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Robust Control of Rigid-Link Flexible-Joint
Robots with Redundant Joint Actuators

Michael M. Bridges, Darren M. Dawson, Zhihua Qu, and Scott C. Martindale

Abstract—In this paper, we present an approach for designing
robust tracking controllers for rigid-link flexible-joint (RLFJ)
robot manipulators with redundant actuators in the joints. With
the proposed controller, we prove that the link tracking error
is globally uniformly ultimately bounded (GUUB) in spite of ad-
ditive bounded disturbances, parametric uncertainty, and other
modeling uncertainty. We also illustrate how the load at each
joint is shared by two actuators. Finally simulation results are
presented to illustrate the effectiveness of the proposed controller.

I. INTRODUCTION

N recent years control engineers have become increasingly

interested in the robot tracking problem. As a result many
robot controllers have been developed which compensate for
uncertainty in the nonlinear second order dynamics commonly
used to represent rigid-link (RL) robots. Most of the more
rigorously developed nonlinear controllers for RL robots fall
into two categories, adaptive control and robust control. The
interested reader is referred to [1] and [2] for review papers
in these two areas.

In addition to developing controllers that can achieve good
position tracking, researchers have also been interested in
designing manipulators that can handle greater payloads. The
use of gearing is a well established means for accomplishing
such an objective; however, one of the biggest disadvantages
in the use of standard gearing is the phenomena of “backlash.”
Harmonic drives are a special type of gearing that have been
shown to be virtually “backlash” free while still providing
high gear ratios. A disadvantage of harmonic drives is that
compliance or mechanical flexibility is introduced. A less
common method for a further increase in the manipulator
payload capacity is the use of the redundant actuators in
the joints. This method effectively increases the maximum
payload by distributing the weight between each actuator.
However; two actuators coupled directly to one robot link
further complicates the control problem by introducing ad-
ditional actuator dynamics. Therefore, a control is required
that can constructively generate torques for both actuators
while ensuring good tracking. In general there is no particular
weight savings gained by using two smaller motors instead
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of a single larger motor, however the main benefit lies in
the protection against total manipulator failure. That is, if one
actuator should fail, the redundant actuator can be utilized to
provide the required torque to maintain manipulator operation.
Such reliability is often required in robotic space applications
and a discussion of a manipulator equipped with redundant
joint acutators can be found in [29]. This report details the
efforts at Kennedy Space Center, where the robotics group has
designed and constructed an Automated Radiator Inspection
Device (ARID), to inspect radiator panels on the orbiter.
Another potential benefit that has yet to be investigated is the
possible cancellation of gyroscopic terms that are introduced
by the spinning actuators. When formulating the robot/acutator
model most commonly used in the literature, Spong, in [11],
introduced a model simplification by neglecting the actuator
gyroscopic terms. It is conceivable that with the introduction
of an additional actuator, the mechanical configuration of the
harmonic drive gearing can be arranged so that each actuator
spins in opposite directions but applies positive torque to the
link. The actuators gyroscopic terms would cancel each other
out thereby making Spong’s simplified model even more valid.
Since this paper is dealing mainly with controller design, we
will address the manipulator design issues in future work.
Early work regarding the compensation of joint flexibilities
can be found in [19]-[23]. Some recent work is now summa-
rized. In [5], Readman shows that there exists a decentralized
velocity control law for RLFJ robots which asymptotically
stabilizes the flexible joint dynamics if the actuator drive
inertia matrix is sufficiently small. In [6], Mrad designs an
adaptive controller for RLFJ robots; however, the proposed
control law is not well defined. Furthermore, since the control
law contains variable structure-like terms, the control input
will exhibit an undesirable chattering phenomenon. A com-
prehensive study of adaptive control of RLFJ robots is given
in [30]. In [7], Ghorbel and Spong show asymptotic link
tracking can be achieved by modifying an RL adaptation law
and by assuming the desired link trajectory approaches zero
as time approaches infinity. In [17], Benallegue and M’ Sirdi
design a GAS adaptive controller based on the passivity
approach; however, this approach requires measurement of
link acceleration and link jerk. In [18], Chen and Fu use an
approach similar to the one given in this paper; however, the
stability result is local, and the controller requires measurement
of acceleration. In [3], Dawson, et al. design a hybrid adaptive
RLFJ controller that achieves GAS position tracking. The
controller is hybrid in the sense that an adaptive technique
is used to compensate for parametric uncertainty in the robot
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model while a robust technique is used to compensate for the
actuator dynamics. In [4], Dawson ef al. design a robust RLFJ
controller that compensates for parametric uncertainty, model
uncertainty and unknown bounded disturbances in both the
manipulator and actuator dynamics. In [28], Lozano designed
an adaptive controller for n-link RLFJ robots.

It should be noted that recently, in several theoretical control
papers [24]-[27], researchers have designed new control tech-
niques for systems that meet the so-called extended matching
conditions. In fact, one can easily establish that the RLEJ
controllers in [3], [4], [17], [18), and [28] are directly related to
these new control techniques. This paper extends the results
obtained in [4] to a RLFJ manipulator with redundant joint
actuators. That is, we design a robust tracking controller for
two actuators driving the same joint. We then show that the
link tracking error is GUUB stable in spite of parametric
uncertainties and additive bounded disturbances. The paper is
organized as follows. In Section II, we describe the robot and
actuator models and give some mathematical preliminaries. In
Section III, we design a robust tracking controller for each
actuator that compensates for uncertainty present in the RLF)
model and present the stability analysis. In Section IV, we
discuss load sharing ramifications. Finally in Section V, we
present simulation results to validate the effectiveness of the
proposed controller.

Il. MATHEMATICAL PRELIMINARIES

In this section, we give the model for RLFJ robots with
redundant actuators in each joint. We also present some
physical properties that will be exploited in the subsequent
robust control synthesis. The model for the RLEJ robot given
in [11], modified to include an additional motor and gearing
(see Fig. 1), is given by

M(9)§ + Vm(a,9)d + G(q) + F(4) + Ty,
= K1(T1gm1 — ¢) + K3(T2¢mz — q),

J1Gm1 + B1gm1 + T1K1(T1gm1 — q) + Ty = Uy,
and

2.1
22)

J2‘jm2 + B2q.m2 + F2K2(F2(Im2 - Q) + T = Um2. (2.3)

M(g) is an n x n link inertia matrix, Vin(g,4) is an n x n
matrix containing the centripetal and Coriolis terms, G(q) is
an n X 1 vector containing the gravity terms, F(g)isannx1
vector containing the static and dynamic friction terms, 77, is
an unknown bounded disturbance torque at the link level, and
g(t) is an n x 1 vector representing the link displacements.
Given the addition of an extra actuator to each joint, we
now introduce the subscript i to differentiate between actuator
parameters. Let ¢ = 1 represent the primary actuator in each
joint and i = 2 the secondary actuator. We can now define
K as an n X n positive-definite constant diagonal matrix used
to denote the joint flexibilities in each actuator, and I'; to be
an n X n positive-definite constant diagonal matrix used to
represent the gear ratio in each actuator. Similarly, g,n;(t) is
an n X 1 vector representing the actuator displacements, J;
is an n x n positive-definite constant diagonal actuator inertia

Fig. 1. Model of a redundant flexible joint robot.

matrix, B; is a positive-definite constant diagonal n X n matrix
used to represent the actuator damping, T,,; is an unknown
bounded disturbance torque at the actuator, and Um;(t) is an
n X 1 control vector used to represent the torque provided by
the primary and secondary actuators in each joint.

For the remainder of this paper, we will find it convenient
to represent the manipulator dynamics of (2.1) as

M(q)§ + Vim(q,4)d + G(q) + F(4) + Ty,
= K1(gm1 = T7'q) + K2(gmz — T3 1q)

where K; = K,I; represents a modified diagonal positive
definite flexibility matrix.

The robotic controls literature [8] has placed much emphasis
on the use of physical properties of the robot manipulator to
aid in stability analysis. Therefore, we now note some of these
properties.

24

Property 1—Inertia

The inertia matrix M(g), defined in (2.1), is symmetric,
positive definite, and uniformly bounded by a function of g,
ie.,

my|le||* = A min {M(q)}|e]|? < =7 M(q)=
S Amax {M(g)}|z]|* = my(q)lle|%; (@.5)

where my, is a positive scalar constant, my(g) is a positive
scalar function that depends on the mass properties of the
specific robot, z is an arbitrary n x 1 vector, and || - || is used
to denote the Euclidean norm [16].

Property 2—Skew Symmetric

A useful relationship exists between the time derivative of
the inertia matrix M(q) and the Coriolis/centripetal matrix
Vin(g, 4). The following quadratic form is equal to zero:

2T (M(q) — 2Vin(g,4))z = 0 (2.6)

for an arbitrary n x 1 vector z.

It is important to emphasize that in many real world
problems, one cannot always exactly determine the parameters
in an assumed model. In spite of this uncertainty, it is assumed
that bounds do exist for each of these “uncertain” quantities.
For example, the modified joint flexibility matrix, defined in
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(2.4) for each set of actuators, is assumed to be bounded as
shown

krillzl)? = Amin {K;}||z]|? < sT Kz

< Amax {K}||z)|? = Fvi||z]|% 2.7
where kz,; and Ew are positive scalar bounding constants that
depend on the flexibility constants and gear ratios associated
with each actuator. It will also be useful to define a composite
matrix as

Kr=Ki+K; (2.8)
where
krollzl)? = Amin {Kr}||z|]? < 27Kz
<max {Kr}|z|]® = krollell®, 2.9
and
kri =kpi+krz and kry =kui+ kv (2.10)

The actuator inertia matrix J; in (2.2) and (2.3) can also be
bounded by

jrillzl)? = Amin {J}|z||? € 2T Tz

< Amax {J}H|z]? = juillz])? @11
where j; and jy; are positive scalar bounding constants. The
parametric bounds given by (2.5), (2.7), (2.9), and (2.11) will
be exploited later in the controller development.

III. RoBUST CONTROL DEVELOPMENT
AND STABILITY ANALYSIS

In this section, we design a corrective robust tracking
controller for the actuators in each joint to compensate for
uncertainties in the RLFJ robot model. The proposed controller
is robust with regard to parametric uncertainties and additive
bounded disturbances while correcting for joint flexibilities.
That is, in spite of these model uncertainties and additional
actuator dynamics, we show that the link tracking error has
a GUUB stability property. We then illustrate the usefulness
of this stability property by showing how the controller gains
can be adjusted to improve tracking performance.

A. Controller Development

We now formulate the error system that will be used
in the stability analysis, keeping in mind that our control
objective is to maintain good link position tracking in spite
of parametric uncertainties, additive bounded disturbances,
and joint flexibilities. We start the controller development by
defining the link position tracking error to be

eL =qd—¢ 3.n

where ¢4 is an n X 1 vector used to represent the desired
link position trajectory. We will assume that g¢ and its first,
second, and third derivatives are all bounded functions of
time. This assumption on the “smoothness” of the desired
trajectory ensures that the controller, to be defined later,
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remains bounded. We begin the error system formulation by

defining an n x 1 filtered tracking error vector [8] as
rp =aer +€ér (3.2)

where « is a positive scalar constant. We can now rewrite
(2.4) in terms of (3.2) to yield

M(q)ir = —Vim(g,d)rL + wr — K121 = Koz, (33)
where
wr, = M(q)(§a + @ér) + Vin(q,4)(4a + aer)
+G(g) + F(q) + Tz, (34)
=gm —T7'¢, and  22=gm2—I7'¢. (35

One can see that there is no control iﬂ)ut in (3.3); therefore
we will add and subtract the terms 1/2K ;ur, on the right-hand
side of (3.3) for i = 1,2 to yield

M(q)rr = V(g d)rr + wr — 3K1ug
+ K (3ur —z1) - ;Kaur
-I-fz(%uL — 22) 3.6)

where the embedded control input uy, is an n X 1 vector to

be defined later. This embedded input can be viewed as a

robust controller that specifies a link torque. If this control

torque could be applied directly to the links, it would provide
good link tracking in spite of model uncertainty and additive

bounded disturbances. Given that the only way to supply a

torque to the link of the robot is through the two actuators,

we formulate a strategy that forces each actuator to provide
approximately half of the desired control torque. As we will
see later, this controller uz, is actually embedded inside the
overall control strategy which is designed at ., and U2,
the torque input level for both joint actuators.

From (3.6), we can see that if we define two perturbation
terms as

0 = %’U,L — Z; fOI"i = 1, 2 (3-7)

then our goal is to force 7; to become “small” (i.e., GUUB).
One can see from (3.6) that when this is accomplished, each
actuator is providing approximately its share of the desired
control torque. This control torque will be specified by a
previously defined robust control algorithm [13] that has been
shown to ensure GUUB link tracking.

To force n; to be GUUB, the dynamics of the perturbation
terms are needed; therefore, we differentiate (3.7) to yield

. 1. .
M = EuL—zi‘

(3.8)

As before we can add and subtract an n X 1 vector u,; to
the right-hand side of (3.8). In addition, we add and subtract
K,ry, to eliminate cross terms that appear later in the stability
analysis to yield

0 = Wi — 71*7'[, — Up; + (um‘ - 21') 3.9
where

wni = 3L + Kirp. (3.10)



964 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 7, JULY 1994

The n X 1 vector u,; is defined to be another embedded
robust controller of the same form as uz, but designed to
make 7; GUUB. An examination of (3.9) reveals a second
perturbation term (u,; — #;) which also needs to be controlled.
This perturbation term is defined as follows:

Hi :um- —Z'z'. (3.11)

If we proceed as previously outlined, (3.11) is differentiated
to obtain

IL; = i — 2. (3.12)

We can now substitute the actuator dynamics of (2.2) and
(2.3) into (3.12). In addition, we can utilize (2.1) and (3.5),

multiply both sides by J;, and add and subtract 7; to the
right-hand side for cross term elimination to yield

Tl = Wei = M — Ui (3.13)
where
Wai = Jitigi + Bigmi + DiKi(Tigmi — q)
+ T + 1 + JTT M ™(q)
: [7121 + K20 — Vim(g,4)4 — G(q)
- F(g) - T1]. (3.14)

The n X 1 vector u,,; is the final robust controller applied
to each actuator at the torque input level. This controller is
designed to force II; to become GUUB.

Now that we have formulated the error system [i.e., (3.6),
(3.9), and (3.13)], we define the robust controllers for i = 1,2
to be

—1
ur, =krglkrye(llz|)re + vz],
tni = kgiv2(||])m: + vgi
and

Umi = kriv2 (|2} + vri, (3.15)

* where kr,kni, and kr; are positive gain constants, r =
[#E, 0¥, ¥, O7,1F)7, and ¥(||z||) is a strictly positive
scalar function defined as follows:

v2(||zl) > 3 max {m2(g), 1, ju1, jv2}- (3.16)

The auxiliary control terms vr,, Uy, and v,; defined in (3.15)
are used to compensate for parametric uncertainty, additive
disturbances, and actuator dynamics. These auxiliary con-
trollers are defined as [12]

g = 2rpp?
prllroli+ec’
17}l oms + €’
and
Hip?ri
Upi = m, 3.17)

where €1, €,;, and er; are positive scalars which are adjusted
to achieve a desired tracking performance. The positive scalar

functions pr, p,: and px; are used to “bound” the uncertainty
in the RLFJ model. These bounding functions are defined as

oL > llwell, oni 2 |lwnll, andpri > |lwal|  (3.18)

where wr,, wyi, and wy; are defined in (3.4), (3.10), and (3.14).

Remark 3.1: Later in this section, we will discuss how
to calculate the bounding functions in (3.18). For now, we
simply assume their existence. It should be emphasized that
the bounding functions depend only on measurements of
Gmiy Gmi, - and ¢. At first, it may appear that the bounding
functions pp; and p,; require maeasurement of link accelera-
tion and jerk because of the terms %, and ty; given in (3.10)
and (3.14). However, we will show later that we only require
an upper bound on these terms which can be written entirely
in terms of Imi, q.mi) q, and q

B. Stability Analysis

We now show that the robust controllers given in (3.15)
have a GUUB [12] property for the tracking etror systems
given by (3.6), (3.9), and (3.13). It should be emphasized that
the robust controllers do not require exact knowledge for any
of the dynamics described by (2.1), (2.2), and (2.3). Due to the
fact that wy,, wy:, and wx; in (3.4), (3.10), and (3.14) contain
unknown parameters and disturbances, there may be some
“uncertainty” associated with these terms. However, using the
bounds on the uncertainty given in (3.16) and (3.18), the
robust controllers given in (3.15) still ensure good tracking
performance.

Using Lyapunov stability analysis, we now show that the
link position tracking error defined by (3.1) is GUUB.

Theorem 3.1: The state vector z = [r%,n¥,n3, 11T, 117]
is GUUB in the sense of Lemma A.1 in Appendix A with

T

A1 =g min{my, 1,511, J12}, (3.19)
v(llz|)) > § max {ma(q), 1, ju1, du2},  (3.20)
A3 = min {%k[,, knlvk'rﬂv k‘rrlakw2}7 321
and
€=€L + €1 + €2 + €x1 + €n2. (3.22)
Proof: Select the Lyapunov function candidate
V=2TPx (3.23)
where the 5n x 5n matrix P is given by
P = %b]'OCk dia'g{M(q)7Ian»Ian7 Jl, JZ}, (324)

and I,,,, is the n x n identity matrix. The Lyapunov function
given in (3.23) can be bounded as

Mllel? € V(a(2),t) < vl |l

where A; and y2(||z||) are given in (3.19) and (3.20). Differ-
entiating (3.23) with respect to time yields

V =3irIM(q)re + riM(9)i

(3.25)

2
+ 3" [ + TF ST (3.26)

=1
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Substituting (3.6), (3.9), (3.13), and (3.15) into (3.26) and
using Property 2 yields

V=3 [a
=1
— i ky(llzllm: — T kria(llal DL tr
2
+ Z [rTEmi + 0T wyi — 0l vgi — ] Kirp
=1
+"71 H +H ’w7r141-I VUri —

5 =1

TK ik (krye(l|zl))re + vr)

107 ;). (3.27)

We can now give an expression for the upper bound on V as

2
. — 1
V < =v(llall) Y- [$Amin (K} ershelirz?

=1
+kmmm2+mnmmﬂ

HMWMHZP-KhmﬁMW%H

—mw+WMWM—Ww] (3.28)
Lemma B.1 from Appendix B illustrates that the third and
fourth line of (3.28) can be upper bounded as

IMWMHZP-KMW&WWWH

|| [Jwnil] = T vmi] <€, (3.29)

- Th' Ui +

where ¢ is defined in (3.22). From (2.8), 2.9), (2.10), (3.28)
and (3.29), we can establish the following upper bound on V:

V < m(|lel))2f Qn + € (3.30)
where 5 X 5 matrix @ is defined by
Q = diag {3kL, k1, kn2, kx1, kr2}, (3.31)
and
n = [[lrzll; Ml el [T ), 11T (3.32)

Since all of the controller gains are positive, the matrix Q

defined in (3.31) is positive definite; consequently, it can also

be shown that

~27QXp < A min{Q}|[za|* and |za|* = [|z|*.

] (3.33)

Using (3.33), we can obtain a new upper bound on V' written as

V < dave(|lz)le])? + e (3.34)

where A3 = A min {@} is defined in (3.21). Applying Lemma
A.1 to (3.25) and (3.34) yields Theorem 3.1.

O
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Remark 3.2: Theorem 3.1 not only allows us to show that
z is GUUB but also allows us to comment on its transient
response. Specifically, Lemma A.1 gives an expression that
shows how [|z|| is bounded by an exponentially decaying
envelope which forces it into a ball where it remains for all
times thereafter. The rate at which this envelope decays is
defined by )3 given in (3.21). An examination of (3.21) shows
us that we can speed up the transient response by increasing
the controller gains kr,, ky1, kn2, kx1, and k2. It should also
be noted that we can control the size of the ball in which ||z||
ultimately remains. The size of this final ball is defined as

€
By= /.
0 A1A3

As we can see from (3.35) and (3.21), increasing the
controller gains also reduces the size of the error ball. Because
we have control over e which is defined in (3.22), we can also
reduce the size of the error ball by making this parameter
small. The only other parameter which has an effect on the
size of the error ball is A\; which is determined by the robot
and actuator model parameters.

Remark 3.3: The stability result given in Theorem 3.1
informs us that the vector ||z|| is GUUB; and consequently,
the filtered link tracking error ||rz}| is GUUB. However, we
are really more concerned with the response of the position
tracking error defined in (3.1). Note that from Lemma A.l,
we can obtain a upper bound on ||z|| and ||rz}| as

(3.35)

lIrL(®)]] < le(®)]] € Va+ Vbexp(=Ast/2)  (3.36)
where
_ €
BRYEYS
p=|2EOD e - 5 e

A1, v2(||||), and A3 are defined in (3.19), (3.20), and (3.21).
Now it is easy to show by standard linear control arguments
[16] and the definition of the filtered tracking error in (3.2) that

lleL(8)]| <nexp (—at)ller(0)]]
+n/ exp (—at + ao)||rL(o)|| do (3.38)
0

where 7 is equal to the number of robot joints. Substituting
(3.36) into (3.38), it is easy to show that

llez(t)]| < nexp (—at)|ler(0)]|
+ n£[1 — exp (—at)]
2n\/—

* 3=

[exp( —A3t/2) — exp (—at)]. (3.39)

From (3.39), it can now be shown that increasing the
controller gains kr,ky1,kn2, kx1, kr2, @ and decreasing e,
speed up the transient response of the position tracking error
and also decrease the size of the ball that the position tracking
error is ultimately confined in.
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Remark 3.4: It should be noted that we can obtain an upper
bound on the performance of the velocity tracking error (er)
by simply applying a triangle inequality type argument [16] to
(3.2). Specifically, we can state that

llee @I < allec @Il + llrz(@)]I-

We can now use (3.36) and (3.39) to develop a GUUB stability
argument for the velocity tracking error.

(3.40)

D. Formulation of Bounding Functions

We now illustrate how the bounding functions given in
(3.18) can be found. With regard to pr, > ||wy||, it has been
shown [13] that

pr = Gllegll? + Glles)| + o (3.41)

where (2, (1, and (o are positive scalar constants that depend
on estimates of the upper bounds on parametric quantities such
as the largest payload mass.

We will not give a general expression for Pnls Py2, Prls
and pno; however, we will outline a procedure for finding
this function. By using (2.4), it can easily be established that
all of the dynamics in (3.10) and (3.14) can be bounded by
combinations of constants and functions of the measurable
quantities g, 4, ¢m1, gm2, Gm1, and ¢,,. For example, we are
required to bound w,; and wy2 defined in (3.10). Since Wh;
contains the term %’dL, the corresponding bounding function
Pqi defined in (3.18) would seem to be a function of link
acceleration. However, since we only need an upper bound
on acceleration, we can use (2.4) to obtain this upper bound.
Specifically, by rewriting (2.4) and (3.5) into the form

G=M(q)7' K121 + K22,
= V(9,99 — G(a) - F(¢) — Ty).
We can use the right-hand side of (3.42) to bound g by

constants and functions of the measurable states. That is, we
can define an upper bound on link acceleration as

(3.42)

141l < fa(2, 6; gm1; Gma2)- (3.43)

As aresult of (3.43), the bounding functions Pn1 and ppa do not
depend on link acceleration. By utilizing (3.43), the bounding
functions pr1 and p,2 defined in (3.18) can similarly be found
to be only dependent on g, ‘j’ dm1,9m2, lev and ’jm'b
Remark 3.5: The calculation of the robust controllers de-
fined in (3.15) is slightly complicated by the fact that we must
calculate bounds on the derivative of the embedded robust
controllers (i.e., uy, Uy;). In general, the embedded controllers
will be functions of the Euclidean norm of states; therefore,
in general, the derivative of these terms are not well-defined.
This problem can be eliminated by redefining v; in (3.17) to

2rp p?
v = LPLs

= — “TLPLs 3.44
pomllrzll €2 @44

where prs and pr,, are the same positive scalar function
defined in (3.18) (i.e., pz) but with the standard Euclidean
norm being replaced by the norm functions |||, and || ||,

respectively. The norm functions || - ||s and || - ||, are defined

to be
llylls = VyTy+o

and

19llm = Vy"y +0 - Vo

where o is a small positive constant, and y is an arbitrary
n X 1 vector. Note that as a result of (3.45) and the standard
definition of the Euclidean norm, we have

(3.45)

llylls =1yl = [lyllm (3.46)

and

PLs 2 PL 2 PLm. 3.47)

It should be noted that the redefining of vz in no way
destroys the stability result given by Theorem 3.1. This can
be established by noting that

2||rll*ol, 2||rl|?03 .
prmllrLllm + €L = prllro|] + €L

(3.48)

That is, after retracing the steps of the proof of Theorem 3.1
with vz, given by (3.44), we can utilize (3.48) to replace the
quantity on the left-hand side of (3.48) with the quantity on
the right-hand side of (3.48) to yield a new upper bound on
Vin (3.28). Hence, the rest of the proof of Theorem 3.1 then
follows. The same type of modification given in (3.48) can be
made to v,; defined in (3.17) to ensure that the derivative of
up; exists. Likewise, the scalar function v»(||z||), defined in
(3.16), is modified to be a function of ||z||s.

IV. LOAD SHARING RAMIFICATIONS

Given that two actuators are present in each joint and are of
similar size, the torque that can be generated has effectively
been doubled. An important concern is the distribution of load
between each joint actuator. If we examine (3.5) and (3.7), it
can be shown that the difference between the shaft torsional
windup of each actuator can be upper bounded as

= 2l = | bz = 22) = (B — )]
<limll + lnz]l-

Because ||71| and ||n;|| are shown to be GUUB by Theorem
3.1, then the torsional difference ||2; — z;|| is also GUUB.
Since the ball in which this difference is ultimately confined
in is small, we can make the assumption that z; & z,. Further
examination of (2.1) shows that the torque supplied to the link
by each actuator can be expressed as

@.1)

rn=Kizi and 7= Kaozo 4.2)

where 7 and 79 are n x 1 vectors that represent the torque
supplied to each joint by the primary and secondary actuators,
respectively. One can see from (4.2) that if z; = 2z, then the
difference in torque supplied by the actuators is mainly due to
the difference in actuator modified flexibility matrices K and
K. Consequently, the primary and secondary actuators will
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Fig. 2. Simulation results for both actuator 1 and actuator 2 operational.

more equally share the link load if their corresponding gear
ratios and flexibility constants are similar.

V. SIMULATION

In this section, we give simulation results for the theoretical
developments presented in Section II for a revolute, signal
link flexible joint robot arm equipped with two actuators. It
should be noted that we neglect friction in the simulation. The
following parameters were used in the simulation:

er, =0.01,ep; = 0.1, €65 = 0.1,

J; =1.0Kg-m? M = 1.0Kg,L =1.0m,

K; =10.0N-m/rad, T; = 1.0,G = 9.8 m/s”
and

B; =1.0N-m-sec/rad.. (5.1)

The desired motor position trajectory is assumed to be
ga(t) = sin (t) + 7/2rad. 5.2

The initial position and velocity error along with the man-
ifold terms are set to zero. The controller gains are set to

kr = 110,k = 5,k = 5. It should also be noted that
the controller used in the simulation assumes that the model
parameters can be upper and lower bounded by £50% of
their nominal values. Additive bounded disturbances are also
injected into the system dynamics described by (2.1), (2.2),
and (2.3) of the form

Tp, = Trm; = 0.1sin (10t)N-m. (5.3)

For simulation purposes, we do not calculate the term iy,
in wy; of (3.10) and Uni of (3.14) due to the numerical
burden it places on the integration algorithm; instead we set
@y = Uy = 0. If the proposed controller is effective without
this term, then it seems logical that the performance will only
be enhanced with its inclusion.

The resulting link position tracking error, link velocity error,
and actuator torques for the proposed robust tracking controller
are shown in Figs. 2(a)~(d), respectively. The resulting link
position tracking error, link velocity error, and actuator torques
for the failure of actvator 2 at ¢ = 3 s are shown in
Figs. 3(a)-(d), respectively. This actuator failure is considered
to be due to power loss or some other electrical problem and
not a failure in which the actuator binds up and is physically
unable to turn. Upon closer examination of the figures, one
can see that after 3 seconds, the magnitude of actuator 1
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Fig. 3. Simulation results for actuator 1 operational and failure of actuator 2.
in Fig. 2(c) is smaller than that of Fig. 3(c). This indicates APPENDIX A
that actuator 1 compensates for the loss of actuator 2 with
an increase in torque output. A comparison of Fig. 2(a) to  Lemma A.1
Fig. 3@ Sl-IOWS. tha.t the I.Iacl‘(mg error Increases shghtly,' but Let a dynamic state equation be described as follows:
good tracking is still maintained even with complete failure
of one of the actuators. z = f(z(t),t), (A1)

VI. CONCLUSION

In this paper, we developed a robust position tracking con-
troller for rigid-link flexible-joint (RLFJ) robots with redun-
dant actuators. This controller achieves GUUB stability of the
link tracking error in spite of additive bounded disturbances,
model uncertainty, and joint flexibilities. Given a controller
designed specifically for robots with redundant actuators, we
can realize the benefits of such a system. Potential benefits
are increased payload capacity, and prevention of total system
shutdown if a joint actuator fails. We also showed in this paper
how the flexibilities and gear ratios of the actuators determine
how equally the load at the joints is distributed. In addition
to showing GUUB stability, we illustrated how the controller
gains can be adjusted to obtain better tracking performance,
and gave a specific upper bound on the position tracking error
transient response.

and a positive scalar function of the state V(x(t),t) be upper
and lower bounded by the equation

Mllz®I < V(z(2),) < w(le@I]) =],

where A; is a positive scalar constant, ya(||z(¢)[|) is a positive
scalar function, and z(t) is a state vector. If the upper bound
of the derivative of the scalar function with respect to time
is given by

(A2)

V((8),8) < =Xamn(llz®)) le@)1 +e, (A3)
where A3 and e are positive scalar constants, then
el < | 20O )2 exp (-1
c 1/2
+ m[l — exXp (—Ast)] (A4)
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€ 2 € €
r L ul i
Li< €L + Z 14 €ni + 1+ € ’ (B.5)
—r -
prilrell+Gp puillmil| + €ni pri| T[] + emi
Examination of (A.4) shows that the state vector z(¢) is GUUB  then
in the sense that as time approaches infinity the norm of the :
L, < (B.2)

state ||z(¢)|| is ultimately confined in a ball of size \/e/A; A.
Proof: Using the upper bound on V in (A.2), we can
rewrite (A.3) as

V(a(t),t) < —AsV(z(t),t) + . (A5)

If we mulitply both sides of (A.5) by exp (A3t), we obtain the
following equation:

exp (—Ast)V (x(t),t) + exp (—Ast)V(z(t),t)

< e exp (—Ast) (A.6)
which can be rewritten as
d
E(exp (=Ast)V(z(t),t) < € exp (—Ast). (A7)

We can use separation of variables to write (A.7) as

t t

/ d (exp (~Aat)V (2(2), ) < / ¢ exp (~Aat) dt. (A8)

0 0
Performing the integration gives the following equation:

V(x(t),t) <V(z,(0),0)exp (—Ast)

€
+ )\—[1 — exp (—Ast)]. (A9)

3

If we use the upper and lowér bound on V' given in (A.2), we
have the following inequalities:

Mlle@)I* < V(x(0), 1)
and

V((0),0) <v2(|[z(0)|]) [lz(0)[|*. (A.10)
Substituting (A.10) into (A.9) results in
Allz@? <2(|z0)]]) [|=(0)]|* exp (—Ast)
+ (1 - exp (~ Ast)] (A.1D)
A3
and consequently (A.11) can be written as (A.4).
O
APPENDIX B
Lemma B.1

Given a scalar function Ll described as by the following
equation:

Ly =|jre|| [wz ]
2
=Y 5T ikzior — [nill llwnill
=1

+ 7 vgi = L[| lJwsill + I vms |, (BL1)

where ¢ is defined in (3.22).

Proof: If we substitute (3.17) into (B.1) and use the
minimum bound on Kr = K; + K, given in (2.10), we
can rewrite it as

Amin{Kr}Ir|*0}
krr(prllrel] +er)

Ly <|irelHlwell -

2 ” 112 42
il %0z
+ 37l ogell = oyt
L [ P
[T 122,
Pl el = e @
T ™ e

We can substitute pr,, pyi, and p,; defined in (3.1.8) into (B.3)
and use (2.9) to yield the new upper bound on L.

: lIre 11?63
Ly <|lr _ LN AL
1 Slirzliez erllroll+€c
2 2.2
[1n: 1%
+ > |limill ppi = 71—
part [l s ”77i||/’ni+5ni
[|TE: 102, }
+ ||| pri = ———tl Pmi | (B4
Il emi = o + e )

(B.4) can be rewritten as (see top of page)
and by using (3.22), a final upper bound on L can be written
as (B.2).

a
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