
Model reference robust control for MIMO systems

H. AMBROSE² and Z. QU²

Model reference robust control (MRRC) of single-input single-output (SISO)
systems was introduced as a new means of designing I/O robust control (Qu et al.
1994). This I/O design is an extension of the recursive backstepping design in the
sense that a nonlinear dynamic control (not static) is generated recursively. Back-
stepping entails the design of ® ctitious controls starting with the output state-space
equation and backstepping until one arrives at the input state-space equation where
the actual control can be designed. At each step the system is transformed and a
® ctitious control is designed to stabilize the transformed state (Naik and Kumar
1992). It is shown in this paper that MRRC of multiple input multiple output
(MIMO) systems is an extension of model reference control (MRC) of MIMO
systems and MRRC of SISO systems. Unwanted coupling exists in many physical
MIMO systems. It is shown that MRRC decouples MIMO systems using only
input and output measurements rather than state feedback. This is a very desirable
property, because in many instances state information is not available. A diagonal
transfer function matrix is strictly positive real (SPR) if and only if each element on
the diagonal is SPR. The fact that complicates the development of robust control
laws is that the recursive backstepping procedure used in non-SPR SISO systems
cannot be directly applied to diagonal MIMO non-SPR systems without the intro-
duction of the augmented matrix or a pre-compensator. MRC of systems where
one has perfect plant knowledge is reviewed. Assumptions are listed for the appli-
cation of model reference robust control for MIMO systems. Model selection is
presented as the right Hermite normal form of the plant transfer function matrix.
MRRC is derived for MIMO systems that have a right Hermite normal form which
is SPR and diagonal, and then for systems whose right Hermite normal form is
diagonal but not SPR. Robust control laws are generated for achieving stability
using Lyapunov’ s second method. Future research will focus on MIMO systems
which are not diagonal.

1. Introduction

Model reference control, also called model following, is a well-documented
method (Chen 1984, Narendra and Annaswamy 1989, Wolovich 1974) which entails
the assignment of controller poles and zeros such that the overall response of a plant
plus controller asymptotically approaches that of a given reference model. One may
apply normal compensator design techniques to ® nd the solution of MRC or utilize
model reference adaptive control (MRAC) techniques for the case that the plant has
unknown constant parameters to automatically adjust compensator parameters to
achieve model following (Landau 1979, Narendra and Annaswamy 1989, Sastry and
Bodson 1989). However, MRAC techniques may have instabilities when the plant
has uncertain bounded disturbances or unmodelled dynamics. In addition, MRAC
requires persistent excitation (PE) for the convergence of the adaptive controller
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parameters to their desired values. Fuzzy logic techniques o� er a reduction in devel-
opment time due to the ability of the designer to express knowledge of a process or
system in a manner suitable for fuzzy control. However, robustness properties of
fuzzy systems are not well understood (Driankov et al. 1993). Nonlinear robust
control provides both a reduction in development time and guaranteed stability in
the presence of plant uncertainties and bounded disturbances. Therefore, it is impor-
tant to ® nd robust control laws that guarantee model following and stability for
MIMO systems in the presence of bounded plant uncertainties and bounded dis-
turbances.

Robust control may be classi® ed into nonlinear robust control and linear robust
control. Linear robust controllers include H ¥ controllers, H2 controllers, etc. This
paper discusses nonlinear robust control laws and is an extension of MRRC of SISO
systems. The choice of nonlinear approach is based on the fact that systems under
consideration have nonlinear bounded uncertainties. MRRC of SISO systems was
® rst proposed by Qu et al. (1994) and the basic technique involves the following:

(a) Determine bounds of plant uncertainties and disturbances.
(b) Find a Lyapunov function candidate V .
(c) Take the derivative of V along the trajectories of the error system between

the plant and model outputs.
(d) Replace terms associated with uncertainties in ÇV by their bounds.
(e) Determine the control law uR( t) , such that ÇV is negative de® nite; if the

diagonal reference model were not SPR, the control law would require deri-
vatives of the plant output. To avoid the measurement of plant derivatives, a
backstepping procedure is employed to recursively determine the robust
control law.

The goal of this paper is to combine MRC of MIMO systems with robust control
techniques to achieve asymptotic output tracking using only input and output infor-
mation. The extension of MRRC to MIMO systems is complicated by the following.

MIMO systems have a high frequency gain matrix. As matrices do not commute
this poses a problem in the recursive development of robust control. It will be shown
that the robust control laws are coupled, even though in the design the error system
has been decoupled.

The backstepping procedure used on SISO non-SPR systems cannot be applied
directly to MIMO systems because each element of the diagonal reference model
may have a di� erent relative degree; this will necessitate the introduction of an
augmented matrix.

Section 2 discusses the problem formulation by ® rst considering the basic prob-
lem of MRC of MIMO systems. A block diagram of the MIMO system under
consideration is presented with dimensions of key elements shown on the block
diagram; basic assumptions are listed. MRC control design of perfectly known
plants is reviewed. Section 3 considers the robust design for MIMO systems. The
basic controller developed in §2 is modi® ed to compensate for control parameter
uncertainties. Bounding functions are developed for uncertainties. An augmented
system used to handle the case where the plant’s reference model is not SPR is
presented. Robust control laws are generated and veri® ed by Lyapunov proofs. In
§3.3 simulations are presented to illustrate the concepts and e� ectiveness of MRRC
on a 2 ´ 2 system whose reference model is SPR, a 2 ´ 2 system whose reference
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model is not SPR and a 2 ´ 2 system whose reference model is third order and is not
SPR.

2. Problem formulation

The class of MIMOsystems under consideration is given in Fig. 1 with dimension
explicitly shown. The plant is assumed to have a linear and time-invariant part, and
Gp(s) is of full rank and strictly proper. The linear part is square and it can be
represented by a right matrix fractional description as Gp(s) = Bp(s)A- 1

p (s) , where
Ap(s) and Bp(s) are right coprime polynomial m ´ m matrices, and Ap( s) is column
proper. For the ease of subsequent discussion, let Kp be the m ´ m high frequency
gain matrix of Gp( s) de® ned as Kp = lims® ¥ Hp(s)

- 1Gp(s) where Hp(s) is the right
Hermite normal form of Gp(s) . For a de® nition of the right Hermite normal form see
Narendra and Annaswamy (1989). Nonlinearities and uncertainties (except the
unknown parameters in the linear portion) in the system are lumped into d(yp, t) .

In this paper it is su� cient to consider square plants because inputs that corre-
spond to linearly independent columns of Gp(s) can be selected while setting the
remaining inputs to zero. That is, to drive m outputs to arbitrary trajectories it is
su� cient to consider only m control inputs.

2.1. Assumptions and remarks
The following assumptions are introduced for the class of MIMO systems con-

sidered in this paper.

Assumption 1: The plant high frequency gain matrix Kp is invertible. If Kp is
unknown, there is a known matrix G such that Kp G + G KT

p = Q > 0 where G is a
symmetric positive de® nite matrix for a symmetric positive de® nite matrix Q with
¸min Q( ) ³ 1.

Assumption 2: The right Hermite normal form Hp(s) of the plant transfer function
matrix Gp(s) is known, diagonal and stable.

Assumption 3: The plant observability index t (Kailath 1980) of Gp(s) is known.

Assumption 4: The zeros of Gp(s) lie in C - .

Assumption 5: Plant parameters are elements of a compact set.

Assumption 6: The disturbance d(yp, t) is bounded by a known, well-de® ned
function q (yp, t) such that
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i d(yp, t) i £ q (yp, t)
where i ´ i denotes the euclidean norm.

With regard to the assumptions, the following observations can be made.

Remark 1: Assumption 1 is analogous to knowledge of the sign of the plant high
frequency gain in the scalar case in the sense that a properly designed control can
control the system in a de® nite direction in the output space. This requirement
can be eliminated if Kp is known, because the controller can be modi® ed by
G = 0.5K- 1

p . Then Q = 1. u

Remark 2: The necessary background on the Hermite normal form is discussed
in the Appendix. Assumption 2 implies that the relative degrees of the elements of
Gp(s) are known. If the right Hermite normal form of Gp(s) is not diagonal, more
information concerning the elements of Gp(s) must be known (Narendra and
Annaswamy 1989) so that a compensator can be designed, say Gc(s) , which makes
the right Hermite normal form of Gp(s)Gc(s) diagonal. u

Remark 3: Assumption 3 is important in the sense that it determines a lower
bound on the number of ® ctitious controls needed in a recursive design. u

Remark 4: Assumption 4 ensures there is no unstable cancellation in the design
of perfect tracking control. This is equivalent to the minimum phase condition of
SISO systems. The zeros of the square Gp(s) are the roots of the determinant of
Bp(s) and do not include zeros at ¥ . u

Remark 5: Assumptions 4± 6 ensure that a stable controller can be designed. u

2.2. Selection of reference model
If the relative degree n*

ij of the ( i, j) th element of the plant transfer function matrix
Gp(s) is known, one can decide whether its right Hermite normal form is diagonal. If
it is not, a precompensator Gc(s) can be designed such that Gp( s)Gc(s) has a diagonal
Hermite normal form reference. As the controller contains no di� erentiators, any
chosen reference model must have a relative degree greater than or equal to that of
the plant transfer function matrix’s right Hermite normal form (Singh 1985).

The choice of reference model Gm (s) is the one made from the following set
(Narendra and Annaswamy 1989).

G = {Gm (s) | Gm (s) = Hp(s) V (s)}
where V (s) Î N

m ´ m
p (s) , Hp(s) is the Hermite normal form of Gm (s) , and Hp(s) and

V (s) are asymptotically stable. Speci® cally, one may choose Gm(s) such that
Gm (s) = Hp(s)Qm (s) where Qm (s) is a unimodular and asymptotically stable matrix.
We shall assume that Qm(s) = I, the m ´ m identity matrix. The Hermite normal
form is unique up to an arbitrary transfer function of relative degree one.

2.3. Control design under perfect plant knowledge
Figure provides an overview of the control system under consideration with

perfect plant knowledge and without the robust control loop. The dimensions of
the matrices are shown in the ® gure. The structure is equivalent to a Luenberger
observer followed by a state feedback gain matrix and a constant feedforward gain
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matrix for an MIMO plant in the state space representation (Wolovich 1974). The
nonlinear disturbance is denoted by the vector d(yp, t) . The system under considera-
tion satis® es the generalized matching conditions in the sense that the disturbance
enters into the same summing node as does the control.

Referring to Fig. 2, the control law is given by

u( t) = G1(s)u( t) + G2(s)ypr( t) + Kr(t) (1)

where G1(s) and G2(s) are transfer function matrices and the other matrices are
de® ned in Fig. 1. Equation (1) illustrates a common abuse of notation; it may be
rewritten as

u( t) = (G1(s) + G2(s)Gp(s) )u( t) + Kr( t)

= (I - G1(s) - G2(s)Gp(s) ) - 1Kr( t)

Therefore, neglecting d(yp, t) for the moment, we have that ypr( t) is given by:

ypr( t) = Gp(s) (I - G1(s) - G2(s)Gp(s) ) - 1Kr( t) (2)

By rewriting equation (1) as

u( t) = (I - G1(s) ) - 1G2(s)ypr( t) + (I - G1(s) ) - 1Kr( t) (3)

a second derivation for ypr( t) reveals

ypr( t) = I - Gp(s) I - G1(s)[ ]- 1G2(s){ }
- 1

Gp(s) (I - G1(s) ) - 1Kr( t) (4)

If r( t) equals zero, a derivation for the plant output due to the disturbance input
d(yp, t) , yields

ypd ( t) = I - Gp(s) I - G1(s)[ ]- 1G2(s){ }
- 1

Gp(s)d(yp, t) (5)

Equation (5) may be rewritten as

ypd (t) = I - Gp(s) I - G1(s)[ ]- 1G2(s){ }
- 1

Gp(s) (I - G1(s) )- 1K K- 1(I - G1(s) )[ ]d(yp,t)
(6)

Equations (5) and (7) will be used in the robust control design procedure below.
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The total plant output yp( t) due to both the reference and disturbance inputs is
given by

yp( t) = I - Gp(s) I - G1(s)[ ]- 1G2(s){ }
- 1

Gp(s) (I - G1(s) )
- 1Ku ( t) (7)

where
u ( t) = r( t) + K- 1(I - G1(s) )[ ]d(yp, t)

From Fig. 1 we see that the controller consists of a gain matrix K Î N
m ´ m in the

feedforward path and two transfer functions G1(s) and G2(s) in the feedback
path which may be written as A- 1

q (s)B1(s) and A- 1
q (s)B2(s) respectively.

Gi(s) = A- 1
q (s)Bi(s) , i = 1,2 is in left matrix fractional description (MFD) form.

The matrices B1(s) and B2(s) are given by

B1(s) = å
t - 1

i= i
Cis

i- 1

B2(s) = å
t - 1

i= 0
Dis

i

See Narendra and Annaswamy (1989) for details. Using the above relationships, one
may rewrite (8) as

yp( t) = Go(s) u ( t)
where

Go(s) = Bp(s) Aq(s) - B1(s)[ ]Ap(s) - B2(s)Bp(s){ }- 1
Aq(s)K (8)

In (9), Ap(s) and Bp(s) are right coprime and therefore by the matrix Bezout identity,
matrices Aq( s) - B1(s) and B2(s) of degree t - 1 exist such that the transfer function
matrix within the brackets can be made equal to any polynomial of column degree
dj + t - 1 where dj is the column degree of Ap(s) . If this matrix is chosen as
Aq(s)KH- 1

p (s)Bp(s) , it follows that Go(s) = Hp( s) = Gm(s) . The matrix Bezout iden-
tity only guarantees the existence of a solution.

To recap the Bezout identity, one wishes that

Aq(s) - B1( s){ }Ap(s) - B2(s)Bp(s) = Aq(s)KH- 1
p (s)Bp(s) (9)

to achieve model following. Aq(s) can be chosen as Aq(s) = aq(s)I, where aq(s) is a
stable monic polynomial of degree t - 1 and I is the m ´ m identity matrix. After
substituting the above equations into (10) and rearranging, one obtains

å
t - 1

i= 0
D*

i s
i( ) Bp(s) + å

t - 1

i= 1
C*

i si- 1( ) Ap(s) = aq(s) Ap(s) - K*G- 1
m (s)Bp(s)[ ] (10)

where K* = K- 1
p .

Let Gp(s) = E- 1(s)F(s) be the left MFD, not necessarily coprime, of Gp(s) . If
E(s) and F(s) are left coprime with E(s) row reduced and Ap(s) column reduced and
¶ cj[Bp(s)]< ¶ cj[Ap(s)]where ¶ cj[Bp(s)]is the degree of the jth column of Bp(s) then
the solution is unique. When the above degree relation holds with equality, column
reducedness of either Ap(s) or Bp(s) will yield a unique solution to the Bezout
identity. See Singh (1985) for details.
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Let

x i( t) =
si- 1

aq(s)
u( t) , x j( t) =

sj- t

aq(s)
yp( t) , i = 1, . . . , t - 1, j = t . . . ,2t - 1

and let the 2m t vector x and the m ´ 2m t matrix H be de® ned as

x ( t) = [r, x T
1 , . . . , x T

t - 1, x T
t , . . . , x T

2 t - 1]T
H = [K,C1, . . . ,Ct - 1,D0, . . . ,D t - 1]

where K,Ci and Dj are m ´ m matrices for i = 1, . . . , t - 1 and j = 0 = 1, . . . , t - 1.
The control input to the plant can be written compactly as

u( t) = H x ( t) (11)

Under perfect knowledge H = H *. A 2 ´ 2 example in the Appendix will serve to
illustrate these points.

3. Robust control design

If one does not have perfect knowledge of the plant transfer function matrix, (11)
may be rewritten with a robust control term as

u( t) = H * x ( t) - ~
H x ( t) + uR (12)

where H is an arbitrary estimate of H *,
~
H = H * - H represents the e� ect of lacking

exact knowledge of plant parameters, and uR is the robust control to be designed. By
expanding the ® rst term, (12) may be rewritten as

u( t) = K* r( t) + K*- 1(uR - ~
H x ( t) )[ ]+ å

t - 1

i= 1

C*
i x i( t) + å

t - 1

j= 0

D*
j x j+ t ( t) (13)

The term r( t) + K*- 1(uR - ~
H x ( t) ) can be considered a reference input to a plant

where one has perfect knowledge. The plant output under both reference and dis-
turbance inputs may be written as

yp( t) = Gm( s) r( t) + K*- 1 uR - ~
H x ( t) + (I - G1(s) )d(yp, t)[ ]{ } (14)

Figure 3 shows the proposed modi® cation to the plant using a robust control, in
which g( )́ is a bounding function to be developed for the unknown terms in (14).

Superposition may be used because although the disturbance input may be an
unknown nonlinear function, the plant transfer function matrix is linear. The dis-
turbance input term can be justi® ed by noting the relationship of (7). The robust
control uR must compensate for plant parameter uncertainties represented by

~
H and

bounded disturbances represented by (I - G1(s) )d(yp, t) . Let e( t) = ym ( t) - yp( t) .
From (14) one obtains the error system as

e( t) = Gm (s)K*- 1 ~
H x ( t) - uR - (I - G1(s) )d(yp, t)[ ]

= Gm (s)Kp
~
H x ( t) - uR - (I - G1(s) )d(yp, t)[ ] (15)

Qu et al. (1994) de® ned a bounding function, BND. In this paper BND is denoted as
´| || || |. The de® nition of BND is repeated here for clarity.

De® nition: Let y (yp, t) be a known continuous function. Then y (yp, t)ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï is a

continuous nonnegative function that bounds the magnitude (or euclidean norm)
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of y (yp, t) . That is

i y (yp, t) i £ y (yp, t)ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï , " (yp, t) u

The robust control law must dominate the term

Kp
~
H x ( t) - (I - G1(s) )d(yp, t)[ ]

which implies that a bounding function must be found for this term. Let

z =
~
H x ( t) - (I - G1(s) )d(yp, t)[ ]

Remark 6: A bounding function for Kp z can be obtained as follows:

Kp z = Kp
~
H x ( t) - (I - G1(s) )d(yp, t)[ ]

£ Kpï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

~
H x ( t) - (I - G1(s) )d(yp, t)ï

ï
ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

= Kpï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

~
Kr( t) + å

t - 1

i= 1

~
Ci x i( t) + å

t - 1

j= 0

~
Dj x j+ t ( t) - d(yp, t) + G1(s) )d(yp, t)

ï
ï
ï
ï
ï

ï
ï
ï
ï
ï

ï
ï
ï
ï
ï

ï
ï
ï
ï
ï

ï
ï
ï
ï
ï

ï
ï
ï
ï
ï

£ Kpï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

~
Kïï ï

ï
ï
ï

ï
ï

ï
ï

ï
ï i r( t) i + å

t - 1

i= 1

~
Ciï

ï
ï
ï

ï
ï

ï
ï

ï
ï

ï
ï i x i( t) i + å

t - 1

j= 0

~
Djï

ï
ï
ï

ï
ï

ï
ï

ï
ï

ï
ï i x j+ t ( t) i + q (yp, t)[

+ å
t - 1

i= 1 ò
t

t0

~
Ciï

ï
ï
ï

ï
ï

ï
ï

ï
ï

ï
ï i C2i exp A2i( t - ¿)B2i[ ]i( ) q (yp, t)]n =

g(yp,u, t)
2

where A2i,B2i,C2i{ } is a minimal realization of si- 1 /aq(s) for i = 1, . . . , t - 1. Until
now the initial conditions have not been considered. Due to the similarities between
the SISO case and this one, one may assume that the initial conditions are zero. This
simpli® es the model following problems in the following sections. u

606 H. Ambrose and Z. Qu

Figure 3. MIMO revised system description.



3.1. MRRC for SPR systems
The robust control proposed in the case where Gm (s) is SPR is

uR =
G ¹(e,y,u, t) i ¹(e,y,u, t) i ¿

2 i ¹ (e,y,u, t) i ¿+ 1 + ²
¿+ 1 exp(- b (¿ + 1) t)( ) g(yp,u, t) (16)

where ¹ (e,y,u, t) = g(yp,u, t)e( t) ,

g(yp,u, t) = 2 Kpï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

~
Hïï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï i x (t) i + (I - G1(s) )d(yp, t)ï

ï
ï
ï

ï
ï

ï
ï

ï
ï

ï
ï( )

and G is that given in assumption 1. The terms ¿, ² and b are design parameters. The
design parameter b a� ects the convergence of the tracking error, ² a� ects the initial
control magnitude and, if b = 0, determines the tracking accuracy and ¿ ensures that
the ® rst-order partial derivatives of uR are well de® ned. This form of nonlinear
robust control is called a saturation control (Qu et al. 1994) because the magnitude
of the control uR is bounded. This can be seen by an examination of (19). Generating
the control law follows Lyapunov’s second method, and the derivation details are as
follows. The reference model may be chosen as

Gm(s) =
1

s + a
I

where a > 0 and I is the m ´ m identity matrix. One may write the dynamics of the
error system as

Çe( t) = - ae( t) + Kp
~
H x ( t) - uR - (I - G1(s) )d(yp, t)[ ] (17)

= - ae( t) + Kp z - KpuR (18)

where z =
~
H x ( t) - (I - G1(s) )d(yp, t)[ ]as before. Let V ( t) = i e( t) i 2 be a Lyapunov

function candidate. This function is positive de® nite and radially unbounded. Taking
the time derivative of V ( t) along the trajectories of the system yields

ÇV = - 2ai e( t) i 2 + 2e( t) T Kp z - 2e( t) T KpuR

£ - 2ai e( t) i 2 + i e( t) i g - 2e(t) T KpuR

= - ai e( t) i 2 + i e( t) i g - e( t) T Kp G ¹ (e,y,u, t) i ¹ (e,y,u, t) i ¿

i ¹(e,y,u, t) i ¿+ 1 + ²
¿+ 1 exp (- b (¿ + 1) t)

g(yp,u, t)

= - ai e( t) i 2 + i ¹ (e,y,u, t) i -
¹(e,y,u, t) T Kp G ¹ (e,yp,u, t) i ¹(e,yp,u, t) i ¿

i ¹ (e,yp,u, t) i ¿+ 1 + ²¿+ 1 exp (- b ( ¿ + 1) t)

= - ai e( t) i 2 +
i ¹ (e,yp,u, t) i ¿

¹(e,yp,u, t) T I - Kp G( )¹ (e,yp,u, t)[ ]
i ¹ (e,yp,u, t) i ¿+ 1 + ²

¿+ 1 exp (- b (¿ + 1) t)

+
i ¹(e,yp,u, t) i ²

¿+ 1 exp (- b (¿ + 1) t)

i ¹ (e,yp,u, t) i ¿+ 1 + ²
¿+ 1 exp (- b (¿ + 1) t)
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= - ai e( t) i 2 +
i ¹ (e,yp,u, t) i ¿

¹ (e,yp,u, t) T I - Q
2( ) ¹ (e,yp,u, t)[ ]

i ¹ (e,yp,u, t) i ¿+ 1 + ²
¿+ 1 exp (- b ( ¿ + 1) t)

+
i ¹(e,yp,u, t) i ²

¿+ 1 exp (- b (¿ + 1) t)

i ¹ (e,yp,u, t) i ¿+ 1 + ²
¿+ 1 exp (- b (¿ + 1) t)

£ - ai e( t) i 2 +
i ¹ (e,yp,u, t) i ²

¿ exp (- b ¿t)

i ¹ (e,yp,u, t) i ¿+ 1 + ²¿+ 1 exp (- b (¿ + 1) t)
² exp (- b t)

£ - ai e( t) i 2 + ² exp (- b t)

= - aV + ² exp (- b t) .

Let s( t) = ÇV + ¸V - ² exp (- b t)
where ¸ 7 a. Note that s( t) £ 0. Solving this di� erential equation yields.

V ( t) = exp[- ¸( t - t0)]V ( t0) + ò
t

t0

exp[- ¸( t - ¿)]s(¿) + ² exp (- b ¿)[ ]d¿

£ exp[- ¸( t - t0)]V ( t0)

+ {
² exp (- b t0)

¸ - b
(exp[- b ( t - t0)]- exp[- ¸( t - t0)]) if ¸ /= b

²( t - t0) exp (- b t) if ¸ = b

®
0 if b > 0
²

¸
if b = 0{

Therefore one has that V ( t) converges to zero exponentially. As V ( t) converges to
zero the output tracking error e( t) converges exponentially to either zero or a residue
set. Because the tracking error is bounded one can conclude that the plant output
yp( t) is uniformly bounded.

3.2. MRRC for systems with higher relative degree
If Gm(s) is not SPR then it is of the form

Gm(s) =

1
p n1 (s)

0

0 . .
.

..

. . .
.

0
1

p nm (s)

é
êêêêêêêêêë

ùúúúúúúúúú
û

where p (s) = s + a is a stable polynomial of degree one. This form of Gm (s) is not
suitable for the recursive backstepping procedure because each diagonal element is
potentially of di� erent relative degree. The recursive backstepping procedure entails
breaking up a transfer function matrix into n sections each one being SPR where n
represents the relative degree of that transfer function matrix. To utilize the back-
stepping procedure one may modify Gm (s) as follows. Let n = max ni, i = 1, ´´´,m
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and let
Ga(s) = Ĝ(s)Gm (s)

where

Ĝ(s) =

1
p n- n1 (s)

0

0 . .
.

..

. . .
.

0
1

p n- nm (s)

é
êêêêêêêêêë

ùúúúúúúúúú
û

Figure 4 shows the result of this modi® cation.
After this modi® cation, one has that

Ga( s) =

1
p n(s)

0

0 . .
.

..

. . .
.

0
1

p n(s)

é
êêêêêêêêêë

ùúúúúúúúúú
û

=
1

(s + a) n I

Thus Ga(s) is diagonal with equal elements. Although Ga(s) is not SPR, it can be
divided into n factors, each of which is SPR. Let the variables x ( t) , uR( t) , and let a (s)
be de® ned as

x ( t) =
1

a (s)
x ( t)

uR( t) =
1

a (s)
uR

a ( s) = (s + a) n- 1

The dynamics of the augmented output tracking error can be written as

ea( t) = Ga(s)K*- 1 ~
H x ( t) - uR - (I - G1( s) )d(yp, t)[ ]

=
1

(s + a) n Kp
~
H x ( t) - uR - (I - G1(s) )d(yp, t)[ ] (19)

If the above analysis is applied to systems with relative degree greater than one,
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the actual control would require derivatives of yp up to l = n - 1, where n is the
relative degree of Ga( s) . To avoid measuring derivatives of the output, we apply the
recursive backstepping procedure. The ® rst step is to rewrite (19) as

ea( t) =
1

s + a
Kp

~
H x ( t) - uR - 1

a (s)
(I - G1(s) )d(yp, t)[ ] (20)

Let
z1 = uR

Çz1 = - az1 + z2

Çzi = - azi + zi+ 1, " i = 2, ´´´, l - 1

Çzl = - azl + uR

Secondly, using the state variable z1 one rewrites (25) as

Çea = - aea + Kp
~
H x ( t) - z1 - 1

a (s)
(I - G1(s) )d(yp, t)[ ] (21)

The next step is to substitute the ® ctitious control v1 into (20), resulting in

Çea = - aea + Kp z - Kpv1 - Kp(z1 - v1) (22)
where

z =
~
H x ( t) - 1

a (s)
I - G1(s)( )d(yp, t)

The next step is to design the ® ctitious control v1. Let v1 = vn1 + vr1 where vn1 is a
linear control and vr1 is a nonlinear robust control. Therefore one has that

Kpv1 = vn1 + Kpvr1 + Kp - I( )vn1

We choose the linear control vn1 to be

vn1 = ( g - a)ea

where g ³ a > 0. The selection of g allows the designer to speed the convergence rate
of the tracking error. The robust control vr1 is next to be designed; it must dominate
the uncertainties in (28). Similarly to the SPR case, we design vr1 to be

vr1 =
G ¹1(ea,yp,u, t) i ¹1(ea,yp,u, t) i ¿1

2 i ¹1(ea,yp,u, t) i ¿1+ 1 + ²
1+ ¿1
1( ) g1(yp,u, t) (23)

where ¹1(ea,yp,u, t) = ea( t)g1(yp,u, t) and

g1(yp,u, t) = 2 Kpï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï

~
Hïï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï i x ( t) i +

1
a (s)

(I - G1(s) )d(yp, t)
ï
ï
ï
ï

ï
ï
ï
ï

ï
ï
ï
ï

ï
ï
ï
ï

ï
ï
ï
ï

ï
ï
ï
ï
+ i vn1 i( ) + 2i vn1 i

(24)

Note that (28) contains the term - Kp(z1 - v1) . For (28) to be stable the term z1 - v1

must be stable, i.e. must tend to zero. Let w1 = z1 - v1. Examining the dyamics of w1

yields
Çw1 = Çz1 - Çv1

= - az1 + z2 - Çv1 + v2 - v2

= - az1 - Çv1 + v2 + w2
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where w2 = z2 - v2 and v2 is a ® ctitious control to be designed. To stablize w1, we
choose v2 to be

v2 = az1 - g w1 + vr2 (25)

where

vr2 =
¹2(ea,yp,u, t) i ¹2(ea,yp,u, t) i ¿2

2 i ¹2(ea,yp,u, t) i ¿2+ 1 + ²
1+ ¿2
2( ) g2(yp,u, t) (26)

and where

g2(y,u, t) = 2 Çv1| || || | + Kpï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï
2
+ i ea( t) i 2

¹2(ea,yp,u, t) = (v1 - z1)g2(yp,u, t)

= - w1g2(yp,u, t)

Continuing the backstepping procedure, the next l mappings are de® ned as

vi = - wi- 2 + azi- 1 - g wi- 1 + vri (27)

where

vri =
¹ i(ea,yp,u, t) i ¹ i(ea,yp,u, t) i ¿i

2 i ¹ i(ea,yp,u, t) i ¿i+ 1 + ²
1+ ¿i
i( ) gi(yp,u, t) (28)

vl+ 1 = - wl- 1 + azl - g wl + vr( l+ 1)

= uR

vr( l+ 1) =
¹ l+ 1(ea,yp,u, t) i ¹ l+ 1(ea,yp,u, t) i ¿l+ 1

2 i ¹ l+ 1(ea,yp,u, t) i ¿l+ 1+ 1 + ²
1+ ¿l+1
l+ 1( ) gl+ 1(yp,u, t) (29)

for i = 3, ´´´, l with
gi(y,u, t) = 2 Çvi- 1| || || |

¹ i(ea,yp,u, t) = - wi- 1gi(yp,u, t)

gl+ 1(y,u, t) = 2 Çvl| || || |
¹ l+ 1(ea,yp,u, t) = - wlgl+ 1(yp,u, t)

where for the latter two equations i = 3, ´´´, l. As in the SPR case, the ²i are
design parameters that control magnitude and perhaps tracking accuracy, and the
¿i are constants chosen such that the ® rst-order partial derivatives of vi are well
de® ned.

In the backstepping or parameter projection procedure one wishes that zi should
track vi . The procedure proceeds by back-stepping through 1 / a (s) .

The Lyapunov proof follows with V = V1 + å l
i= 1 wT

i wi , where

V1( t) = eT
a ea = i ea i 2

Taking the time derivative of V along the trajectories of the system yields
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ÇV = 2eT
a Çea + 2 å

l

i= 1

wT
i Çwi

ÇV = 2eT
a (- g ea + Kp z + Kpvn1 - vn1 - Kpvr1 - Kpw1)

+ 2wT
1 (- g w1 - Çv1 + vr2 + w2)

+ 2 å
l- 1

i= 2

wT
i (- g wi - Çvi + vr( i+ 1) - wi- 1 + wi+ 1)

+ 2wT
l (- g wl - Çvl + vr( l+ 1) - wl- 1)

= - 2g i ea i 2 - 2g å
l

i= 1
i wi i 2

+ 2eT
a (Kp z + Kpvn1 - vn1 - Kpvr1)

+ 2wT
1 (- kT

p ea - Çv1 + vr2)

+ 2 å
l- 1

i= 2
wT

i ( g wi - Çvi + vr( i+ 1) )

+ 2wT
l (- g wl - Çvl + vr( l+ 1) )

We know from the previous proof that

2eT
a (Kp z + Kpvn1 - vn1 - Kpvr1) £ ²1

Similarly, one may show that

2wT
1 (- kT

p ea - Çv1 + vr2) £ ²2

2wT
i ( g wi - Çvi + vr( i+ 1) ) £ ²i+ 1, i Î 2, ´´´, l - 1

2wT
l (- g wl - Çvl + vr( l+ 1) ) £ ²l+ 1

Therefore one obtains the result

ÇV £ - 2g i ea i 2 - 2g å
l

i= 1
i wi i 2 + å

l+ 1

j= 1

²j = - ¸V + ¸²

where

¸ = 2g , ² =
1
¸ å

l+ 1

j= 1

²j

Similarly to before, de® ne
s( t) = ÇV + ¸V - ¸²

Note that s( t) £ 0. Solving the di� erential equation yields
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V ( t) = exp[- ¸( t - t0)]V ( t0) + ò
t

t0

exp[- ¸( t - ¿)][s(¿) + ¸²]d¿

£ exp[- ¸( t - t0)]V ( t0) + ² ò
t

t0

exp[- ¸( t - ¿) ]̧ d¿

= exp[- ¸( t - t0)]V ( t0) + ²(1 - exp[- ¸( t - t0)])
® ²,as t ® ¥ .

Therefore V is uniformly ultimately bounded by ². All the variables in V are globally
and uniformly ultimately bounded including the augmented tracking error ea( t) . As
the states zi are globally uniformly ultimately bounded, e( t) is globally uniformly
ultimately bounded.

Remark 7: To simplify the understanding of the Lyapunov proof, the parameter
g was chosen to be the same in all the ® ctitious control equations. That restriction
is not necessary, however. The designer is free to choose di� erent convergence
parameters in the design of the ® ctitious controls, say g 1, g 2, etc. In addition, the
g and the ² can be made time varying to reduce the magnitude of the control law
to initial conditions while maintaining overall tracking accuracy. u

Remark 8: Bounding functions must be found for Çv1, . . . , Çvl .
One knows that

Çv1 =
¶ v1

¶ ea
Çea +

¶ v1

¶ g1
Çg1

..

.

Çvi =
¶ vi

¶ ei- 1
Çei- 1 +

¶ vi

¶ gi
Çgi

for i = 2, . . . , l where ei = vi- 1 - zi- 1. For Çv1 we have that

¶ v1

¶ ea
=

¶ v11

¶ ea1
´´´ ¶ v11

¶ ean

..

. . .
. ..

.

¶ v1n

¶ ea1
´´´ ¶ v1n

¶ ean

é
êêêêêë

ùúúúúú
û

¶ v1

¶ g1
=

¶ v11

¶ g1

..

.

¶ v1n

¶ gn

é
êêêêêë

ùúúúúú
û

As an example of ® nding a bounding function for v1 let ¿1 = 1. After taking the
derivative of v1, one obtains

¶ v1

¶ ea
=

²
2
1 + g2

1 i ea i 2( ) g3
1 i ea i G +

²
2
1

i ea i - g2
1 i ea i( ) g3

1 G eae
T
a

2 i ea i 2g2
1 + ²

2
1( ) 2
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¶ v1

¶ g1
=

3²
2
1 + i ea i 2g2

1( ) i ea i g2
1 G ea

2 i ea i 2g2
1 + ²

2
1( ) 2

A bounding function for Çea( t) may be found as

i Çea i £ ai ea i + Kpï
ï

ï
ï

ï
ï

ï
ï

ï
ï

ï
ï i z1 i + Kpï

ï
ï
ï

ï
ï

ï
ï

ï
ï

ï
ï i z i

7 Çea| || || |
where

z =
~
H x ( t) - 1

a (s)
(I - G1(s) )d(yp, t)[ ]

as before. u

Remark 9: Instead of using an augmented error matrix, one may achieve
nonlinear robust control of non-SPR systems by post multiplying Gp(s) by a
known transfer function matrix, say Gc(s) , such that Gp(s)Gc(s) has a Hermite
normal form which is diagonal and has equal elements. The reference model
Gm (s) is this Hermite normal form. u

Remark 10: Using the method of Remark 9, one may choose the reference
model as

Gm (s) =

1
(s + a1) (s + a2) ´´´(s + al)

0

0 . .
.

..

. . .
.

0
1

(s + a1) (s + a2) ´´´(s + al)

é
êêêêêêêêë

ùúúúúúúúú
û

where the relative degree of Gm(s) is l. The above reference model allows the designer
¯ exibility to choose distinct pole locations a1,a2, . . . ,al . In this case, the ® ctitious
control signals must be modi® ed appropriately. u

3.3. Simulation examples
Example 1Ð Simulation of SPR MIMO system using Matlab/Simulink Ñ : The
reference model chosen for this example is given by

Gm(s) =

1
s + 1

0

0
1

s + 1

é
êêë

ùúú
û

The plant to be simulated is given by

Gp(s) =

0.5(s + 1)
(s - 1) ( s + 1.5)

0.5
(s - 2) (s + 0.5)

1
(s - 1) ( s + 1.5)

s + 1
(s - 2) (s + 0.5)

é
êêêë

ùúúú
û

=
0.5(s + 1) 0.5

1 s + 1[ ] (s - 1) (s + 1.5) 0

0 (s - 2) (s + 0.5)[ ]
- 1

= Bp(s)A- 1
p (s)
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The plant has considerable coupling. The minimum relative degree of each row is
one. After multiplying each row by s and letting s ® ¥ , one obtains

0.5 0
0 1[ ]

Because this matrix is non-singular, the Hermite normal form of the plant is diag-
onal, with elements equal to the minimum relative degree of each row of Gp(s) .

The observability index t of the plant is two. The polynomial aq(s) of degree
t - 1 was chosen as aq(s) = s + 3. The disturbance and reference inputs for this
simulation were

d(yp, t) =
0.5sin ( t) + 0.2 cos (yp1( t) ) + y2

p2( t) cos ( t)

0.5 cos ( t) + 0.4 sin (yp1( t) ) + y2
p1( t) sin ( t) + y2

p2( t)[ ]
r( t) =

cos ( t)
sin (3t)[ ]

respectively. The bound q on the disturbance is given by

q = 1 + y2
p2( t)( )2

+ 1 + i yp( t) i 2( ) 2[ ]
1/2

and ² and b were both chosen as 0.2. The bounding function g(yp,u, t) is given by

g(yp,u, t) = 2 i ri 2 + i x 1 i 2 + i x 2 i 2 + i x 3 i 2 + q
2 + q

2 + 1.0( )
The simulation step size was selected as 0.001 and the error tolerance was selected as
1.0e - 6. The tracking error and control law plots are shown in Figs 5 and 6,
respectively. As one can see, the tracking error converges to zero very rapidly.

The control law and auxiliary signal generator was coded in C code and
embedded into the Matlab simulation.
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Example 2Ð Simulation of non-SPR MIMO system using Matlab/Simulink Ñ : The
reference model chosen for this example is

Gm (s) =

1
(s + 1)

0

0
1

(s + 1) 2

é
êêêë

ùúúú
û

and the plant to be simulated is given by

Gp(s) =

1
s + 2

1
(s - 3) (s + 2)

1
(s + 2) 2

1
(s - 3) (s + 2)

é
êêêêë

ùúúúú
û

(30)

The right coprime factorization of Gp(s) is given by

Gp(s) =
s + 2 1

1 1[ ] (s + 2) 2 0

0 (s - 3) (s + 2)[ ]
- 1

= Bp(s)A- 1
p (s)

To obtain the observability index one determines the left coprime factorization of
Gp(s) . It is given by

Gp(s) =
(s - 3) (s + 2) 0

0 (s + 2) 2(s - 3)[ ]
- 1

s - 3 1

s - 3 s + 2[ ]
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Using the right coprime factorization of Gp(s) one obtains the controllable canonical
form as

Çx =

0 1 0 0

- 4 - 4 0 0

0 0 0 1

0 0 6 1

é
êêêêë

ùúúúú
û

x +

0 0

1 0

0 0

0 1

é
êêêêë

ùúúúú
û

u

yp =
2 1 1 0

1 0 1 0[ ]x

The minimum relative degree of the ® rst row of Gp(s) is one, and the minimum
relative degree of the second row of Gp( s) is two. After multiplying each row by s
raised to the minimum relative degree of that row and letting s ® ¥ one obtains

Kp =
1 0
1 1[ ]

where Kp is the plant high frequency gain matrix. Because this matrix is non-
singular, the Hermite normal form of the plant is diagonal with elements equal to
the minimum relative degree of each row of Gp(s) . Note that the Hermite normal
form is not SPR. The observability index t of the plant is three as determined by
observing the highest degree in the denominator of the left coprime factorization of
Gp(s) . The polynomial aq(s) of degree t - 1 was chosen as aq(s) = s2 + 10s + 25. The
augmented matrix Ĝm (s) is

Ĝm(s) =

1
(s + 1)

0

0 1

é
êë

ùú
û

The disturbance was the same as the previous example and ²1 = ²2 = 5.0. The
bounding functions are given as

g1 = i ri 2 + i x 1 i 2 + i x 2 i 2 + i x 3 i 2 + i x 4 i 2 + i x 5 i 2 + 2q + q f + 12.0( )
g2 = 0.75 g1 + g2

1( )
where q f = [1 /( s + 1)]q . The gain matrix G was chosen as

G =
1.5 - 0.75

- 0.75 2.25[ ]
The simulation step size was selected as 0.001 and the error tolerance was selected as
1.0e - 6. Simulation results are shown in Figs 7 and 8.

Example 3Ð Simulation of non-SPR MIMO system using Matlab/Simulink Ñ : The
reference model chosen for this example is

Gm(s) =

1
(s + 1) 3 0

0
1

(s + 1) 2

é
êêêë

ùúúú
û
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and the plant to be simulated is given by

Gp(s) =

1
(s - 3) (s + 2) 2

1
(s + 2) 3

1
(s - 3) (s + 2) 2

1
(s + 2) 2

é
êêêë

ùúúú
û

(31)

This example displays results for a system whose reference after multiplication by the
augmented matrix is of third order. The augmented matrix is given by

Ga(s) =
1 0

0
1

(s + 1)
é
ë

ù
û

(32)

The right coprime factorization of Gp(s) is given by

Gp(s) =
1 1

1 s + 2[ ] (s - 3) (s + 2) 2 0

0 (s + 2) 3[ ]
- 1

= Bp(s)A- 1
p (s)

and the left coprime factorization of Gp(s) is given by

Gp(s) =
(s - 3) (s + 2) 3 0

0 (s - 3) ( s + 2) 2[ ]
- 1

s + 2 s - 3

1 s - 3[ ]
Using the right coprime factorization of Gp(s) one obtains the controllable canonical
form as

Çx =

0 1 0 0 0 0

0 0 1 0 0 0

12 8 - 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 - 8 - 12 - 6

é
êêêêêêêêêêêë

ùúúúúúúúúúúú
û

x +

0 0

0 0

1 0

0 0

0 0

0 1

é
êêêêêêêêêêêë

ùúúúúúúúúúúú
û

u

yp =
1 0 0 1 0 0

1 0 0 2 1 0[ ]x

The observability index t = 4. The bounding functions are given as

g1 = ( i ri 2 + i x 1 i 2 + i x 2 i 2 + i x 3 i 2 + i x 4 i 2 + i x 5 i 2 + i x 6 i 2 + i x 7 i 2 + 2q + q f + i ea(t) i )

g2 = 0.7g1 + 0.7g2
1 + 0.7i ea(t) i 2

g3 = 10.0g2

where q f = [1 /(s + 1) 2]/ q . To reduce control law magnitude while maintaining
tracking error, the ² and ¸ parameters were made time varying. The parameters
²1, ²2 and ²3 were selected as 100.0 + [100.0 /(1 + 10.0t)], 100.0 + [100.0 /(1 + 10.0t)]
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and 100.0 + [100.0 /(1 + 10.0t)]respectively and the parameters ¸1, ¸2 and ¸3 were
selected as 100.0(1 - exp (- 0.2t) ) , 150.0(1 - exp (- 0.2t) ) and 200.0(1 - exp (- 0.2t) )
respectively. The simulation step size was selected as 0.0005 and the error tolerance
was selected as 1.0e - 6.

4. Conclusions

Model reference robust control of MIMO plants has been examined. The method
was shown to be an extension of model reference robust control for SISO systems.
Control laws for SPR and non-SPR systems were derived. A development was given
which introduced the augmented matrix so that a backstepping procedure for the
situation where the plant’s reference model is not SPR could be used. AsympTotic
stability was proven for SPR systems, and uniform ultimate boundedness was
proven for non-SPR systems. Simulations were performed on SPR and non-SPR
systems, which illustrated the principles of MRRC for MIMO systems.
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Appendix

Hermite normal forms

A non-singular m ´ m matrix Gp( s) can be transformed into a lower triangular
form Hp(s) known as the right Hermite normal form, by performing elementary
column operations. This operation is equivalent to multiplying Gp(s) on the right
by an appropriate unimodular matrix. Hp(s) has the form

Hp(s) =

1
p n1 (s)

0

h21(s) . .
.

..

. . .
.

hm1(s)
1

p nm (s)

é
êêêêêêêêêë

ùúúúúúúúúú
û

The procedure for determining Hp(s) is as follows. Let tij(s) denote the ijth element
of Gp(s) .

(a) By the interchange of columns, move the element with lowest relative degree
in the ® rst row to the (1,1) position.

(b) Subtract a multiple of the ® rst column from the second, third, . . . etc. column
to ensure r( tij) < r( tii) for j = 2, . . . ,m where r( tij) is the relative degree of the
ijth element of Hp(s) .

(c) If one or more of the ti j for j = 2, . . . ,m is nonzero, go to (a). Else proceed.
(d) Temporarily delete the ® rst row and column.
(e) Repeat the procedure of steps (a) ± (d) (m - 1) times, each time on the remain-

ing matrix. This leaves the temporarily deleted rows and columns unchanged.
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( f ) Subtract a multiple of column 2 from column 1, multiples of column 3 for
columns 2 and 1, and so on, ensuring that r( tii) > r( tij) , for j < 1. The mul-
tiples in steps (b) and (d) are the quotients chosen according to the division
algorithm.

For further details see Hung and Anderson (1979) and Singh (1985).

Bezout identity example

Let

Gp(s) =

0.5(s + 1)
(s - 1) (s + 5)

0.5
(s - 2) (s + 0.5)

1
(s - 1) (s + 5)

s + 1
(s - 2) (s + 0.5)

é
êêêë

ùúúú
û

The right coprime factorization of Gp(s) is given by

Gp(s) =
0.5(s + 1) 0.5

1 (s + 1)[ ] (s - 1) (s + 5) 0
0 (s - 2) (s + 0.5)[ ]

- 1

The A, B, C and D matrices of the plant are determined from the right coprime
factorization as

A =

0 1 0 0

5 - 4 0 0

0 0 0 1

0 0 1 1.5

é
êêêêêë

ùúúúúú
û

B =

0 0
1 0
0 0
0 1

é
êêêë

ùúúú
û

C =
0.5 0.5 0.5 0
1 0 1 1[ ]

D =
0 0
0 0[ ]

The observability index t = 2. This is determined by the knowledge of the A and C
matrices determined above. Let A- 1

q (s) be given by

A- 1
q (s) =

1
aq(s)

0

0
1

aq(s)

é
êêêë

ùúúú
û

where aq(s) = s + 3. By using (11), one obtains

D1s + D0[ ]Bp(s) + C1Ap(s) =
2s2 - 18 - s2 - 4s - 3

- s2 - 4s - 3 3.5s2 - 12.5s - 6[ ]
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After matching coe� cients, one obtains

D0 C1 D1[ ]

0.5 0.5 0.5 0 0 0

1 1 0 1 0 0

- 5 0 4 0 1 0

0 - 1 0 - 1.5 0 1

0 0 0.5 0.5 0.5 0

0 0 1 1 0 1

é
êêêêêêêêêë

ùúúúúúúúúú
û

=
- 18 - 3 0 - 4 2 - 1

- 3 - 6 - 4 - 12.5 - 1 3.5[ ]
Therefore

C1 =
3.8571 4.2857

0.7619 6.8095[ ]
D0 =

- 16.5714 9.5714

- 3.9524 2.7857[ ]
D1 =

- 3.7143 - 5.2857

- 3.5238 - 3.3095[ ]
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