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Abstract: A robust fuzzy control is developed for robot manipulators to guarantee both global 
stability and Performance. Robot dynamics under consideration may include large nonlinear 
uncertainties, such as nonlinear load variations and unmodelled dynamics. Fuzzy sets are chosen 
based on performance requirements and stability regions of the control system. For each fuzzy set, 
a sub-control is designed, based on nonlinear robust control design using Lyapunov's direct 
method; this is blended with others into a final fuzzy control. The resulting control provides not 
only robust and global stability, but also more accurate control performance than fuzzy controls 
obtained from constant sub-controls. The proposed design is applied to a robot trajectory control 
problem and compared with a standard nonlinear robust controller. The simulation results show 
that the proposed control is effective and yields superior tracking performance. 

1 Introduction 

Dynamics of robot manipulators are highly nonlinear and 
may contain uncertain elements such as friction. Many 
efforts have been made in developing control schemes to 
achieve the precise tracking control of robot manipulators 
[I-31. Among available options, fuzzy control has a great 
potential since it is able to compensate for the uncertain 
nonlinear dynamics using the programming capability of 
human control behaviour. Many results have been 
published in the area of design and stability of fuzzy 
control systems [4-91. However, one of the critical issues 
in fuzzy control design is, although designed in a heuristic 
manner, how to ensure global and robust stability of the 
system under control. 

A robust fuzzy control design has been developed [ 5 ]  for 
a class of nonlinear systems, and the fuzzy control is 
robustly and globally stabilising. The design assumes a 
general structure and needs no supervisory control. In this 
approach, a robust sub-control is designed first and fuzzi- 
fied for each rule to guarantee closed-loop stability in each 
fuzzy set. Individual robust controls are then blended into 
the overall fuzzy controller. 

In this paper, the idea of robust fuzzy control design and 
its associated Lyapunov technique [lo] are applied to 
develop a robust fuzzy control for robotic manipulators. 
The resulting control is shown to guarantee global stability, 
and to yield better performance than a fixed robust control 
as the fuzzy controller is configured to be a refined robust 
control in which non-conservative bounding functions of 
uncertain dynamics may be available. Consequently, the 
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proposed fuzzy controller can be configured to be a refined 
robust control so that better performance can be achieved. 

2 Problem formulation 

Consider the dynamic equation of an n rigid-link robot 
manipulator: 

M(q)q + N(q ,  4) = T (1) 
where 

N(q ,  i )  = Vnl(q, 414 + G(q) + F ( i )  + T,(q, i )  
where q E gin is a vector of joint angle variables; M(q) is an 
[n x n]  inertia matrix, which is symmetric and positive 
definite; Vm(q, q), G(q), and F(q) are [n x 11 vectors 
representing the centripetal and Coriolis terms, gravity 
terms, and static and dynamic friction terms, respectively; 
T,(q, q) represents an additive bounded disturbance due to 
load variation andor modelling error; and T E  !lY is a 
control vector of torque by the joint actuators. 

The following properties and assumptions [ 1 I ]  are 
introduced for the proposed design. 

2. I Robot dynamics 
Inertia matrix M(q) is symmetric and positive definite, and 
it is bounded from above and below as 

nzI 5 W q )  5 %(q)Z (2) 
for some positive constant m and function Z(q). The 
centripetal/Coriolis term Vm(q, q) is bounded as 

It Vm(q, i l l 1  5 a1 l l i l l  

IIG(q) + F(4)Il 5 a2 + a3 l l i l l  

(3) 

(4) 

0 

The friction and gravity terms are bounded as 

where a,  are known constants. 

2.2 Disturbance 
TJq, q, t)  is bounded by known function q(q, q) as 

II T,(q, 4, t>ll 5 Y(4, i)  ( 5 )  
U 
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2.3 Trajectory 
The desired trajectory qd E Ytn and its derivatives qd and qd 
are bounded by constants as 

for constants cl  and c,. 

tracking errors are defined as 
Since the control objective is trajectory tracking, the 

(7) 
e = q d - q q ,  e = q  . . d  - 4  

where measurements of q and q are required in the 
subsequent control design. The state of the tracking error 
system is then chosen to be x =  [eT e T ] .  

To design a trajectory tracking control, rewrite eqn. 1 in 
terms of the tracking error given by eqn. 7 and formulate 
the state-space equation 

X =&+BM(q)- ' (AA - T )  (8) 

where 

0 I n  

A = [ o  o ] >  . = [ I : ] >  

2 = A  - B R - I B ~ P ,  

AA = M(q)(R-'BTPx + qd) + N(q,  4) (9) 

In is the identity matrix, and matrix P is the positive 
definite solution of the Riccati equation: for any given 
pair of matrices Q, R > 0 

ATP + P A  - PBR-'BTP + Q = 0 (10) 

Equivalently, if we have a positive definite matrix in the 
form of 

where PU are sub-matrix blocks in P, and P12 = P Z p  If 
matrices Q and R are set to be 

'1, R = [ ' ;  1. (12) 
0 I n  r2In 

For positive constants r1 and r,, the positive definite 
solution for matrix P is given by 

where are as follows: 

It is obvious that the bounding function for uncertainty AA 
can be obtained as 

where )).I\ denotes the Euclidean norm. 
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3 Robust Fuzzy Control 

The proposed control is in the form of 
I 

(16) T = - I=' 

f -  I 

PM, (2) 
1=1  

where 1 is the number of sub-fuzzy sets chosen; U ,  is the 
individual control in the ith sub-fuzzy set; MI is the 
membership function to be chosen later; pM,(x)  is the 
degree of membership function M I ;  and z is the auxiliary 
state defined by 

z = BTPx = [PI, P ~ , ] x  = PI2e + P22i (17) 

From eqn. 13. P G ' P ~ ~  is a positive definite matrix. The 
idea behind choosing auxiliary state z is that, since P;'P,, 
is a positive definite, then 

(18) 

Our objective is to design a fuzzy control of the form of 
eqn. 16, which guarantees stability and performance for the 
system in eqn. 3. The proposed scheme is based on the 
standard nonlinear robust control [ 12, 131 and standard 
fuzzy control design. 

3. I Robust fuzzy control design 
The procedure of designing fuzzy control consists of four 
steps. 
Step I :  selections of fuzzy sets and membership functions 
As one of many possible choices, subsets F, in the state 
space can be chosen as follows. For i =  1,. . . , I  - 1, 
F, = {x :x  E M2", and x is either on, inside, or close to the 
hyper-ball defined by llzll =d,} .  dI = 0, and dj  > dj for i > j  
is a finite sequence of positive increasing numbers chosen 
by the designer to reflect which stability regions and 
performance are desired or can be achieved. 

F, A { x : x  E M2n, and x is on the outside and not close to 
the hyper-balls defined by llzll = d I - l } .  It is then obvious 
that U Fj  = as long as close to and not close to are 
complementary statements. From many possible choices 
[9], select a membership function M,(x) to make sets F, 
fuzzy. The only requirement on membership function is 
that the degree of membership function pMi(z) is between 
zero and one. 
Step 2: selections of Lyapunov function and bounding 
function 
The Lyapunov function is chosen to be 

A 

(19) 
1 
2 

V(X) = -XTPX 

where matrix P is given by eqn. 13, and bounding function 
p,(x) is given by eqn. 15. 
Step 3: selection of individual fuzzy control 
For i = 1, . . . , I ,  design individual control U&) according 
to the fuzzy rule. 
Rule i 
if x E F,, then control is given by U = u,(x). 

must satisfy the following three conditions. 
Choice of individual control ui(x) is not unique, but it 
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3.2 System stability 
The proposed fuzzy control is based on the existing 
nonlinear robust control design; therefore, stability analy- 
sis under fuzzy control is performed in parallel to that 
under the nonlinear robust control design. 
Lemma 1: System in eqn. 8 is globally and asymptotically 
stable, or uniformly ultimately bounded under nonlinear 
robust control (eqn. 21), i.e. T = u r .  
Prooj to show that system in eqn. 8 is stable under robust 
control (eqn. 21), note that the time derivative of the 
Lyapunov function (eqn. 19) is 

1 
2 
1 
2 

6‘ = - -xTQx + xTPBM(q)-’(A/l - U,) 

= - -xTQx + [zTM(q)-’AA - z ~ M ( ~ ) - ’ u ~ ]  

(1) If x E Fi f l  Fj for some i and j ,  the signs of control 
vectors ui and U] satisfy the property that 

sign (U;) = sign (uj) = sign (U,) (20) 

where sign(.) is the generalisation of scalar sign function to 
vector case. (Although other forms of control can be 
chosen, sign condition (eqn. 20) implies that all individual 
controllers have the same direction of driving the state 
towards the origin for all values of z (no matter to which Fi 
they belong), along a ray originating from the origin in the 
z plane. This choice is the simplest way to achieve 
stabilisation.) 

U, is the robust control defined by 

In control (eqn. 2 l), t > 0 is a design constant, and q( t )  > 0 
is a uniformly continuous L ,  or L ,  time function. 
(2) Fuzzy control ui must have the property that 

T 
ZTUi ? z U, 

(3) Fuzzy control ui must satisfy the inequality that, for 
all x 

In this paper, fuzzy control ui(x) is selected to be 

U1 = U,, (24) 

ki = SUP [P,(x>I~ (25) 

where 

05lZl54+, 

Step 4: selection of fuzzy control law 
The overall fuzzy control uf is found by blending the 
individual controls U; according to the standard fuzzifying 
formula: 

i= 1 
Uf = 

I 

i= 1 

Z 
I - 

I -m - - 

P,(X>lZl + w ( t >  
pMi (2) 

i= 1 

(26) 

The above design procedure guarantees both performance 
and robustness. Control in eqn. 24 uI can be interpreted as 
a nonlinear supervisory control which ensures global 
stability. For i = 1, . . . , I  - 1 controls ui provide accurate 
control without over-estimating the control gain, and the 
overall fuzzy control (eqn. 25) executes similarly as a 
variable structure controller. 
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As shown previously [13], you can solve the above 
differential inequality to show that V and IIxJ1 converge 
exponentially to zero or to a uniform ultimate bound. 0 

It has also been shown [13] that the system is exponen- 
tially convergent in the large and that transient excursions 
can be estimated. In fact, transient response can be 
adjusted by proper choices of design parameter 6 and 
function q( t )  [3]. Based on Lemma 1, the following 
stability result can be easily concluded. 
Theorem I :  Under fuzzy control (eqn. 16), the system in 
eqn. 8 is globally and asymptotically stable. 
Prooj The proposed control is designed to satisfy the 
following inequality: 

(28) T z Uf I Z T U ,  

The above inequality is guaranteed by eqns. 20,22 and 23. 
It follows from the proof of the Lemma 1 that global 
stability can be concluded. 

4 Simulation 

A two degree-of-freedom robot manipulator is used in 
simulation to evaluate the proposed control scheme. The 
dynamic equations of the two rigid-link manipulator can be 
found elsewhere [ l l ] ,  and its parameters are set to be 
ml = m2 = 1.0 kg and 1, = 1, = 1.0m. 

In the simulation, initial conditions are given as 
ql(0) =q2(0) = 0.0174 rad (1 degree), ql(0) =q2(0) = 
Oradis, and the desired trajectory is given by 
qf( t )  = qf( t )  = 1 .O - cos(t). The friction and disturbance 
terms are assumed to be 

5 cos(5t) 
N-m and F(q) = 0.5 sign (q) (29) 

Td = [ 5 cos(5t) I 
where sign denotes the vector sign function. 

For the robust fuzzy control, bounds and bounding 
functions for the system are set to be m=0.5, E= 9.0 
and p,(x) = 250 + 50(1x1 + 1 ~ 1 ~ ) .  

It follows from the Riccati equation that, given 
Q = R =Z, where Z is the identity matrix, 
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According to eqn. 26, the overall fuzzy control is then 
designed as t 

- 
-0.01 -0.005 0 0.005 0.01 

Fig. 1 Symmetric triangle membership function 

Subsets of the state space F,, 1 = 1,2,3, are defined as 
follows: F ,  {x:x E 9t2" and x is either at or close to the 
origin} F2, = {x:x E Yt2" is either on, inside, osclose to the 
hyper-ball defined by llzll = 0.005 } and F3 = {x:x E 8'" 
and x is on the outside and not close to the hyper-ball 
defined by llzll =0.005}. 

The triangle membership function given in Fig. 1 is 
chosen, and it has the property that, for all z ,  

Fig. 1 shows that any value of z does not belong to more 
than two fuzzy sets of Fi. 

According to eqn. 24, individual controls ui(x) for 
i = 1,2,3 are 

The design constant and design fhct ion are chosen to be 

It follows from eqn. 25 that k,  = 62,764 and k2 = 62,626. 

0.018- 

0.002 - 

time, s 
a 

0.002 - 

Oo i i 3 i i 6 + a 970 
time, s 

b 
Fig. 2 
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Position errors (a )  e ,  and (b )  e, under robust control 

i= I 

Robust control (eqn. 21) and robust fuzzy control (eqn. 34) 
are implemented for comparison. The simulation results 
are shown in Figs. 2 and 3. It is obvious from the results 
that the proposed robust fuzzy control system is compar- 
able to the nonlinear robust control for the robot tracking. 
Fig. 4 shows the joint errors under robust control (eqn 21) 
minus the corresponding errors under robust fuzzy control 
(eqn. 34). This comparison shows that the proposed hzzy  
control results in slightly better tracking performance than 
the nonlinear robust control for t L 6.8 [SI. 
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0.01 8 
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0.014 
0.012 
0.010 
0.008 
0.006 
0.004 
0.0021 , , 5, , , ~ , 

'0 1 2  3 4 5 6 7 8 9 10 
time, s 

a 
0.01 8 - 

0.002 - 

Oo i i 3 k i 6 i i - 9  i o  
time, s 

b 

Position errors (a)  e ,  and (b)  e2 under robust fuzzy control Fig. 3 
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Fig. 4 Comparison of tracking performance. erObust - efuq 
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5 Conclusions 

The proposed robust fuzzy control guarantees not only 
desired performance, but also global stability and robust- 
ness for robot manipulators. The proposed design is to 
synthesise individual nonlinear robust controllers for each 
fuzzy rule and then to blend them into a fuzzy control. The 
design is to combine the advantages of both nonlinear 
robust control and fuzzy control. Simulation results have 
shown the effectiveness of the proposed scheme. 
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