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A robust learning control (RLC) scheme is developed for robotic manipulators by a synthesis of learning control and
robust control methods. The non-linear learning control strategy is applied directly to the structured system uncertainties
that can be separated and expressed as products of unknown but repeatable (over iterations) state-independent time
functions and known state-dependent functions. The non-linear uncertain terms in robotic dynamics such as centrifugal,
Coriolis and gravitational forces belong to this category. For unstructured uncertainties which may have non-repeatable
factors but are limited by a set of known bounding functions as the only a priori knowledge, e.g the frictions of a robotic
manipulator, robust control strategies such as variable structure control strategy can be applied to ensure global asymp-
totic stability. By virtue of the learning and robust properties, the new control system can easily ful® l control objectives
that are di� cult for either learning control or variable structure control alone to achieve satisfactorily. The proposed
RLC scheme is further shown to be applicable to certain classes of non-linear uncertain systems which include robotic
dynamics as a subset. Various important properties concerning learning control, such as the need for a resetting condition
and derivative signals, whether using iterative control mode or repetitive control mode, are also made clear in relation to
di� erent control objectives and plant dynamics.

1. Introduction

Learning control of robotic manipulators has been
well developed ever since the concept was proposed by
Arimoto et al. (1984). Learning can be de® ned as a
change in the system which enables it to do the same
work more e� ciently in the next cycle of operation. Two
types of learning control methods, iterative learning
control (ILC) (Arimoto 1985, Bondi et al. 1988, Kuc
et al. 1992, Kurek and Zaremba 1993, Moore 1993,
Amann et al. 1996, Lee and Bien 1996, Xu 1997) and
repetitive control (Yamamoto and Hara 1988, Nakano
et al. 1989), have been proposed and developed. The
new information obtained from a recurrent control
situation is considered as an experience for the control-
ler and this experience is used to improve the quality of
control whenever similar situations recur. Due to the
di� culty of stability analysis, repetitive control has pri-
marily applied to linear systems or very limited non-
linear systems in comparison with ILC. Application of
ILC, on the other hand, is con® ned by a number of
factors. Contraction mapping techniques (Arimoto
1985) require the Lipschitz condition and the initial
resetting condition to ensure convergence. Most learn-
ing control schemes also require measurement of the
derivative signals of the states (direct transmission
from input to output). Besides, most learning control

strategies cannot handle system uncertainties such as
exogenous disturbances which might not be periodic.

Variable structure control (VSC) is one of the robust
control strategies well used for the control of highly
non-linear and uncertain systems (Utkin 1978).
Compared with other control strategies, less knowledge
concerning the plant uncertainties is required to design a
variable structure controller. In most cases it is su� cient
only to know the upper bounds of the system uncertain-
ties, regardless of whether they are constant system par-
ameters, exogenous disturbances or non-linear functions
of system state variables. However, the conservative esti-
mate of the uncertainty bound (due to the limited plant
knowledge) may result in unnecessarily large control
action. It should be noted that if the operation cycle
ceases after a ® nite period and then restarts, robust con-
trol methods only yield the same tracking pro® les with-
out any improvement.

Uncertainties in a plant dynamics can be classi® ed as
repeatable or non-repeatable from a learning control
point of view. Repeatable uncertainties are those
which are invariant over iterations and may be struc-
tured or unstructured. Similarly, non-repeatable uncer-
tainties are those which are variant over iterations and
may be structured or unstructured. It is important to
note that learning control schemes cannot handle non-
repeatable uncertainties and that robust control strate-
gies do not show any performance improvement over
iterations, even in the presence of repeatable uncertain-
ties. In this paper we limit our attention to improving
the control performance of systems which have repeat-
able uncertainties and non-repeatable uncertainties with
known bounding functions. Robotic dynamics consists
of both structured and unstructured uncertainties. The
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Coriolis, centrifugal and gravity terms can be expressed
in parametric form, wherein the parameters are strictly
repeatable over the iterations. However it is very di� cult
to model friction terms and there always exist some
aperiodic uncertainties (disturbances) which cannot be
expressed in parametric form and are not repeatable.
The ultimate target of this paper is to explore the
possibility of synthesizing both learning and robust con-
trol strategies to generate a new control system which
can easily ful® l control objectives for plants containing
both periodic and non-periodic uncertainties (which
may be structured or unstructured) such as robotic
manipulators.

Recently some non-linear learning control schemes
have been proposed by Park et al. (1996) and Xu and Qu
(1998). It has been shown that non-linear feedback can
be incorporated into iterative learning control to achieve
asymptotic convergence of tracking control for a class of
non-linear systems. In this paper the non-linear learning
control scheme is further developed to address both per-
iodic and non-periodic system uncertainties. It is
achieved through making learning control and robust
control function in a complementary manner. It is
worth noting that, owing to the essential ® nite time
operation of learning control tasks, it is not even necess-
ary to construct a BIBO (bounded-input ± bounded-out-
put) stable closed-loop system. In other words, a robust
controller incorporated into the learning control system
needs not be strictly stable as long as the ® nite escape
problem does not occur.

Compared with robust control methods, the main
advantage of synthesizing learning control and robust
control is its capability of improving the system per-
formance gradually with respect to periodic operations
or repeatable control tasks with a ® xed ® nite period. In
the proposed robust learning control (RLC) scheme, the
contribution from the learning control part is to learn
and eliminate state-independent periodic uncertainties
as much as possible. The contribution from the robust
part is to suppress the non-periodic system uncertainties
in which only the upper bounds are available for design.

It is shown that robotic dynamics, as well as some
classes of non-linear dynamic systems with both periodic
and non-periodic uncertainties (which can be structured
as well as unstructured) , can be easily dealt with by the
new control scheme. The robust learning control system
possesses the capability of working in either iterative or
repetitive control mode for di� erent control objectives.
Through analysis of the developed control system in a
systematic way, important issues regarding the objective
trajectory categories, resetting condition, derivative sig-
nal requirement and their relationships have been made
clear for di� erent dynamical systems.

This paper is organized as follows. Section 2
describes the robotic manipulator trajectory tracking

problem. Section 3 presents the function partition on
the basis of inverse dynamics. The structured uncer-
tainties, as the learnable part, are separated from the
unstructured uncertainties which are non-periodic and
are to be handled by robust control methods. The robust
learning control is derived and analysed on the basis of
an evaluation function method. The convergence prop-
erty of the proposed RLC scheme is analysed without
the initial resetting condition in } 4 and then extended
to repetitive type learning control. The robust learning
control scheme is then extended to more general classes
of non-linear systems in } 5. Section 6 illustrates the
e� ectiveness of the proposed control scheme on a
robotic manipulator. Finally, } 7 gives the conclusion.

2. Problem formulation

The dynamics of a robotic manipulator, with n rigid
bodies, can be represented by the following equations

_x1 ˆ x2

M…x1†_x2 ‡ h…-x†‡ d…-x ;t† ˆ u

)

…1†

where xj 2 Rn, j ˆ 1 ;2; n 2 Z‡ ; -x 7 ‰xT
1 ;xT

2 ŠT 2 X ³
R2n is the augmented state vector of the system, which
is measurable. u 2 Rn is the control input vector of the
system. M…x1† 2 Rn£n is the inertia matrix. h…-x† repre-
sents the Coriolis, centrifugal, gravity, coulomb friction
and viscous friction terms. d…-x ;t† represents the non-
parametric friction term and other unstructured uncer-
tainties such as modelling errors and exogenous disturb-
ances.

We now state a few properties of the robotic manip-
ulator.

(1) The inertia matrix is symmetric and positive de® -
nite. Each element of the matrix can be expressed
as

m ij ˆ uT
ij gij…x1† i ; j ˆ 1 ;2 ; . . . ;n

(1) where uT
ij ˆ ‰¿1

ij ; . . . ;¿
lij
ij Š is the unknown function

vector of parameters p 2 P ; gT
ij ˆ ‰²1

ij ; . . . ;²
lij
ij Š is

the vector of known non-linear functions of x1.
P is the set of admissible parameters. Also,
8t 2 ‰0 ;1†

@M
@x1;l

µ ¶l ;max l 2 f1 ; . . . ;ng

(1) where ¶l ;max are known positive constants. Since
the mass matrix is a function of only the sine and
cosine terms of x1, its derivative with respect to
the displacement is ® nite and hence its upper
bound can be calculated.
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(2) The function h represents centrifugal, Coriolis,
gravity and parametrized friction terms. Each
element can be factorized as

hi…-x† ˆ hT
i «i…-x ;t† i ˆ 1 ;2 ; . . . ;n

(1) where hT
i ˆ ‰³1

i ; . . . ;³
li
i Š is the unknown function

vector of parameters p 2 P and «T
i ˆ ‰¹1

i ; . . . ;¹
li
i Š

is the known function vector of -x and t.

(3) The function vector d…-x ;t† represents any
unstructured uncertainties in the system, each
element of which has known bounding functions
such that

8t 2 ‰0 ;1† 8 -x 2 X

di;min…-x ;t† µ di…-x ;t† µ di;max…-x ;t†
(1) where di…-x ;t† is the ith element of the function

vector d . di ;min…-x ;t† and di ;max…-x ;t† are known
and continuous bounding functions with respect
to -x and t.

In this paper the inequality A1 µ A2 is de® ned as
¶max…A1† µ ¶min…A2†. ¶max…¢† and ¶min…¢† represent the
maximum and the minimum eigenvalues, respectively.
kAk with respect to a square matrix A is the induced
matrix norm, de® ned as

kAk ˆ sup
kAxk
kxk for x 6ˆ 0

Since k ¢ k is the Euclidean norm for vectors, the corre-
sponding induced matrix norm is

kAk ˆ ‰¶max…ATA†Š1=2

for a real matrix A, and

kAk ˆ j¶max…A†j
for a real symmetric matrix A.

2.1. Control objective

The control objective is to ® nd an appropriate con-
trol input u 2 Rn for the robotic manipulator (1) such
that the system state x1…t† follows x1;d…t† with a pre-
described accuracy ° as follows

8t 2 ‰0 ;T f Š kx1;d…t† ¡ x1…t†k µ ° …2†
where x1 ;d is the desired state trajectory.

2.2. Trajectory classi® cation

The desired state trajectory, which is available in
control system design, can be classi® ed into three cate-
gories, depending on whether the trajectory is repeated
over a ® nite interval ‰0 ;T f Š or periodic over ‰0;1†, as
well as on the alignment of the initial and terminal
values.

Category I: A desired state trajectory x1 ;d…t†, which is
de® ned on a ® nite interval of time ‰0 ;T f Š, is di� erentiable
with respect to t up to the mth order, and all its higher-
order derivatives are available over t 2 ‰0 ;T f Š.

x…j‡1†;d ˆ _xj ;d …3†
Category II: In addition to the conditions of Category I,
the desired trajectory of Category II satis® es the follow-
ing alignment condition

-xd…0† ˆ -xd…T f† …4†
where -xd 7 ‰xT

1;d ; . . . ;xT
m ;dŠ.

Category III: The desired trajectory x1 ;d…t† of Category
III is a periodic function vector with a ® nite period T f
and is smooth, or at least the mth-order derivative is
continuous over ‰0 ;1†.

Remark 1: The trajectory classi® cations are de® ned
for a tracking problem of an mth order non-linear
system to facilitate the extension of the scheme to
more general classes of non-linear systems. For the ro-
botic dynamics, all the category classi® cations apply
with m ˆ 2.

3. Robust learning control scheme

The underlying idea of robust learning control is to
learn and approximate the unknown periodic functions
and suppress any unknown non-periodic functions. The
learning mechanism is designed to identify all those
state-independent components and leave the remaining
unknowns to the robust control.

3.1. Inverse dynamics partition

To distinguish the required control e� orts for learn-
ing and robust control respectively, the inverse model of
the manipulator is needed. We de® ne an extended track-
ing error which is in fact a switching surface, as

r…t† ˆ
X2

jˆ1

cj xj ;d…t† ¡ xj…t† c2 ˆ 1 …5†

where cj … j ˆ 1 ;2† are coe� cients of a Hurwitz poly-
nomial.

Taking the derivative of r with respect to time t and
multiplying by the mass matrix yields

M…x1†_r…t† ˆ M…x1†_x2 ;d ‡ M…x1†c1x2 ;d ¡ M…x1†c1x2

‡ h…-x†‡ d…-x; t† ¡ u

The desired input obtained from the inverse dynamics of
the system can be written as

u…t† ˆ M _x2 ;d ‡ c1x2 ;d ¡ c1x2 ¡ _r…t†
‡ h…-x†‡ d…-x ;t† …6†
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For the robotic manipulator, the inverse dynamics (6)
can be rearranged as

u…t† ˆ A…-x ;t†c…-xd ;t†‡ g…-x ; -xd ;t† ¡ M _r…t†: …7†
A 2 Rn£n1 is a known matrix of -x and t. c 2 Rn1 is the
learnable structured uncertainty which is invariant over
iterations and is handled by the iterative learning con-
trol scheme. g is the unstructured non-periodic uncer-
tainty function vector with a known ® nite upper bound
and is handled by the robust control strategy. n1 is an
appropriate integer. In this arrangement, we have an
option in assigning a few of the partially known terms.
The terms involving M‰ _x2;d ‡ c1x2 ;d ¡ c1x2Š have known
bounding function and hence can be included in g. The
same terms can also be factorized into known state-
dependent functions and unknown state-independent
functions and hence can be included in A…-x ;t†c…-xd ;t†
also. To fully use learning control and reduce robust
control e� orts the second arrangement is preferred.

In detail, we have

A…-x ;t† ˆ diag…fT
1 ; . . . ;fT

n †
fi ˆ ‰gT

i ;1 ¢ ¢ ¢ gT
i;n..

.
gT

i;1º1 ¢ ¢ ¢ gT
i ;nºn..

.
¹1

i ¢ ¢ ¢ ¹
li
i ŠT

p ˆ ‰º1 ; . . . ;ºnŠT 7 ¡ c1x2

9
>>=

>>;
…8†

and correspondingly we have

c ˆ ‰cT
1 ; . . . ;cT

n ŠT

ci ˆ ‰uT
i ;1µ1 ¢ ¢ ¢ uT

i ;nµn..
.
uT

i;1 ¢ ¢ ¢ uT
i;n..

.
³1

i ¢ ¢ ¢ ³
li
i ŠT

j ˆ ‰µ1 ; . . . ;µnŠT 7 _x2;d ‡ c1x2;d

9
>>>=

>>>;
…9†

The partition is arranged in such a way that all state
relevant terms are assigned to the matrix A and the
remaining ones to the vector c which is to be learnt
through iterations. Here again we have the ¯ exibility
of assigning the known terms _x2;d ‡ c1x2;d…t† either to
A or c. For simplicity of controller construction and
computation, we assign all -xd-related terms to c in the
proposed method.

For the robotic system, the bounding function of the
unstructured uncertainties is given by

kgk µ lg…-x ; t†7
Xn

jˆ1

…max fjdj ;minj; jdj ;maxjg†2

" #1
2

…10†

3.2. Iterative type RL C Algorithm

The iterative-type robust learning control algorithm
consists of two parts

ui ˆ Aivi ‡ wi

Ai 7 A…-xi ;t†

)

…11†

where i indicates the number of the learning trial in this
and the next subsections. vi is the recursive learning
control part and is updated as follows

vi ˆ vi¡1 ‡  ff A
T
i¡1ri¡1 …12†

where  ff is a feedforward gain. wi is the robust control
part which can be decided through minimizing the dif-
ference of an evaluation function.

3.3. Derivation of the robust control law

An evaluation function approach is taken to ensure
convergence of the algorithm over iterations and hence
determine the appropriate robust control e� orts.

The evaluation function for the learning law is
Euclidean norm and L 2 norm of the learning error c ¡ vi.

E i…t† ˆ
… t

0
kc…½† ¡ vi…½†k2 d½ …13†

The di� erence of evaluation function between two suc-
cessive trials is

D Ei…t† ˆ Ei‡1…t† ¡ Ei…t†

ˆ
… t

0
…vi‡1 ¡ vi†T…vi‡1 ‡ vi ¡ 2c†
h i

d½ …14†

Substituting the learning law (12) into equation (14) yields

D Ei…t† ˆ
… t

0
 2

ff r
T
i AiA

T
i ri ¡ 2 ff r

T
i Ai…c ¡ vi† d½ …15†

On the other hand, from the inverse dynamics (7) and
the control law (11) we have

ui ˆ Aic‡ gi ¡ Mi _ri…t†
ˆ Aivi ‡ wi

or
Ai…c ¡ vi† ˆ wi ¡ gi ‡ Mi _ri…t†

Substituting the above relation in (15) yields

D Ei…t† ˆ
… t

0
 2

ff r
T
i AiA

T
i ri ¡ 2 ff r

T
i …wi ¡ gi ‡ Mi _ri…t†† d½

ˆ ¡ ff r
T
i Mirijt0

‡
…t

0
 2

ff r
T
i AiA

T
i ri ¡ 2 ff r

T
i …wi ¡ gi ¡ 1

2
_Miri† d½

µ ¡ ff r
T
i …t†Mi…t†ri…t†‡  ff r

T
i …0†Mi…0†ri…0†

‡
…T f

0
‰ 2

ff r
T
i AiA

T
i ri ¡ 2 ff r

T
i wi ‡ 2 ff krik ¢ kgik

‡  ff k _Mik ¢ krik2Š d½

µ ¡ ff r
T
i …t†Mi…t†ri…t†‡  ff r

T
i …0†Mi…0†ri…0†

‡
…t

0
 2

ff r
T
i AiA

T
i ri ¡ 2 ff r

T
i wi ‡ 2 ff lgkrik

‡  ff k _Mik ¢ krik
2Š d½ …16†
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The upper bound of k _Mk can be computed on the basis
of the manipulator properties as follows

k _Mk µ
Xn

lˆ1

dM
dx1 ;l

jx2 ;lj

µ
Xn

lˆ1

¶l ;maxjx2 ;lj 7 «BB

The robust control part wi can be designed so as to
ensure the decay of the evaluation function to zero and
hence ensure the convergence of the learning algorithm.
To make D E i as negative as possible, the robust control
part is designed as

wi ˆ 1
2 ff AiA

T
i ri ‡ …1

2«BB ‡  fb†ri ‡ lgsgn…ri† …17†

Here  fb is a constant feedback gain. Substituting wi
from equation (17) into (16) we have

D Ei…t† µ ¡ ff r
T
i …t†Mi…t†ri…t†‡  ff r

T
i …0†Mi…0†ri…0†

¡ 2
… t

0
 ff  fbkrik2 d½ …18†

The di� erence in evaluation function for the ® nal
time instant t ˆ T f is given by

D Ei 7 D Ei…T f† µ ¡ ff r
T
i …T f†Mi…T f†ri…T f †

‡  ff r
T
i …0†Mi…0†ri…0† ¡ 2

…T f

0
 ff  fbkrik

2 d½ …19†

On the basis of inequality (19), we can make the follow-
ing conclusion.

Theorem 1 (iterative RLC with resetting) : Assume
that the initial zeroing condition -xi…0† ˆ -xd…0† is avail-
able for all trials. Then the learning control law (12)
and robust control law (17) guarantee that the robotic
manipulator tracks the desired trajectory of Category I
asymptotically while all state variables are globally and
uniformly bounded.

Proof : The proof is provided in Appendix A. &

Remark 2: Both learning control gain  ff and feed-
back gain  fb can be adjusted su� ciently high to
achieve the fast convergence of the extended tracking
error ri . The upper limitation on the value is imposed
by sampled data implementation.

Remark 3: In the proposed RLC scheme, the control-
ler implementation needs neither the measurement of
acceleration nor its estimation. The dynamics of most
motion control systems is similar to that of the robotic
manipulator and can be expressed as in (1). Hence, ac-
celeration measurement is not required for the pro-
posed robust learning control scheme.

Remark 4: Chattering in variable structure control
arises because of the in® nite gain requirement across
the switching surface r ˆ 0. This is due to the presence
of the uncertainties d which may not be zero when
r ˆ 0. This chattering problem in variable structure
control can be minimized by increasing the sampling
rate. This problem can be eliminated by inserting a
smoothing factor (which may be in the form of a sa-
turation function) as explained in Slotine and Li
(1991).

Remark 5: The non-repeatable uncertainties are
handled by the robust control scheme and the repeata-
ble uncertainties are learnt by the learning control
scheme. If the system is strictly non-repeatable, then
robust control is the only approach and there is no
performance improvement over iterations. If the non-
repeatable uncertainties are small, the control perform-
ance is good since the learnable components dominate.
However, as the contribution of the non-repeatable
uncertainties increases, the repeatable component de-
creases and consequently the learning e� ect decreases.

4. RLC without resetting and repetitive control mode

4.1. Iterative RL C without resetting

It has been shown in Lee and Bien (1991) that itera-
tive learning control schemes are very sensitive to the
initial zeroing condition. Incomplete resetting or non-
zero initial error, no matter how small the initial error
is, may result in divergence of the learning control
system. Therefore, from a practical point of view, it
would be more important and interesting to investigate
the condition under which the resetting requirement can
be removed for iterative-type learning control. This is
concluded in the following theorem.

Theorem 2 (iterative RLC without resetting) : Assume
that the alignment of the system state variables
-xi…T f† ˆ -xi‡1…0† is ensured for any two consecutive
trials. Then the learning control law (12) and robust
control law (17) guarantee that the robotic manipulator
(1) tracks the desired trajectory of Category II asympto-
tically while all state variables are globally and uni-
formly bounded.

Proof : The proof is provided in Appendix B. &

Remark 6 : The assumption imposed on the initial
and terminal system states -xi…T f† ˆ -xi‡1…0† for any
two consecutive trials is very reasonable for most mo-
tion control systems as the ® nal position of the pre-
vious trial naturally becomes the initial position of the
new trial. As a consequence, we can remove the reset-
ting mechanism, which is indispensable for conven-
tional ILC schemes. ILC with resetting can be used
when an accurate resetting mechanism is available. If
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initial resetting (e…0† ˆ 0) cannot be ensured, then it is
suggested that the problem be handled at the task
planning level by making use of ILC with alignment
condition.

4.2. Repetitive type RL C scheme

In the case where the control process cannot be
ended or the desired trajectory requires continuous
operation, repetitive learning control is the only appro-
priate method which is able to control and learn to
improve the system performance, as far as the periodic
tracking problem is concerned. In such case a necessary
condition for learning control is that, all the unknown
functions to be learned, namely those unknown state-
independent functions ® in (7), must be either constant
or periodic with period T f . Besides, it is necessary that
the state-dependent functions in vector g of (7) are uni-
formly upper bounded with respect to t in (10) if they
are explicit time functions. It is easy to verify that
robotic dynamics meets the above conditions.

Now we are in the position to show that the devel-
oped RLC scheme can work in repetitive control mode.

Theorem 3 (repetitive RLC) : Design learning control
law (20) and robust control law (21), which are now
de® ned over ‰0 ; 1†, as follows

v…t† ˆ 0 if t < T f

v…t ¡ T f †‡  ff A
T…¢; t ¡ T f †r…t ¡ T f † otherwise

…20†

w…t† ˆ  ff

2
A…¢; t†A…¢; t†T

r…t†‡ lgsgn…r…t††
‡ …1

2«BB…t†‡  fb†r…t† …21†
where A…¢;t†7 A…-x…t†;t†. Then the repetitive-type RL C
guarantees that the robotic manipulator (1) tracks the
desired trajectory of Category III asymptotically while
all state variables are globally and uniformly bounded.

Proof : The proof is provided in Appendix C. &

5. Extension to a class of non-linear high-order systems

Consider a class of higher-order MIMO non-linear
dynamical uncertain systems described by

_xj ˆ xj‡1

_xm ˆ f …-x ;p ;t†‡ h…-x ;p ;t†‡ d…-x ;p; t;!†‡ B…z ;p ;t†u

)

…22†
where xj 2 Rn£1, j ˆ 1 ; . . . ;m ; m ;n 2 Z‡ ; -x 7 ‰xT

1 ;

xT
2 ; . . . ;xT

m ŠT 2 X ³ Rnm£1 is the measurable state vector
of the system. p 2 P is an unknown system parameter
vector. P is the set of admissible system parameters.
d…x ;p ;t ;!† is also a function of !, where ! represents
any aperiodic factors such as aperiodic exogenous

disturbance or system noise. u 2 Rn£1 is the control
input vector of the system. B…z;p ;t† 2 Rn£n is the
input distribution matrix. z 7 ‰xT

1 ;xT
2 ; . . . ;xT

m¡1ŠT 2 Z ;
where Z is a subset of the state space X with dimension
q ˆ n £ …m ¡ 1†.

In this paper, we make the following assumptions
about the system.

Assumption 1: The unknown non-linear function vector
f satis® es the following L ipschitz-like condition

8t 2 ‰0;1† 8 -xd ; -x 2 X 8p 2 P

k f …-xd ;p ;t† ¡ f …-x ;p ;t†k µ lf …-xd ; -x ;t†k -xd ¡ -xk

where lf …-xd ; -x ;t† is a known and continuous scalar bound-
ing function with respect to all its arguments.

Note that lf becomes a Lipschitz constant if it is
invariant with respect to the arguments.

Assumption 2: Each element of the unknown function
vector h can be expressed as

hT
i …p; t†«i…-x ;t†; i ˆ 1 ;2 ; . . . ;n

where hT
i ˆ ‰³1

i ; . . . ;³
li
i Š is the unknown function vector of

p and t; and «T
i ˆ ‰¹1

i ; . . . ; ¹
li
i Š is the known function vector

of -x and t.

Assumption 3: The non-linear function vector d is
bounded such that

8t 2 ‰0 ;1† 8 -x 2 X 8p 2 P

di ;min…-x ;t† µ di…-x ;p ;t† µ di ;max…-x ;t†
where di…-x ;t† is the ith element of the function vector d .
di;min…-x ;t† and di;max…-x ;t† are known and continuous
bounding functions with respect to -x and t.

Assumption 4: The input distribution matrix B is posi-
tive de® nite for all t 2 ‰0 ;1†, z 2 Z, p 2 P and satis® es
the following inequalities 8t 2 ‰0 ;1†

0 < ¶minI µ B

@B
@zl

µ ¶l ;max l ˆ 1 ; . . . ;q

where ¶min and ¶l ;max are known positive constants. Each
element of the matrix B¡1 can be expressed as

uT
ij…p ;t†gij…z;t† i ; j ˆ 1 ;2 ; . . . ;n

where uT
ij ˆ ‰¿1

ij ; . . . ;¿
lij
ij Š is the unknown function vector of

p and t; gT
ij ˆ ‰²1

ij ; . . . ;²
lij
ij Š is the vector of known non-

linear functions of z and t.

Remark 7: The purpose of expressing the non-linear
uncertainties f , h and d separately in equation (22) is
to show clearly how robust control and learning con-
trol work in a complementary manner and henceforth
increase the application range. Most existing learning
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control or robust control methods (including VSC) fail
to work for the plant (22). Conventional ILC methods
could only apply to the vector f which satis® es the
Lipschitz condition. VSC is e� ective only for the vec-
tor d associated with known bounding functions. Note
that d may include non-periodic arguments. Besides,
neither VSC nor ILC can process the vector h, which
is highly non-linear, and the size of the uncertainties is
not available.

5.1. Modelling of inverse dynamics

For the mth-order dynamic system, de® ne an ex-
tended tracking error as

r…t† ˆ
Xm

jˆ1

cj‰xj ;d…t† ¡ xj…t†Š cm ˆ 1 ; …23†

in which cj … j ˆ 1 ; . . . ;m† are coe� cients of a Hurwitz
polynomial.

Taking the derivative of r with respect to time t
yields

_r…t† ˆ
Xm

jˆ1

cjx…j‡1†;d ¡
Xm¡1

jˆ1

cjxj‡1 ¡ f …-x ;p ;t†

¡ h…-x;p; t† ¡ d…-x ;p ;t ;!† ¡ B…z;p ;t†u
In order to partition the system uncertainties into
factors of known state-dependent functions, un-
known state-independent functions and unknown
state-dependent functions with known bounds, rear-
range the above error dynamics as follows

u ˆ B¡1…z;p ;t†
Xm

jˆ1

cjx…j‡1†;d ¡
Xm¡1

jˆ1

cjxj‡1

"

¡ f …-xd ;p ;t† ¡ h…-x ;p ;t†

‡ B¡1…z;p ;t†‰f …-xd ;p ;t† ¡ f …-x ;p ;t†

¡ d…-x ;p ;t ;!†Š ¡ B¡1…z;p ;t†_r…t†

ˆ A…-x ;t†c…-xd ;t†‡ g…-x ; -xd ;t† ¡ B¡1 _r…t† …24†
Hence the inverse dynamics for some classes of non-
linear systems can be rearranged in the same form as
equation (7). In detail, we have

A…-x ; t† ˆ diag…fT
1 ; . . . ;fT

n †

fi ˆ ‰gT
i;1 ¢ ¢ ¢ gT

i;n ..
.

gT
i;1º1 ¢ ¢ ¢ gT

i ;nºn ..
.

gT
i ;1¹

1
1

¢ ¢ ¢gT
i ;1¹

l1
1 ..

.
gT

i ;2¹
1
2 ¢ ¢ ¢ ¢ ¢ ¢ ..

.
gT

i;n¹1
n ¢ ¢ ¢ gT

i ;n¹ln
n ŠT

p ˆ ‰º1 ¢ ¢ ¢ ºnŠT 7 ¡
Xm¡1

jˆ1

cjxj‡1

and correspondingly we have

c ˆ ‰® T
1 ¢ ¢ ¢® T

n ŠT …25†

ci…xd ;p ;t† ˆ ‰uT
i;1µ1 ¢ ¢ ¢ uT

i;nµn ..
.
uT

i ;1 ¢ ¢ ¢ uT
i ;n ..

.
uT

i ;1³
1
1

¢ ¢ ¢ uT
i;1³

l1
1 ..

.
uT

i ;2³1
2 ¢ ¢ ¢ ¢ ¢ ¢ ..

.
uT

i ;n³
1
n ¢ ¢ ¢ uT

i;n³
ln
n ŠT

j ˆ ‰µ1 ¢ ¢ ¢ µnŠT 7
Xm

jˆ1

‰cjx…j‡1†;dŠ ¡ f…xd ;p ;t†

The partition is arranged in such a way that all state-
relevant terms are assigned to the matrix A, and the
remaining ones to the vector c which is to be learned
through iterations.

To design variable structure control it is necessary to
® nd the bounding functions of the vector g which are
functions of -xd, -x, p, t and !. Taking the Euclidean
norm to both sides of g,

kgk µ kB¡1…z ;p ;t†k ¢ ‰kf…-xd ;p ;t† ¡ f…-x ;p ;t†k

‡ kd…-x ;p; t;!†kŠ

From Assumption 1

kf…-xd ;p ;t† ¡ f…-x ;p ;t†k µ lf …-xd ; -x ;t†k -xd ¡ -xk

From Assumption 3

kd…-x ;p ;t ;!†k µ ld…-x ;t†

7
Xn

iˆ1

…max fjdi ;minj; jdi;maxjg†2

" #1=2

From Assumption 4, we have

0 µ B¡1 µ ¶¡1
minI

and hence

kB¡1…z;p; t†k µ maxij¶i…B¡1†j µ j¶¡1
min j 7 lB…z ;t†

Finally, the bounding function of the system uncertainty
g is

kgk µ lg…-xd ; -x ;t†
7 lB…z;t†‰lf …xd ;x ;t†kxd ¡ xk ‡ ld…x; t†Š …26†

Remark 8: The system (22) represents classes of non-
linear systems which include robotics as a subset. The
lipschitz continuous function f can be handled alone
by conventional ILC schemes. However, in the pres-
ence of h and d , handling f requires a completely new
approach. The non-linear uncertain system can have
unknown explicit time-varying functions in u and h,
unlike the robotic manipulator whose parameter vector
is independent of time. The known state-dependent
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functions in ¹i can include highly non-linear terms and
are not limited to quadratic terms as in (1).

5.2. Robust learning control law

The learning control law (12) and the robust control
law (17) are as de® ned in } 4. The parameters in the
control laws and for all subsequent discussions in this
section are de® ned as Ai by equation (25), lg by equation
(26), ri by equation (23), «BB is the upper bound of
kB¡1 _BB¡1k ; to be derived, and  fb is a constant feed-
back gain. Again in this subsection we use the subscript
ì’ to denote the learning iteration.

De® ning an evaluation function as in equation (13)
and proceeding in the same way, we can derive that

D Ei µ ¡ ff r
T
i …T f †B¡1

i …z…T f †;T f †ri…T f†

‡  ff r
T
i …0†B¡1

i …z…0†;0†ri…0†

¡ 2
…T f

0
 ff  fbkrik2 d½ …27†

The upper bound of kB¡1 _BB¡1k is derived as follows

B¡1
i

_BiB
¡1
i ˆ B¡1

i

Xq

lˆ1

@Bi

@zl
_zlB

¡1
i

From the matrix norm property we have

kB¡1
i _BiB

¡1
i k µ kB¡1

i k2 ¢ k _Bik

µ kB¡1
i k2

Xq

lˆ1

@Bi

@zl
¢ j _zlj

µ j¶¡1
minj2

Xq

lˆ1

j¶l ;maxj ¢ j _zlj 7 «BB …28†

Remark 9: In the calculation of the bounding func-
tion «BB in (28), the derivative signal of the system
state _zl is needed. It is then easy to observe that, if xn
is not included in z, all components of _z are in fact
measurable system states. Most iterative learning con-
trol schemes require the measurement (or estimation)
of derivatives of the system states. The derivative sig-
nals of the system states are not needed if the pro-
posed RLC scheme is used.

On the basis of equation (27), we can make the fol-
lowing conclusions.

Theorem 4 (iterative RLC with resetting): Assume that
the initial zeroing condition -xi…0† ˆ -xd…0† is available
for all trials, the learning control law (12) and robust
control law (17) guarantee that the non-linear system
(22) tracks the desired trajectory of Category I asymp-
totically while all state variables are globally and uni-
formly bounded.

Proof : The proof is similar to that of Theorem 1. &

For RLC without resetting, the following assump-
tion is needed.

Assumption 5: For any element of the matrix B which
is an explicit function of t, it is also a periodic function
with period T f , that is

B…z;p ;0† ˆ B…z;p ;T f† …29†

Theorem 5 (iterative RLC without resetting) : Assume
that the alignment of the system state variables
-xi…T f† ˆ -xi‡1…0† is ensured for any two consecutive
trials and that Assumption 5 is satis® ed; then learning
control law (12) and robust control law (17) guarantee
that the non-linear system (22) tracks the desired trajec-
tory of Category II asymptotically while all state vari-
ables are globally and uniformly bounded.

Proof : The proof is provided in Appendix D. &

Remark 10: If B matrix in (22) is autonomous,
namely no explicit time function in B, as in most mo-
tion control systems including robotic dynamics, then
the periodicity Assumption 5 is not necessary.

To extend the repetitive-type RLC for the non-linear
system (22), it is necessary that c should consist of con-
stants or periodic components only. Also, kgk should be
uniformly upper bounded by a positive gain lg.

Assumption 6: Any explicit time function in f ;h and B
of (22) should be periodic and bounded.

Theorem 6 (repetitive RLC) : For learning control law
(20) and robust control law (21), under Assumption 6,
the non-linear system (22) tracks the desired trajectory
of Category III asymptotically while all state variables
are globally and uniformly bounded.

Proof : By segmenting ‰0 ; 1† into a series of even in-
tervals ‰iT f ; …i ‡ 1†T f Š, i ˆ 0 ;1 ; ¢ ¢ ¢, and proceeding as
in Theorem 3, the global and asymptotic convergence
of the tracking error can be proved. &

6. Illustrative example

In this section, the following two-link robotic manip-
ulator is considered.

m11 m12

m21 m22

" # �³1

�³2

2
4

3
5‡

¡2h _³1
_³2 ¡ h _³2

2 ‡ g1 ‡ fc ‡ fv
_³1

h _³2
1 ‡ g2 ‡ fc ‡ fv

_³2

2
4

3
5

‡
d1

d2

" #
ˆ

u1

u2

" #
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with h ˆ ‰³1 ; ³2Š> being the two joint angles, u ˆ ‰u1 ;u2ŠT
being the joint inputs and

m11 ˆ m1l2c1 ‡ I1 ‡ m2‰l21 ‡ l2c2 ‡ 2l1lc2 cos…³2†‡ I2Š

7 b1 ‡ b2 cos…³2†

m22 ˆ m2l2c2 ‡ I2 7 b3

m12 ˆ m21 ˆ m2l1lc2 cos…³2†‡ m2l2c2 ‡ I2

7 b3 ‡ b4 cos…³2†

h ˆ m2l1lc2sin…³2†7 b4sin…³2†

g1 ˆ m1lc1g cos…³1†‡ m2g‰lc2 cos…³1 ‡ ³2†‡ l1 cos…³1†Š
7 b5 cos…³1†‡ b6 cos…³1 ‡ ³2†

g2 ˆ m2lc2g cos…³1 ‡ ³2†7 b6 cos…³1 ‡ ³2†

In the model, the second term represents all centrifugal,
Coriolis, gravity , coulomb and viscous friction terms
(h). The friction for each link can be represented by a

Gaussian model (Brian 1991) as fc ‡ …fs ¡ fc†e¡j _³=³sj
¯s‡

fv
_³. The unstructured uncertainties hence consist of the

non-parametric friction terms

d1

d2

" #
ˆ

…fs ¡ fc†e¡j
_³1
³s

j¯s

…fs ¡ fc†e¡j
_³2
³s

j¯s

2
64

3
75

The pairs fm1 ;m2g ; fI1 ;I2g ; fl1 ; l2g and flc1 ; lc2g are the
masses, moments of inertia , lengths and center of grav-
ity co-ordinates of the two robotic arms respectively.
The coe� cients are appropriate unknown constants.
The desired trajectory for tracking is given by

³d;1 ˆ ³0 sin3…º½† ¡ º

2

³d;2 ˆ ³0 sin3…º½†

where ½ ˆ t=T f . The parameters are chosen as follows:
m1 ˆ 4 kg, m2 ˆ 3 kg, l1 ˆ 0:5 m, l2 ˆ 0:5 m, lc1 ˆ 0:3 m,
lc2 ˆ 0:25 m, I1 ˆ 0:4 kg:m2, I2 ˆ 0:25 kg:m2, fc ˆ 3:5,
fs ˆ 3:65, fv ˆ 1:06, ³s ˆ 0:1, ¯s ˆ 0:05, ³0 ˆ 108,
° ˆ 0:05 0 and T f ˆ 1 s. The desired trajectory belongs
to Category 1. By de® ning the same trajectory over
the entire time period, it can be seen that the trajectory
satis® es Category 3 also.

In the following, we illustrate the detailed procedure
of controller design. The switching surface is chosen as
in equation (5) with c1 ˆ 2. On the basis of the inverse
dynamics partition and the factoring of the structured
uncertainties, we have

±T
1 ®1 ˆ

1

cos…³2†
º1

º1 cos…³2†
º2

º2 cos…³2† ¡ sin…³2†…2 _³1
_³2 ‡ _³2

2†
cos…³1†

cos…³1 ‡ ³2†
_³1

2
666666666666666666664

3
777777777777777777775

T

¢

b1µ1 ‡ b3µ2 ‡ fc

b2µ1 ‡ b3µ2

b1

b2

b3

b4

b5

b6

fv

2
666666666666666666664

3
777777777777777777775

…30†

±T
2 ®2 ˆ

1

cos…³2†
º1 ‡ º2

º1 cos…³2†‡ sin…³2† _³2
1

cos…³1 ‡ ³2†
_³2

2
666666666664

3
777777777775

T

¢

b3…µ1 ‡ µ2†‡ fc

b4µ1

b3

b4

b6

fv

2
666666666664

3
777777777775

…31†

where

µ ˆ
�³d;1 ‡ c _³d;1

�³d;2 ‡ c _³d;2

" #
º ˆ

¡c1
_³1

¡c1
_³2

" #
…32†

The bound of each element of the unstructured uncer-
tainties (friction terms) can be calculated as

kgik ˆ fs ¡ fc …33†

The upper bound of the unstructured uncertainties is
hence calculated as lg ˆ …g2

1 ‡ g2
2†0:5. The mass matrix

is a constant with respect to ³1 and hence ¶1;max ˆ 0.
Taking the derivative of the mass matrix with respect
to ³2, we have ¶2 ;max ˆ …b2

2 ‡ 4b2
4†0:5 ˆ 0:88. An eigen-

value of ¶2 ;max ˆ 1:2 was chosen for simulation due to
the uncertainties in the parameter knowledge. It can be
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observed that acceleration measurement is not required
for the RLC scheme.

A potential problem of VSC is its chattering
phenomenon. To reduce chattering, the switching func-
tion sgn…¼† can be replaced by the following continuous
saturation function

sat…¼† ˆ
sgn…¼† if j¼j > ¯

¼

¯
otherwise

8
<
:

9
=

; …34†

To meet the control speci® cation k³1 ;d ¡ ³1k µ °, it is
necessary to ® nd the bound of the quantity ¯. Since the
desired tracking accuracy ° ˆ 0:05, the bound is
¯ ˆ c1° ˆ 0:1. For the simulation we chose  ff ˆ 10,
 fb ˆ 10 and a sampling period of 1 ms.

6.1. RL C with resetting

The simulation is performed for the iterative robust
learning control mode with resetting condition. Figures
1 and 2 illustrate the convergence of the maximum
tracking error for the ® rst link (³1 ) and second link
(³2) respectively over iterations. The control scheme
ensures the convergence of the extended tracking error
and consequently the convergence of the system states.
However, parameter convergence in terms of the indi-
vidual components of vi cannot be ensured without
additional assumptions such as persistent excitation
condition. The simulation results further verify the fact
that tracking error convergence can be achieved even
though parameter convergence cannot be ensured.

6.2. RL C in repetitive mode

The RLC is then applied in repetitive control mode
for the periodic trajectory of Category 3. The conver-
gence of the maximum tracking error for the ® rst link
(³1 ) and the second link (³2) are given by ® gures 3 and 4
respectively. The iteration axis in these ® gures stands for
each period of the repetitive action. The maximum
tracking error in each periodic operation interval is
plotted against the iteration axis.

It is con® rmed that the e� ectiveness of the new
robust learning control scheme is explicit for the pur-
pose of tracking control in the presence of such high
system non-linearities and uncertainties.
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Figure 1. Maximum value of ³1 tracking error over iterations
(RLC in iterative mode with resetting).
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Figure 2. Maximum value of ³2 tracking error over iterations
(RLC in iterative mode with resetting).
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Figure 3. Maximum value of ³1 tracking error over each
interval of operation (RLC in repetitive mode).



7. Conclusion

In this paper a new control scheme, the robust
learning control scheme, is developed by incorporating
variable structure control approaches into the learning
control system. The proposed RLC system possesses
both learning and robustness properties, and thereby
is able to handle robotic systems as well as certain
classes of non-linear and uncertain dynamic systems.
The robust learning control system illustrates the
capability of working in either iterative or repetitive
control mode with respect to the di� erent control ob-
jectives. Theoretical analyses and substantial discus-
sions have been presented to disclose the inherent
relationships between the plant non-linearities and
uncertainties, objective trajectory categories, resetting
condition, use of derivative signals and learning control
modes.

Appendix A: Proof of Theorem 1

Under the resetting condition

rT
i …0†Mi…0†ri…0† ˆ 0 i ˆ 1 ;2 ; . . .

is ensured. It follows from the relationship (19) that

D Ei µ ¡ ff r
T
i …T f†Mi…T f†ri…T f † ¡ 2

…T f

0
 ff  fbkrik2 d½

…A1†

which is negative de® nite when ri…t† 6ˆ 0; t 2 ‰0 ;T f Š.
Now, taking the summation of D Ei up to k yields

Xk

iˆ0
D Ei ˆ Ek‡1 ¡ E0

µ ¡
Xk

iˆ0

 ff r
T
i …T f†Mi…T f†ri…T f†

¡
Xk

iˆ0

2 ff  fb

…T f

0
krik

2 d½

Consequently we have

Xk

iˆ0

…T f

0
krik2 d½ µ E0=…2 ff  fb† < 1

which leads to

lim
i!1

…T f

0
krik

2 d½ ˆ 0

Since the extended tracking error dynamics (5) is
selected to be stable, ri ˆ 0 and the initial resetting con-
dition ( -xd…0† ˆ -xi…0†) ensures the global convergence of
-xi to -xd asymptotically. The ® niteness of Ei…T f† is
ensured by the negative de® niteness of D Ei. Since
Ei…t† µ Ei…T f †, the ® niteness of Ei…t† is also ensured.
Suppose the tracking error has a ® nite escape time
te 2 ‰0 ;T f Š, from equation (18)

D Ei…te† µ ¡ ff r
T
i …te†B¡1

i …te†ri…te† ¡
… te

0
2 ff  fbkrik2 d½

µ ¡1 …A2†
The evaluation function Ei…t† at t ˆ te will become nega-
tive de® nite, which contradicts the ® nite positive de® nite
character of the evaluation function. Hence ® nite escape
time is not possible in subsequent iterations. The bound-
edness of the system signals is hence ensured in the sense
of L 1 norm. &

Appendix B: Proof of Theorem 2

Under the alignment conditions -xi…T f† ˆ -xi‡1…0† and
-xd…T f† ˆ -xd…0† for the trajectory of Category 2, it fol-
lows that

ri…T f† ˆ ri‡1…0† …B1†
is satis® ed for all trials. From inequality (19) we know
that

D Ei µ ¡ ff r
T
i …T f†Mi…x1…T f††ri…T f†

‡  ff r
T
i …0†Mi…x1…0††ri…0† ¡ 2

…T f

0
 ff  fbkrik2 d½

Again, taking summation of D Ei up to k and using con-
dition (B1) yields
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Figure 4. Maximum value of ³2 tracking error over each
interval of operation (RLC in repetitive mode).



Xk

iˆ0
D Ei ˆ Ek‡1 ¡ E0

µ ¡
Xk

iˆ0

 ff r
T
i …T f†Mi…x1…T f††ri…T f†

‡
Xk

iˆ0

 ff r
T
i …0†Mi…x1…0††ri…0†

¡
Xk

iˆ0

2 ff  fb

…T f

0
krik2 d½

ˆ ¡
Xk‡1

iˆ1

 ff r
T
i …0†Mi…x1…0††ri…0†

‡
Xk

iˆ0

 ff r
T
i …0†Mi…x1…0††ri…0†

¡
Xk

iˆ0

2 ff  fb

…T f

0
krik2 d½

ˆ ¡ ff r
T
k‡1…0†Mk‡1…x1…0††rk‡1…0†

‡  ff r
T
0 …0†M0…x1…0††r0…0†

¡
Xk

iˆ0

2 ff  fb

…T f

0
krik2 d½ …B2†

From the above formula we can derive

Xk

iˆ0

2 ff  fb

…T f

0
krik2 d½ µ E0 ‡  ff r

T
0 …0†M0…x1…0††r0…0†

…B3†
in which the right-hand side remains constant as k
increases. Therefore, similarly to Theorem 1, ri ˆ 0
can be ensured as the number of iterations approaches
in® nity. Hence we can obtain kri…T f†k < kri…0†k. The
initial alignment condition leads to kri‡1…0†k <
kri…0†k. This contraction mapping ensures the conver-
gence of the system states to their desired values.
Equation (B2) also ensures the ® niteness of Ei…T f†.
The ® niteness of the system signals can hence be
ensured, as in the proof of Theorem 1. &

Appendix C: Proof of Theorem 3

Choose the evaluation function

E ˆ
…1

0
k®…½† ¡ v…½†k2 d½ …C1†

By segmenting ‰0; 1† into a series of even intervals
‰iT f ; …i ‡ 1†T f Š, i ˆ 0 ;1 ; ¢ ¢ ¢, and noticing the periodicity
of the function vector ®…t†, evaluation function (C1) can
be rewritten as

E ˆ
X1

iˆ0

Ei ˆ
X1

iˆ0

……i‡1†T f

iT f

k®…½† ¡ v…½†k2 d½

ˆ
X1

iˆ0

…T f

0
k®…½† ¡ vi…½†k2 d½ …C2†

where
vi…t†7 v…iT f ‡ t† t 2 ‰0; T f Š

is the learning control law. Using the above de® nition,
learning control v…t† in (20) can be expressed in the fol-
lowing recursive form

vi…t† ˆ vi¡1…t†‡  ff A
T
i¡1…¢ ;t†ri¡1…t† …C3†

Now both evaluation functions Ei and learning con-
trol law vi…t† can be treated as de® ned over a ® nite inter-
val ‰0; T f Š. By comparison, we ® nd that both evaluation
functions in (13) and (C2), and the learning control laws
vi in (12) and (C3) have exactly the same forms. By
virtue of the uniform upper bound of kgk, it is possible
to design a gain lg…-x ;t† with uniform upper bound to
ensure global stability. Therefore, the proof of Theorem
2 can be applied directly to show the global and asymp-
totic convergence of system states to their desired
value. &

Appendix D: Proof of Theorem 5

Under the condition -xi…T f† ˆ -xi‡1…0† and the prop-
erty of the desired trajectory which also ensures
-xd…T f† ˆ -xd…0†, it follows that

ri…T f† ˆ ri‡1…0† …D1†
is satis® ed for all trials. On the basis of inequality (27),
taking summation of D Ei up to k and using conditions
(29) and (D1) yields

Xk

iˆ0
D Ei ˆ Ek‡1 ¡ E0

µ ¡
Xk

iˆ0

 ff r
T
i …T f†B¡1…zi…T f†;T f†ri…T f†

‡
Xk

iˆ0

 ff r
T
i …0†B¡1…zi…0†;0†ri…0†

¡
Xk

iˆ0

2 ff  fb

…T f

0
krik2 d½

ˆ ¡
Xk‡1

iˆ1

 ff r
T
i …0†B¡1…zi…0†;0†ri…0†

‡
Xk

iˆ0

 ff r
T
i …0†B¡1…zi…0†;0†ri…0†
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¡
Xk

iˆ0

2 ff  fb

…T f

0
krik2 d½

ˆ ¡ ff r
T
k‡1…0†B¡1…zk‡1…0†;0†rk‡1…0†

‡  ff r
T
0 …0†B¡1…z0…0†;0†r0…0†

¡
Xk

iˆ0

2 ff  fb

…T f

0
krik

2 d½ …D2†

From the above formula we can derive

Xk

iˆ0

2 ff  fb

…T f

0
krik2 d½ µ E0 ‡  ff r

T
0 …0†B¡1…z0…0†;0†r0…0†

…D3†
in which the right-hand side remains constant as k
increases. The asymptotic convergence of the tracking
error and the boundedness of the system states are hence
ensured as in Theorem 2. &
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