying vehicle with
kinematic model (2) moves in an obstacle-free environment.
Given the boundary conditions q, and q for 7,> 1, the projection
of the flying vehicle’s trajectory on horizontal plane is expressed
by a function in the form of y=F(x), which satisfies the boundary
conditions

dF dF
diX) = tan(to), dch)

o X

= tan({) (6)

and the kinematic constraints (4)

In horizontal plane, boundary conditions (6) represents four
constraints. As discussed in paper of the Qu et al. (2004), function
y=F(x) can be chosen to be a parametrized polynomial, at least
third order. The third order polynomial renders a unique trajectory
and gives no helps to avoid obstacles. Polynomials with higher
orders (>3) generate a class of trajectories so that collision-free
trajectories can be chosen from them; in other words, extra free-
dom is provided for avoiding obstacles. Obviously, the fourth
order polynomial is the simplest choice, the framework for trajec-
tory planning will be discussed based on it.

Given 1, 1, and the boundary conditions of vy and s, variable
x is imposed by the following boundary constraints:

F(xo) = yo, F(xf) =Vp

X(to) = X0, x(tf) = Xf, x(to) =0 COS Y COS l’.’o, x(tf)
=V, COS Y, COS Yy

Obviously, a polynomial, no less than third order, in terms of ¢
will match the requirements. This polynomial is shown as the
following equation:

x(t) = ag + at + ayt* + azt (7)
where
lag a; ay as]" = (B))'Y,
with
1 15
X
0 1 24 38 0
B, = ) » 3 |, Yy=|vgcosygcosiy |.
te 1 r
A !
U;COS YrCOS Uiy
0 1 2 3¢ S

Recalling Lemma 1 (Qu et al. 2004), we can express the tra-
jectory projected on horizontal plane, that is, y=F(x), as a fourth
order polynomial, which provides freedom in horizontal plane to
avoid obstacles. The polynomial is

y[x()] = bo + b1x + byx® + byx® + byx* (8)
where
[by by by b3]"=(By) ™' (Y, — Ayby)

with
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(x0)4 I xo (Xo)2 (X0)3 Yo

A 4(x)? 0 1 2x, 3(xp)? tan s,
T (xf)4 ’ T 1 Xr (xf)2 ()Cf)3 ' 2 Vr
4(x)’? 0 1 2x; 3(x)° tan s

Equations (7) and (8) are rewritten as

x()=B)7"Y [1 17 7]

yx()]= (B) (Yo — Ayb )1 x x* X*]+ byx? 9)

Remark 0.3: Note that 7,>1,, thus B, is not singularly. In the
case that xo=x/, B, is not invertible. However, this problem is
easily resolved by specifying an intermediate point x,, # xy=x,
and planning two subpaths. For the subpath between x, and x,,,
the corresponding B, is invertible, and so is B, for the subpath
from x,, to x;. Therefore, the parametrized polynomials are still
applicable.

According to Eq. (5), the variable & should satisfy boundary
conditions

h(to) = ho, h(ff) =hy, h(lo) =0 sin vy, fl(ff) =vysiny,

To satisfy the boundary conditions and provide freedom to
avoid obstacles in the vertical direction, a fourth order polynomial
in terms of time is chosen as

h(t)=C0+C1t+C2t2+C3[3+C4t4 (10)
The coefficients are

[co c1 3 31" =(B3)™ (Y3 Ascy)

where
ho (to)*
Uy Sin 4(1,)°
Y, = 0 81 Yo . As= (021 . B,;=B,
hy ()
vysiny, 4(tf)3
Equation (10) is rewritten as
h() = (B3) ™' (Y3 = Ascy)[1 1 22 ]+ ¢yt (11)

Thus, the trajectories are parametrized by three polynomials
shown in Egs. (9) and (11). Substituting (x,y,4) in Egs. (9) and
(11) into Eq. (3), we obtain the analytical solutions of real con-
trols Fy, Fr, and o. The trajectory obtained is expressed by three
polynomials in terms of time ¢ and two free parameters, b, and c,.
When obstacles are presented in the environment, free parameters
b, and ¢, provide the extra freedom to avoid the potential bump-
ing. Hence the feasible trajectory can be obtained.

Trajectory Planning with Static and Moving Obstacles

Since obstacles’ velocities change dynamically and the range of
sensor is limited, the planned trajectory should be replanned at
once as long as the environment’s information is updated. We
make the polynomials in the “Trajectory Planning without Con-
sidering Obstacles” section piecewise to deal with this problem.

Let Tmétf— t, to be the time for the flying vehicle to complete

its maneuver and 7 be the sampling period such that k= T,/T,is
an integer, that centers of obstacles O; are located at (xf,yf,hf) at
t=ty+kT,, and that these objects are all moving with known con-
stant velocities vf-‘:[vf-‘,x,vf-"),,vf-"h] for te[ty+kT;,to+(k+1)T,],

where k=0,1, ... ,l;— 1. When k=0, the initial condition is q,. For

0<k<k, the initial condition is given by q;
= (X5 Vi P> Ug> Vi, W), Which is the state at the beginning of the
kth sampling period. The terminal condition always is q;. In the
latter part of this paper, all the notations with superscript k or
subscript k mean they are in the kth sampling period. As depicted
in the “Trajectory Planning without Considering Obstacles” sec-
tion, the same method can be used for real-time replanning as k&
increases such that, in the kth sampling period, the trajectories are
described by

x(0) = (B)Y|[1 17 7] (12)
y(x(0) = (B~ (Y5 - ASh[1 x * ']+ bix*  (13)

h(r) = (BY) (Y4 = ASH[1 £ 2 ]+ i (14)
For t € [ty+kT,,ty+(k+1)T,], the collision avoidance criterion
is
(x—xi = v+ (v =y = v, + (= by = v5,7)° = (i + )’
(15)

where T=1—1; for t € [1y,1/].

Except the time interval that collision may happen, it is not
necessary to consider this criterion over the whole time domain.
Using the relative velocity and treating ith obstacle as a “static”
one, the collision avoidance criterion should only be considered
for x/(t) € [x] ,x]], with x/ =x{—r;—ry and X =x*+r,+r,. The rela-
tive position of the flying vehicle at time ¢ is x,-’(t):x(t)—vﬁxﬂr.
Thus time interval [g?,?}k] Cltg.27] is solved from the set
X e [x(t)—v; m—ri= 1o, X(£) =V, T+ T+ 7).

Letting ck=b% for convenience, we obtain the following
Theorem 1.

Theorem 1: Consider a flying vehicle, whose kinematics
model is given by Eq. (2), moving in an environment with dy-
namically moving and static obstacles, and its trajectories are pa-
rameterized by Egs. (12)—(14). Under boundary conditions q, and
q,. the trajectories, avoiding n obstacles, are mapped into
collision-free intervals of b’j, which is

Q2 {phbk ¢ UL (d,dh)} (16)

where El]f,i and Ell‘,l:upper and lower bound, incurring collision to
the ith obstacle, respectively.

Proof: Substituting polynomials (12)—(14) into Eq. (15), it
leads to

G(b'j,t,'r) = min; 74 gz(t,‘r)(bfo2 + gl’i(t,'r)blj +80t,7)=0
(17)

The expressions of g,, g;; and g, ; are as follows:

82= (fl)z + (f3)2
g1:=2f1(f>— Yf— Uﬁy’f) +2f3(fa— h{( - Uf'c,h”")

ko k)2 ko k\2
80.i=(fa—v _vi,yT) +(fa—h —Ui,h’f) +fs,i
where

fi=x*=[1xx* x*](B5) AL,
H=[1x 2% F1(BY'YS,

fr=rt =117 1B AL,
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fa=[11#£1BY'YS,

fs,i=(X—x?—vﬁx”")z—(ri+ro)2~ (18)

It follows from Eq. (17) that g,=0. If g,>0, inequality (17)
belongs to the family of parabolas opening upward and in terms
of bﬁ. Thus, as long as g, >0, a solution to bﬁ always exists for
any one object and, for the ith object, the solution is of the form

bY & (d¥,d¥), where d* and d* are the two roots of the equality
version of (17). In the presence of multiple objects, the final so-
lution is given by Q2{bk: bk ¢ UL (d¥,d))}, and it always yields
at least one finite value for b% unless the objects and their associ-
ated collision regions make the free space disconnected between
initial condition ¢, and terminal condition q. On the other hand,
if g,=0, it follows that f,=f3=0, which leads to g, ,=0. In this

case, the choice of b’j plays no role in making inequality (17)

valid. Studying the properties of Eqs. (13) and (14), we know that

if g,=0, the expressions of Eqgs. (13) and (14) are degenerated
into third order polynomials. Clearly, this only happens at the
boundary conditions. For boundary points, it is not necessary to
consider inequality (17) unless #, and/or ¢, are within the time
collision interval. For the case when 7, € [g:‘,f?‘], collision has
happened already, and nothing can be done. When ¢, € [g;k,f;k],
collision can be avoided by adjusting 7, Other than these two
cases, gg,~>0 and hence inequality (17) is valid even if g, ;=0.

Key properties of these trajectories are shown as follows:

e Solvability: Theorem 1 cannot guarantee the set () always be
nonempty if there are to many obstacles or singularities of the
kinematics model exist. In those case, intermediate waypoints
required in Conditions C-3 and C-4 can be determined by
applying the heuristic approach of either A* or D* search
(Stentz 1994; Stentz 1995). Since A* and D* could always
find the paths, unless the objects and their associated collision
regions make the free space disconnected between initial con-
dition q, and terminal condition qy, the feasible trajectories
can be obtained through Theorem 1 with appropriate interme-
diate points. How to choose these pints will be discuss in other
paper.

* Convergence: In each sampling period, the trajectory is re-
planned and the end boundary constraints are explicitly con-
sidered in the parametrized polynomials (12)—(14) through
matrices Y%, Y4, and Y%. As the solution of b% can always be
determined, we know that trajectories obtained are ensured to
converge to the end point.

e Complexity: Computationally, the proposed approach requires
that inequality (17) be solved for at most N X k times, where N

is the number of the objects and k is the number of sampling
periods. The equality version of Eq. (17) has two closed-form
solutions, and its computational complexity depends only on
the number of boundary conditions imposed (that is, matrix
multiplications are six dimensional). Therefore, the proposed
algorithm is well suited for real-time implementation. In com-
parison, a tree search routine would depend on a product of N,
n, n,, and n,, where n,, n,, and n, are the numbers of grids
along the #, x, and y axes, respectively. Since it is usual that

n,>k and n,,n,> 1, a tree search algorithm is rapidly growing
and, if implerﬁented online, is, in comparison, much more
computationally intensive.

* Robustness: The sensor range of the vehicle is limited, and
motion of obstacles are not modeled or known apriori or pre-
dictable, hence the environment is dynamical. Since the colli-
sion free interval of bﬁ and all control inputs are analytical, and

the solvability and convergence of trajectories are guaranteed,
the ability to deal with dynamics of environment stems from
the fact that the algorithm is fast and new solutions can be
recomputed quickly as new information becomes available.
On the other hand, disturbances, uncertainties and noises could
make the vehicle deviate the obtained trajectory. However, this
problem is resolved by applying a close-loop controller pro-
posed in paper (Qu et al. 2006) or references therein. By em-
bedding the proposed planning algorithm into such a closed
loop control framework, this path planning algorithm becomes
robust.

Remark 0.4: In the vicinity of but not exactly at the boundary
conditions, g, is close to being zero. If 7, and/or t, are very near
the interval [g;k ,?;‘], one can form a proper solution not by solving
inequality (17), but by adjusting the robot speed so that ¢, and/or
1, are not very close to the boundary time instants.

Remark 0.5: When moving objects change their velocities
rapidly, T should be chosen to be sufficiently small. On the other
hand, if the flying vehicle approaches the goal, smaller 7, makes
matrixes BI{, B’;, and B]g closer to being singular. Thus, it is nec-
essary for computational efficiency and robustness that 7 is not
too small.

Remark 0.6: In our proposed method, we assume chk=h%.
Thus, the trajectory planning problem in 3-D space is simplified
to find a free parameter’s solution for avoiding obstacles. This
assumption give us convenience for finding a feasible trajectory.
On the other hand, it makes the result a conservative solution.
Without imposing the constraint b%=c%, the left side of inequality
(17) changes from a parabola opening upward in terms of 5 to an
ellipse in terms of bﬁ and c’j. Obviously, in some sense, the family
of parabolas are special cases of the class of ellipses. Since the
solvability for the case of parabolas is ensured, there always ex-
ists the solution for the pair of 5% and ck. How to solve them will
be investigated in another paper.

Remark 0.7: The trajectories obtained by using polynomial
parameterizations are only first-differentiable continuous, thus
control inputs F and F; are discontinuous among sampling pe-
riods in sequence. This problem can be tackled by adding more

boundary conditions, such as i(r,), X(t,), i(z,), and fi(tf) for k

=0,1,....k, so that Egs. (9) and (11) are increased to fifth-order
and applying the proposed method.

Optimal Feasible Trajectory

A class of feasible trajectories is obtained in section; however, not
all values of b'j are good choices, for instance, some associated
paths have long distances or high control energies. An optimal
trajectory should be chosen from them according to a certain
performance index in term of physical requirements, such as near
shortest distance and near minimal control energy. Also, the word
“near” is needed to satisfy the real-time calculation requirement
and the corresponding performance index should yield its optimal
solution in closed form if possible.

Considering all these issues, a performance index is proposed
as follows:

[f
Jk(bft)=f [(X—XI)Z‘F (y—)’[)z"'(h—h[)z]df, (19)
where

X=X
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(yf —yo)(x —xp) +
.Xf— Xo

Y= Yo

he—ho)(x —
h= ( 0)(x —xp) +hy

xf—xo

The point P(r) 2 (x;,y;,h;) belongs to the “initial straight line,”
that is, the straight line between the start point and the end point.
The performance index, in a form of L, norm, is an integration to
the sum of the square of the coordinates difference, between the
class of parameterized trajectories and the initial straight line. For
the physical meaning, it reflects the deviation of a parametrized
trajectory from the initial straight line. Graphically, it is shown in
Fig. 4. The following Theorem 2 presents the optimal b’ generat-
ing the desired trajectory, which is optimal and feasible in 3D
space for the flying vehicle.

Theorem 2: Consider the flying vehicle, whose kinematic
constraint is in form (2), operating in an environment with static
and dynamically moving obstacles. Its trajectories are expressed
by polynomials (12), (14), and (18), for which only a free param-
eter b’ needs to be determined. Let ) be the set of b% generating
collision-free trajectories, solved from inequalities (17). Then, the
projection of

/,’\ /
1 Initial s i%ht luhe
/

easible Path

Path Pojeefed in
x-yplane

>
o

X

Fig. 4. Relation between the initial straight line and the parameter-
ized trajectory

! ~yo)lx— By ho)(x —
f [f1f2+f3f4—f1yo—f3ho—fl (vr=yo)(x—x) —f3( = hy) (x xk)]dt
bk* U Xp—Xo Xp=Xg (20)
b SR + Pl

on the set () generates near shortest collision-free trajectory while
minimizing performance index (19). The definition of the projec-
tion is

, Vb e Q)

ks
ks k ks k
Py 2 e by b < bk - by

and the corresponding steering control commands are given by

Eq. (3).
Proof: Since x; is chosen to be x, the performance index is
reduced to

tf
T (D) = f [(5() = yi(0)* + (h(2) = hy(1))*]dt = p, (D) + pably + ps
where

i I
)41 =f 6]1(1)dt=f [(fl)2+(f3)2]dt,

k

Iy
2= f g,()dt=2 f
1 1

k

Iy
|:f1f2 +f3fa = f1yo— f3ho
k
(yf_y())(x - Xp)
Xy =X

(h,— ho><x—xk)] "
Xr=Xo

-fi e

Iy iy _ _ 2
p3=f qs(t)dt=f {[fz—w—)’o]

Xr— X
k k ! 0

2
. [ oo o) ho] } y

.Xf_xO

Since f}, f>, f3, and f, all are polynomials in terms of ¢, the
variables ¢q;, ¢,, and g5 are also polynomials in terms of time .
Thus, it is easy to get the analytical expressions of py, p,, and p;
through integration. Moreover, f; and f, are nonzero at each time
instants except for ¢, and t,, and #,>1,, thus p;>0.

Ji(bY) is a second order polynomial in terms of 5%, without
considering obstacles, its minimal value is achieved as

Pi

Then, it is routine to obtain the analytical expression of bﬁ*
shown in Eq. (20). Note that G,-(t,'r,b’j) and Jk(b’j) all are second
order polynomials in terms of blj. This means Jk(bﬁ) is the homeo-
morphism of b% when b% e [bi*,+00) or bt e (—W,bi*]. Analyzing
this property, we know the projection of bi* on the set ) will

generate the minimal J; with considering obstacles. This result
153

means Pffk yielding the optimal solution. Obviously, the optimal
solution b 4** is analytical. o
Remark 0.8: Instead of the initial straight line, if the trajec-
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tory (x*,y*,h*), generated by bkzbi*, is used as the reference

trajectory, given the performance in the form of L, norm, that is,
. r
T (b)) = f [c=x*)+ (y—y*) + (h=n*)1dr  (21)
Ik
where
x*(r) = BYT'YA 1 1 2 7],
YH(e(n) = (B (YA = Abb, )1 x o 3] + b,
h*(r) = (BY) (YA - A’;bﬁ*)[l 1P+ b’;*t“.
the same solution as shown in Theorem 2 is achieved.
Remark 0.9: As the alternatives to index (19), there are other

performance indices. E.g., performance index with respect to the
path length is

J(bh) = fo \/1 + (j—z)z+ (%)iix, (22)

and the performance index associated with the control energy

is

J,(b%) = f fﬂm: f f[(FT+D)2+(FN—L)2]dt, (23)

k

where D=drag force and L=Iift force.

Intuitively, the analytical solution (20) represents a near short-
est trajectory, that is, close to the shortest path with respect to
performance index (22). On the other hand, given #, and #,, the
shorter the length of a path, the smaller the control energy likely
becomes (but not necessarily optimal). Since performance indices
(22) and (23) do not have analytical solutions, performance index
(19) with analytical solution is the better choice for real-time
implementation.

Remark 0.10: The initial straight line can be updated dynami-
cally. In each sampling period, the straight line between point
(X¢»yx»Ny) and point (x;,yg,hy) is set to be the initial straight line
for this period, that is, variables x;, y,, and h; are renewed as
follows:

X=X

(yf_ i) (x —x;)
=+

xf—xk

Vi

he—hy)(x—x
ST ACEEA R
Xf—xk
Similarly, choosing the L, norm as performance index, we can
obtain a new optimal feasible trajectory. Compared to the one

ks . . .
generated by b 4*, it may be smoother and its length sometime
turns shorter, but a general conclusion about which one is better
cannot be drawn.

Remark 0.11: If 2=0, the kinematic model (2) in 3D space
reduces to be a model in horizontal plane

X=u;cos{

Yy =1, sin s

Table 1. Parameters of Helicopters

Items Helicopter 1 Helicopter 2 Helicopter 3
Pos. (6.7,5.7,4.2) (12.2, 5.0, 2.6) (22.0, 14.1, 9.0)
R 2 1 0.8
Velocity (0, 0, 0) (-0.4,0.4,0.2) 0.1, 0.2, —0.3)
(r=0-10)
Velocity (0, 0, 0) 0.2, -0.1, -0.4) (0.2,0.2,0.4)
(r=10-20)
Velocity (0, 0, 0) (1,0.2,04) (0.1, -0.3, -0.3)
(r=20-30)
Velocity (0, 0,0) 0.6, 0.2, 0.2) 0.4, 0.4, -0.2)
(r=30-40)

U=u,

where u;=v cosy and u,=Fy sin o/ Muv cos . This reduced form
is the same as the kinematic model of a tricycle, whose trajectory
planning problem is discussed extensively in literature.

Remark 0.12: The geometrical model of the obstacles does
not necessarily have to be balls. Suppose that the surface of the
ith obstacle located in 3D space are described by a closed alge-
braic implicit defining function in the following form
Fi(x,,y,,h;)=0. For the flying vehicle, its most dangerous point
Xp, Yp, hp can be described as a function of its configuration-
space variables. The collision avoidance criterion (15) is changed
to

Fi(xp,yp.hp) =0

Given some assumptions to let the above inequality be a first or
second-order Equation in terms of by, the proposed method still
works.

Remark 0.13: Provided that all the obstacles in Remark 0.12
are static, the problem becomes planning a trajectory in an un-
known terrain, which is also discussed extensively in literature.

Remark 0.14: This approach can be applied to the trajectory
planning for underwater robots since the kinematics models are
similar.

Simulation

This section shows the simulation results obtained from the pro-
posed approach. Maybe this simulation looks simple but it is rep-
resentative since a much more complicate case can be
decomposed to simple cases with assigning intermediate points.
In the scenario of simulation, all quantities conform to a given
unit system, for instance, meter, m/s, etc. The sampling period is
chosen to be 7,=1 s for convenience. Three helicopters shown as
obstacles are presented in the scenario: one is hovering and the
other two are moving. The flying vehicle, shown as the fixed wing
aircraft, and three helicopters (obstacles) are drawn every 10 s.
The velocities of helicopters will change in each 10 s and the
settings are as follows:
e Fixed wing aircraft (flying vehicle) parameters: ro=1 and R,
=10.
* Boundary conditions: q¢=(0,0,0,1,m/6,7/4) and qy
=(30,20,10,2,m/10,7/5); 1,=0, and #,=40.
e Helicopters (obstacles) parameters: (shown in Table 1).
Figure 5(a) shows the whole trajectory evolutions of the fixed
wing aircraft and the paths of helicopters in 3D space. Their lo-
cations are shown in every 10 s. Figures 5(b-f) are snapshots at
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®

Fig. 5. Simulation results with different b’j: (a) trajectories comparison of the fixed wing aircraft in 3D space; (b) snapshot at /=0 s; (c) snapshot
at =10 s; (d) snapshot at r=20 s; (e) snapshot at /=30 s; and (f) snapshot at =40 s
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Fig. 6. Evolvement of the optimal trajectory: (a) optimal trajectory obtained at =0 s; (b) optimal trajectory obtained =10 s; (c) optimal
trajectory obtained at =26 s; (d) final optimal trajectory; (e) controls Fy and Fy of the fixed wing aircraft; and (f) angels ¢, -y, and o of the fixed

wing aircraft

each associated instant. In these figures, Path 1 represents the
trajectory that was calculated without considering the helicopters,
Path 2 is the trajectory generated by arbitrarily chosen bﬁ from the
feasible solution set, and Path 3 stands for the optimal trajectory
taken by the fixed wing aircraft. We can see that if the fixed wing

aircraft follows Path 1, it will collide with all the three helicop-
ters. Path 2 can avoid the collision but it is a long swing. By
applying our proposed optimal solution, Path 3 can successfully
avoid such collision and shorten the path length effectively. The
optimal solution of blj is analytical such that this approach is very
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attractive computationally. It is a good real-time trajectory plan-
ning algorithm for flying vehicles in 3D space.

Figures 6(a—d) show the dynamical calculation of the optimal
path. In Fig. 6(a), it is clear if the fixed wing aircraft follows Path
1 planned at =0 s, it can avoid Helicopter 1. However, it will
collide with Helicopter 2, since it does not take Helicopter 2 into
account at the first sampling period according to the limited sen-
sor range R=9. In Fig. 6(b), the path is replanned when Helicop-
ter 2 is detected and a potential collision exists. Path 2 is the
replanned results obtained at =10 s. It does not consider Heli-
copter 3 for the limited sensor range; thus potential collision may
exist. Figure 6(c) shows a new Path 3 for shunning the potential
crash with Helicopter 3. This path is obtained at =26 s. The final
path (Path 4) is shown in Fig. 6(d); it is almost the same as Path
3. Figures 6(e and f) show the fixed wing aircraft’s control com-
mand and the flying angles, respectively.

Conclusion

A method for planning the trajectory of a flying vehicle moving in
a dynamically changing environment has been developed. It is a
parametrization approach, since the real-time and feasible trajec-
tory is expressed by parametrized polynomials. The only require-
ment to obtain the solution of an adjustable parameter makes it
possible to generate the realtime trajectory. Key features of this
approach are (1) parametrized trajectories are employed to satisfy
the boundary condition and kinematic equation; (2) collision-free
trajectories are mapped into the associated intervals of the adjust-
able parameter; (3) an optimal trajectory, with performance index
in the form of L, norm, for avoiding obstacles is analytically
obtained.

This approach was illustrated in an example showing the ap-
plicability to avoid static and moving obstacles in 3D space. Also
demonstrated was the effectiveness of the optimal solution. In real
applications, this algorithm is successfully applied in the trajec-
tory planning software package of L-3 Communications
Corporation.
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