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Abstract

Based on the Lyapunov's direct method, a new learning control design is proposed. The proposed technique can be applied in two
ways: it is either the standard backward recursive design or its extension. In the "rst case, the design yields a class of learning control
with a di!erence learning law, under which the class of nonlinear systems is guaranteed to be asymptotically stable with respect to the
number of trials in performing repeated tasks. However, implementation of the di!erence learning control requires derivative
measurement of the state for guaranteed stability and performance, as required by most of the existing linear learning control laws. To
overcome this di$culty, the proposed design extends the recursive design by employing a new state transformation and a new
Lyapunov function, and it yields a class of learning control with a di!erence-di!erential learning law. Compared with the existing
design methods most of which are based on linear analysis and design, the extension not only guarantees global stability and good
performance but also removes such limitations as derivative measurement, Lipschitz condition, and resetting of initial conditions.
In addition, the proposed design does not rely on the property of a system under consideration such as the input}output
passivity. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many control applications such as robotics and
automation, one of important issues is to design control
systems that achieve trajectory tracking with acceptable
accuracy. Often, tracking error systems are nonlinear and
contain unknown parameters or time functions. If the
desired trajectory is periodic or repetitive, iterative learn-
ing control can be used to improve system performance.
The intuition behind this approach is periodicity of the
repeated tasks, although other functions with a given and
known characteristic may be learned. From trial to trial,

all periodic time functions remain to be constant at any
"xed instant of local time. So, a learning control if
properly designed should be able to learn constants since
constants are simplest form of unknowns. Through learn-
ing unknown parameters or time functions, learning con-
trol can compensate linear as well as nonlinear dynamics
so that tracking performance can be enhanced.

There have been many results reported on learning
control design. A recent discussion on history and vari-
ous approaches of learning control can be found in
Moore (1993). In model-based learning control, there are
two major approaches. First, Arimoto and his coworkers
(Arimoto, Kawamura, & Miyazaki, 1984a,b; Arimoto,
Kawamura, Miyazaki, & Tamaki, 1984; Kawamura,
Miyazaki, & Arimoto, 1985) proposed a learning control
design that updates its learning contribution from trial to
trial. This approach achieves asymptotic zero tracking
error by requiring derivative feedback of the state and
Lipschitzian condition and by assuming the same initial
conditions for all trials. Other schemes that are similar in
essence to Arimoto's framework are: a high-gain, model
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reference adaptive control approach (Bondi, Casalino,
& Gambardella, 1988); generalized inversion of input
matrix (Hauser, 1987); linear high-gain robust control
(Miller III, Glanz, & Kraft, 1987; Qu, Dorsey, Dawson,
& Johnson, 1993) and robustness analysis under distur-
bance (Heinzinger, Fenwick, Paden, & Miyazaki, 1992);
It was shown in Sugie and Ono (1991) that, if there is
a direct transmission term from input to output, deriva-
tive measurement of the state is not needed. Removal of
acceleration measurement were also achieved for second-
order vector systems in Kuc, Lee, and Nam (1992) with
Lipschitz condition and constant bound on the time
derivation of the inertia matrix, and in Qu and Zhuang
(1993) through non-di!erentiable nonlinear robust con-
trol. The second approach is the so-called adaptive learn-
ing control scheme in which an adaptation law is
designed in a similar fashion as those in adaptive control.
Learning controls designed using this method are up-
dated not from trial to trial but continuously in time; for
example, learning controllers proposed by Horowitz
and his coworkers (Horowitz, Messner, & Moore, 1991;
Messner, Horowitz, Kao, & Boals, 1991).

Despite of the progress accomplished, major limita-
tions such as derivative feedback of the state, or resetting
of initial condition, or Lipschitz condition, or their com-
binations remain for designing of a learning control for
a class of nonlinear systems. The key to overcome these
limitations and to account for nonlinear models of phys-
ical systems is to use nonlinear analysis and design tools.
Recently, there was a new result that the asymptotic
stability can be achieved using the input}output passivity
of robotic systems without the limitations mentioned
previously (Arimoto, 1996). However, it is required to
generalize the design of a learning control so that it may
not depend on the property of a system. For the exten-
sion, among various nonlinear methods, the Lyapunov
second approach (Khalil, 1992; Rouche, Habets,
& Laloy, 1977; Slotine & Li, 1991) stands out due to its
universal applicability and physical implications. To suc-
cessfully apply the Lyapunov method, one must "nd an
appropriate Lyapunov function candidate using which
control can be designed to ensure stability. In this paper,
a new nonlinear learning design is presented, and it is an
extension of the backward recursive (backstepping) de-
sign speci"cally improved for learning control design.
This method allows us to extend the Arimoto's learning
framework based on the Gronwall's inequality to the one
that is based on the Lyapunov's direct method.

The proposed learning control design is applicable to
the class of high-order nonlinear systems that are consis-
ted of "nite cascaded subsystems, and they include many
of electrical}mechanical systems such as robots, electric
motors and drivers, etc. Application results to robots
(both simulation and experimentation results) can be
found in Ham, Qu, and Park (1994), Ham, Qu, and
Johnson (2000), Ham and Qu (1997) and Qu and Dawson

(1996). However, it is the main purpose of this paper to
present the nonlinear design framework of learning con-
trol in a mathematically general setting.

The proposed learning control scheme contains two
parts: a feedforward/feedback part and a learning part.
The latter is described either by a di!erence equation or
by a di!erential-di!erence equation. The learning control
is designed to be robust in the sense that it ensures global
stability in the presence of unknown dynamics in the
system so long as the unknown is bounded by a known
nonlinear function of the state.

This paper is organized as follows. In Section 2, non-
linear learning control design method is introduced. The
new approach is illustrated by an example in Section 3.
Conclusions are made in Section 4.

2. Nonlinear learning control

In this section, a learning control design is introduced
to achieve asymptotic stabilization for a class of cascaded
nonlinear systems in the form that, for i"1,2, m!1,
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where z
i,j
3Rn is the state of the ith subsystem, u

j
3Rn is

the control variable, subscripts i and j are the indices of
subsystems and learning trials, respectively.

Systems in the above class may have both unknown
time-varying parameters and nonlinear uncertainties.
For these systems, robust control developed in Qu (1993)
can always be applied if uncertainties are bounded by
well-de"ned functions and if matrix B

i,j
( ) ) is positive

de"nite. In this paper, a learning control is shown to be
applicable to the above systems provided that, in
a proper transformed state space, nonlinear uncertainties
that do not vanish as the transformed state converges to
zero are periodic. A learning control is to compensate for
uncertain periodic time functions. Compared with robust
control method in Qu (1993), the proposed learning de-
sign method yields simpler control and, by taking ad-
vantage of periodicity, ensures better stability result
(asymptotic stability in contrast to stability of uni-
form ultimate boundedness). The proposed framework
of learning control design is based on the following
assumptions.

Assumption 1. Vector time function z$(t) : [0, d¹]PRn de-
notes the desired trajectory for system output z

1,j
to track

repeatedly in all trials. It is smooth in the sense that

sup
t|*0, dT+

GDDz$DD, DDz5 $DD,2, KK
dmz$

dtm KKH
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1This condition is su$cient as some of the unknown time functions
(for example, those in A

m,j
( ) ) and those in A

i,j
( ) ) being covered under

Assumption 3) may not have to be periodic.
2All bounding functions are assumed to be well-de"ned in the sense

that they are locally uniformly bounded with respect to the state
variables and uniformly bounded with respect to time. As shown in Qu
(1993), bounding functions can be assumed, without loss of any general-
ity, to be di!erentiable in order to proceed recursively with the control
design.

3Speci"cally, "ctitious control u
i,j

(t) contains a learning control part
(*

i,j
) and a feedforward control part, and it is a closed-form function of
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is bounded. Furthermore, it is assumed that, unless resetting
of initial condition of the system is done after each trial,
z$(0)"z$(d¹) in order to have a continued, repetitive,
desired motion.

Assumption 2. Dynamics of a system described above
can asymptotically be learned if, for any xxed values of
z
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3Rn, vector/matrix time functions A
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, t), i"1,2,m, are periodic in time
with respect to d¹.1
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, t) are time functions that either periodic
(as dexned in assumption 2) or bounded in norm by known
constants. Furthermore, matrix B

i,j
( ) ) is positive dexnite

with known constant upper and lower bounds, and its par-
tial derivatives are bounded in norm by known functions of
its arguments.2

Based on the three assumptions, learning control can
be designed analytically using Lyapunov's direct method.
The main feature of our design is that learning control
will be devised in closed form, to be of same expression
for all trials j, and recursively with respect to index i of
subsystems. That is, the Lyapunov method is applied to
each subsystem in order to "nd a proper "ctitious control
as if it could be controlled independently. For each sub-
system, control design is done in four minor steps:
a translational transformation is "rst applied, followed
by re-grouping of dynamics, then properties of these
parts of dynamics are developed, and "nally the control
is given in closed form for all t and for all j.

For the ith subsystem, the state transformation is from
z
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to x
i,j

and is de"ned by
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for i"2,2,m and for all j, (3)

where u
i~1,j

is the so-called "ctitious control designed for
the (i!1)th subsystem. By (3), the actual control design
can be accomplished after m major recursion steps and,
at the ith step, the state transformation is applied to the
ith system after control design has been done for the
(i!1)th and preceding subsystems. As will be given

shortly, all "ctitious controls are given by analytical
expressions of same type.3 Such a design fully exploit the
cascaded structure of overall system dynamics and makes
on-line implementation be a combination of simple addi-
tions, multiplications and successive substitutions. For
notational convenience, we shall use u

m,j
or x

m`1,j
to

denote the actual control variable u
j
. That is, the "cti-

tious control for the last subsystem is the actual control.
In what follows, design steps are given while details of

algebraic derivations for a speci"c system are omitted as
one can mimic those in Section 3. Again, we shall proceed
with our design recursively. By induction, let us suppose
that "ctitious controls u

k,j
, k"1,2, i!1, have been

chosen (as will be given by Eq. (8)) for subsystems 1 up to
(i!1), and we are to design a control for subsystem i. By
the de"nition of new state variable x

i,j
, we can rewrite

equation of the i-th subsystem in terms of x
i,j

as
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Since u
i~1,j

has been found, its time derivative can be
rewritten as a sum of products of its partial derivatives
and z5

k,j
(k"1,2, i!1) which have been found in the

previous recursive steps. Therefore, the right-hand side of
(4) is a function of z

k,j
and x
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, k4i#1. Now, change

the variables from z
k,j

to x
k,j

and group the dynamics of
the ith subsystem according to the following expression:
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where f
i
(t)3Rpi is a vector of unknown but periodic time

functions (to be learned by a learning contribution
*
i,j
3Rpi contained in learning control u

i,j
), f

i
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is a known and possibly nonlinear matrix function
matrix, and vector g
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( ) )3Rn may contain nonlinear

uncertainties and has the property that, for some known
bounding functions o
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holds for all x
l,j

(with l"1,2, i). Comparing (4) and (5),
we know that
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hold for some known constants h
1 i

and hM
i

and for
a known function o

hi
. It follows from Assumptions 1,

2 and 3 that the re-grouping given by (5), (6) and (7) can
always be obtained.

Learning control u
i,j

, to be synthesized using
Lyapunov direct method and to be given by (8), will be in
terms of the transformed dynamics in (5) and of the
bounding functions in properties (6) and (7), and its
functional expression is the same for all j and for all i. So,
from a user point of view, the proposed design essentially
involves symbolic recursive calculation of Eq. (5) and its
properties.

Several observations are worth making at this point
about the grouping. First, choices of functions f
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( ) ) are not unique, a term in dynamics of z5
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be classi"ed into either f

i,j
( ) ) and g
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( ) ). The di!erence

here is whether the designer wants to explicitly learn the
unknown time function or to compensate for it through
bounding it properly. Consequently, the user may con-
struct several equivalent learning controls for any given
system and make a selection. Second, upper and lower
bounds h

1 i
and hM

i
can be generalized to be positive-valued

functions and, if matrix h
i,j

( ) ) is known, it would be
su$cient that h

i,j
( ) ) is invertible rather than being

positive de"nite.
Now, we are in a position to synthesize a learning

control using Lyapunov direct method. For all
i"1,2, m and for all j, the proposed learning control is
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where x
0,j

"0 is used for notational convenience,
bounding functions o

hi
( ) ) and o

gik
( ) ) are de"ned by (7)

and (6), F
i,j

( ) ) denotes the feedforward control part, and
¸
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( ) ) is the learning control part.
The lumped feedforward control F
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( ) ) is a robust

control part that stabilizes asymptotically the system

through compensating for uncertainties g
i,j

( ) ) and h
i,j

( ) ).
Learning control part ¸

i,j
( ) ) is designed to learn time

function f
i
(t) and to compensate for known nonlinear

dynamics f
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( ) ). As mentioned before, the actual control
is de"ned to be u

j
"u
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The iterative learning contribution *@
i,j

consists of two
parts:
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where b50 is a control gain that can be chosen freely by
the designer. The term that learns unknown time func-
tion, *

i,j
, is updated from trial to trial by the learning law
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where i"1,2, m, j"0,1,2, *
i,~1

"0, a'0 is the
learning control gain that can be chosen freely by the
designer, and 04c(1 is a design parameter that yields
either a di!erence or di!erence-di!erential learning law.
Whenever c'0 is selected, *

i,j
de"ned by (10) should be

solved under initial condition *
i,j

(0)"*
i,j~1

(d¹), where
d¹ denotes the duration of all learning trials.

The introduction of *
i,j

makes it easier to analyze
stability and performance of the learning control. Speci"-
cally, it will be shown (in the proof) that *

i,j
learns time

function f
i
(t) and ensures stability, and that the di!erence

between *@
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and *
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improves convergence of the learn-
ing control.

The above learning control is derived based on
Lyapunov's direct method using Lyapunov function: for
i"1,2, m and for all j,
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1992) of learning error [f
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]. To show design and

e!ectiveness of the proposed learning control, we "rst
present the following lemma which illustrates the prop-
erty of Lyapunov function (11) for the i-th subsystem.

Lemma. Consider system (5) under learning control (8)
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Proof. It follows from the choice of initial condition of
learning law (10) and from periodicity of f
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Applying control (8) together with learning term (9) to
system (5) yields
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] from the above equa-

tion yields

!P
dT

0

[ f T
i,j
) (f

i
!*

i,j
)]T ) x

i,j
dq

"P
dT

0

!xT
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) f T
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x
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i
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i,j

o
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2
x
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o
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#

1

4
h
1
2
i
x
i,j

i~1
+
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!h
i,j
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!(z
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!u

i,j
)] dq
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2
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h
i,j

x
i.j K
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0

#

1

2P
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0

[DDx
i,j

DD2DDh0
i
DD!DDx

i,j
DD2o

hi
] dq

!bP
dT

0

xT
i,j

f
i,j
) f T
i,j

x
i,j

dq!(m!i#1)P
dT

0

DDx
i,j

DD2dq

#P
dT

0

xT
i,j

(z
i`1,j

!u
i,j

) dq!P
dT

0

xT
i,j

x
i~1,j

dq

!P
dT

0
Ch1 i DDxi,j

DD2o
gii
#

1

4
h1 2
i
DDx

i,j
DD2

i~1
+
k/1

o2
gik

!DDx
i,j

DD ) DDh
i,j

DD ) DDg
i,j

DD] dq
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1

2
xT
i,j

h
i,j

x
i,j K
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0

!bP
dT

0

xT
i,j

f
i,j
) f T
i,j

x
i,j

dq

!(m!i#1)P
dT

0

DDx
i,j

DD2dq

!P
dT

0

xT
i,j

x
i~1,j

dtau#P
dT

0

xT
i,j

(z
i`1,j

!u
i,j

) dq

#

i~1
+
k/1
P

dT

0

DDx
k,j

DD2dq

in which the last inequality is obtained by applying
de"nitions of the bounding functions in (7) and (6) and
by using inequality a2#b252ab repeatedly. The proof
can be completed by substituting the above result
into (12). h

With the lemma in hand, we can now state the main
result of this paper. In the following theorem, asymptotic
stability of the overall system is concluded under the
proposed learning control.

Theorem. Suppose that subsystems in the form of (5) are
formulated sequentially by xctitious control design and by
state transformation (3) such that bounding functions in the
form of (7) and (6) can be found. Then, under learning
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control (8) and (10), the transformed (n]m)th order system
(given by Eq. (5)) is globally asymptotically stable if c"0
and uniformly ultimately bounded if 0(c(1. That is,
while all state variables of the original system (given by (1)
and (2)) are globally and uniformly bounded, the system
output tracks its given desired trajectory either asymp-
totically (for c"0) or with arbitrary accuracy in terms of
¸
2

norm (for small enough c'0 or large enough a'0).

Proof. Let Lyapunov function of the overall system at
the jth trial be <

j
"+m

k/1
<

k,j
. It follows from the lemma

that

d<
j
O

m
+
k/1

d<
k,j

4!

a
2

m
+
k/1

xT
k,j

h
k,j

x
k,j K

dT

0

!ab
m
+
k/1
P

dT

0

xT
k,j

f
k,j

) fT
k,j

x
k,j

dq

!a
m
+
k/1
P

dT

0

DDx
k,j

DD2dq#
1

4
cmd¹ max

s|*0, dT+
DDfQ

i
(s)#f

i
(s)DD2.

In learning control implementation, initial conditions at
each trial are either manually set to zero or kept to the
"nal conditions of the previous trail (that is, no resetting).
In the case of resetting of initial conditions, the term
!a/2+m

k/1
xT
k,j

h
k,j

x
k,j

DdT
0

is non-positive. In the second
case that no resetting of initial condition is made, the sum
of the initial- and "nal-condition term from the "rst trial
to the pth trial is

!

a
2

p
+
j/1

m
+
k/1

xT
k,j

h
k,j

x
k,j K

dT

0

"

!

a
2

m
+
k/1

xT
k,p

(d¹) h
k,p

x
k,p

(d¹)

#

a
2

m
+
k/1

xT
k,0

(0) h
k,0

x
k,0

(0),

in which the last sum on the right-hand side is only one
possible positive term and it remains constant as p in-
creases. Thus, we have that, in both cases of initial condi-
tions,

<
p
!<

0
"

p
+
j/1

d<
j
4C

*/*5
#pcCf

!ab
p
+
j/1

m
+
k/1
P

dT

0

xT
i,j

f
i,j
) f T
i,j

x
i,j

dq

!a
p
+
j/1

m
+
k/1
P

dT

0

DDx
k,j

DD2dq,

where

C
*/*5

"

a
2

m
+
k/1

xT
k,0

(0) h
k,0

x
k,0

(0)

and

Cf"
1

4
md¹ max

s|*0,dT+

DDfQ
i
(s)#f

i
(s)DD2.

Equivalently, we have that, for all integer p50,

ab
p
+
j/1

m
+
k/1
P

dT

0

xT
i,j

f
i,j
) f T
i,j

x
i,j

dq#a
p
+
j/1

m
+
k/1
P

dT

0

DDx
k,j

DD2dq

4C
*/*5

#<
0
#pcCf . (13)

If c"0, taking the limit of pPR on the left-hand side
of (13) yields

lim
p?=

m
+
k/1
P

dT

0

xT
i,p

f
i,p

) f T
i,p

x
i,p

dq

" lim
p?=

m
+
k/1
P

dT

0

DDx
k,p

DD2 dq"0

from which global asymptotic stability of the state
x
i,j

can be concluded.
If 0(c(1, dividing p on both sides of (13) and then

taking the limit of pPR yields

a lim
p?=

1

p

p
+
j/1

m
+
k/1
P

dT

0

DDx
k,p

DD2 dq4cCf

which implies that

a lim
p?=

sup
jzp

m
+
k/1
P

dT

0

DDx
k,j

DD2dq4cCf .

The above inequality shows global uniform ultimate
boundedness of the state DDx

k,p
DD and arbitrary output

tracking accuracy through the choice of either c or a.
Based on stability of DDx

k,p
DD, stability of the state

DDz
k,p

DD of the original system can be concluded using
Eqs. (3) and (8). h

Many systems in engineering applications have the
cascaded structure. The above theorem shows how to
design learning control for these systems. Speci"cally, the
design is proceeded in a recursive manner. That is, formu-
late dynamic equation of the "rst subsystem into (5) and
(6) by which a stabilizing "ctitious learning control can
be selected to be (8) and (10); "nd dynamic equation
governing transformed state x

2,j
"z

2,j
!u

1,j
and

choose "ctitious control u
2,j

as if it were the "rst subsys-
tem; and repeat the same steps for the rest of subsystems.
This process will be illustrated by an example in the next
section.

It is worth pointing out that, although this paper deals
with learning control and details of control design and
analysis is quite di!erent, the proposed design procedure
is conceptually the same as the so-called backstepping
design in adaptive control (Kanellakppoulos, Kokotovic,
& Morse, 1991) or the recursive design in robust
control (Qu, 1993). That is, "ctitious controls constitute
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a recursive mapping whose "nal outcome is the actual
control to be designed.

Remark 1. The roles of control gains a and b can be
easily analyzed from inequality (13). Consider "rst the
case that c"0. If a is "xed, the larger the gain b, the
faster the convergence of f T

i,j
x
i,j

, and therefore by (10) the
faster is the convergence of the learning law. If b is "xed,
the larger the gain a, the faster is the convergence of the
state variables to zero. In the case of 0(c(1, larger
values of a and b imply smaller uniform and ultimate
bounds. Although c being zero o!ers better stability
result, it will be shown in the next section that c being
positive may be needed for better noise rejection in im-
plementation. Note that, for linear systems, "lters with
unity dc gain were introduced into learning control in
Hara, Yamamoto, Omato, and Nakano (1988), Jeon and
Tomizuka (1993) and their associated stability was
proven using the small gain theorem. Here, a new "rst-
order "lter with non-unity dc gain is used in nonlinear
learning control and its performance has been shown by
Lyapunov's direct method for general, high-order non-
linear systems. Since decreasing the value of c makes
stability of boundedness approach asymptotic stability,
c should be made to be small if it is chosen to be positive.

Remark 2. In general, matrix B
i,j

( ) ) may be a function of
state variables from z

1,j
up to z

i,j
(rather than up to

z
i~1,j

). In this case, h
i.j

( ) )"h
i,j

(x
1,j

,2,x
i,j

, t). Conse-
quently, the bounding function de"ned in (7) should be
modi"ed to be

KK
d

dt
h
i,j

(x
1,j

,2, x
i,j

, t)KK4o
hi
( ) )#o@

hi
( ) )DDx

i`1,j
DD.

The presence of term o@
hi
( ) )DDx

i`1,j
DD in stability argument

for the ith subsystem can only be compensated by the
choice of "ctitious control u

i`1,j
in order to have well-

de"ned state transformations. Thus, two modi"cations
must be introduced in this case. First, system (5) must be
augmented to include the (i#1)th subsystem of state
x
m`1,j

"u
j
as x5

m`1,j
"u

m`1,j
. It follows that f

m`1
"0,

f
m`1,j

"0, g
m`1,j

"0, and h
i`1,j

"I. Stability analysis
and learning control design can then be proceeded for the
augmented system in the same way as before. Second,
"ctitious controls u

i,j
are modi"ed to be

u
i,j
"!C(m!i#1)x

i,j
#h1

i
o
gii

(x
1,j

,2, x
i,j

, t) )x
i,j

#1
2
o
hi
(x

1,j
,2,x

i,j
, t) )x

i,j

#

1

4
h1 2
i
x
i,j

i~1
+
k/1

o2
gik

(x
1,j

,2,x
i,j

, t)

#x
i~1,j

#

1

4
DDx

i~1,j
DD2o@

hi
) x

i,j D!f
i,j
)*@

i,j
,

where i"1,2, m#1. The iterative learning part *@
i,j

is
updated by learning law (10). It is easy to see that
*@

m`1,j
"0 for all j. By de"nition of the augmented state,

the actual control is in this case u
j
":t

t0
u
m`1,j

dq.

Remark 3. The proposed control is also robust in the
sense that exact knowledge of nonlinear dynamics g

i,j
( ) )

in (5) is not required except for bounding functions on the
magnitude. In the event that Assumption 2 fails, system
(5) can still be obtained except that it may have a con-
stantly bounded but non-periodic time function as bias.
In this case, stability analysis can be done in the same
fashion as that of 0(c(1 to conclude uniform boun-
dedness.

3. Illustrative example

Consider a second-order system

z5
1,j

"a
1
(t)z2

1,j
#z

2,j
, (14)

z5
2,j

"a
2
(t)(1#z2

1,j
z
2,j

)#a
3
u
j
(t), (15)

where subscript j is the index of learning trials, z
1,j

and
z
2,j

are state variables, and u
j
(t) is the control input, a

1
(t)

and a
2
(t) are periodic time functions whose magnitudes

are bounded by 1, and a
3

is an unknown constant
bounded as 14a

3
42.

Based on the formulation in the previous section, the
state of the "rst subsystem should be de"ned to be the
output tracking error as x

1,j
"z

1,j
!z$, where z$ is

a given desired trajectory. Thus, dynamic equation of
x
1,j

can be derived from (14) as follows:

x5
1,j

"z5
1,j

!z5 $"a
1
(t)(x

1,j
#z$)2!z5 $#u

1,j
#x

2,j

Oh~1
1,j

f
1,j

f
1
(t)#g

1,j
#h~1

1,j
u
1,j

#h~1
1,j

x
2,j

, (16)

where u
1,j

is the "ctitious control, and x
2,j

"z
2,j

!u
1,j

is the second, transformed state variable. The last equa-
tion in the above derivation requires the designer to cast
the dynamics of the "rst subsystem into the standard
form of (5). Once functions h

1,j
, f

1,j
, f

1
(t) and g

1,j
are

determined, "ctitious control u
1,j

can be found, and then
dynamic equation of x

2,j
can be in turn derived. That is,

x5
2,j

"z5
2,j

!u5
1,j

"a
2
(t)[1#z2

1,j
z
2,j

]#a
3
(t)u

j
!u5

1,j

Oh~1
2,j

f
2,j

f
2
(t)#g

2,j
#h~1

2,j
u
j
. (17)

Finally, actual control u
j

can be found by determining
functions h

2,j
, f

2,j
, f

2
(t) and g

2,j
.

There are many possible choices of functions f
i,j

, f
i
(t)

and g
i,j

, and di!erent choices of these functions yield
di!erent but equivalent learning controls. To show versa-
tility of our learning control scheme, two typical choices
of learning controls, linear learning part and linear feed-
forward part, will be made through properly deriving (16)
and (17), respectively. In the view that the overall
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Fig. 1. Tracking performance.

learning control is always nonlinear due to the nonlinear
nature of the system, the two typical choices are simply
the extreme cases.

For Eq. (16), we shall design a "ctitious learning con-
trol with a linear learning part. To this end, we know
from (9) and (10) that f

i,j
must be independent of

x
k,j

(k4j), for instance, f
i,j
"1 if possible. Under the

choice of f
1,j

"1, comparing Eq. (16) with its preceding
one yields

h
1,j

"f
1,j

"1, f
1
"a

1
(t)(z$)2!z5 $,

g
1,j

"2a
1
(t)z$x

1,j
#a

1
(t)x2

1,j
.

Then, it follows that o
h1
"0 and that

Dg
1,j

D42Dz$DDx
1,j

D#Dx
1,j

D2

4[1.5#(z$)2#0.5x2
1,j

] ) Dx
1,j

DOo
g11

Dx
1,j

D.

Thus, "ctitious control u
1,j

is de"ned by (8) with the
above functions, speci"cally,

u
1,j

"!(2#o
g11

)x
1,j

!*@
1,j

"!(2#b#o
g11

)x
1,j

!*
1,j

,

c*0
1,j

#*
1,j

"(1!c)*
1,j~1

#ax
1,j

. (18)

Upon having "ctitious control (18), the term !u5
1,j

in
di!erential equation of x

2,j
can be derived as follows.

First, it follows that

!u5
1,j

"(2#b#o
g11

#x2
1,j

)x5
1,j

#2z$z5 $x
1,j

#*Q
1,j

.

Second, x5
1,j

and *Q
1,j

(with 0(c(1) can be rewritten
by (16) and (18) in terms of x

i,j
, *

1,j
, *

1,j~1
, and f

1
(t).

In the case that c"0, it follows from (18) that
*Q
1,j

"*Q
1,j~1

#ax5
1,j

. Note that, at the jth trial, *
1,j~1

is

a known time function and hence *Q
1,j~1

can be cal-
culated. To avoid high noise sensitivity of derivative
operation, learning law with c'0 can be used by trading
o! asymptotic stability. With these facts in mind, we shall
proceed with design and, for comparison and illustration,
shall make actual learning control u

j
be one with linear

feedforward part.
It follows from (8) that linear feedforward part can be

obtained by setting g
2,j

"0. By comparing Eq. (17) with
its preceding one, we have that, under the choice of
g
2,j

"0,

h~1
2,j

"a
3
(t), f

2
(t)"C

a
2
(t)/a

3
(t)

a
1
(t)/a

3
(t)

1/a
3
(t) D, o

h2
"0.

Function f
2,j

has two expressions: if 0(c(1,

f
2,j

"

C
1#z2

1,j
z
2,j

(2#b#o
g11

#x2
1,j

)z2
1,j

(F
3
#2z$z5 $x

1,j
#[!*

1,j
#(1!c)*

1,j~1
#ax

1,j
]/cD

T

,

where F
3
"(2#b#o

g11
#x2

1,j
)(z

2,j
!z5 $), and if c"0,

f
2,j

"

C
1#z2

1,j
z
2,j

(2#a#b#o
g11

#x2
1,j

)z2
1,j

(2#a#b#o
g11

#x2
1,j

)(z
2,j

!z5 $)#2z$z5 $x
1,j

#*0
1,j~1D

T

.

Since this is the last subsystem and hence no more state
transformation is needed, learning law (10) with c"0
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can always be selected. Thus, actual control u
j
is de"ned

by (8) with the above functions, i.e.,

u
j
"![x

1,j
#x

2,j
]!f

2,j
*@
2,j

"!x
1,j

!(1#bf
2,j

f T
2,j

)x
2,j

!f
2,j

*
2,j

.

Simulations were carried out using SIMNON( to dem-
onstrate e!ectiveness of the proposed learning scheme.
In the simulations, the following choices were made
for system (14) and (15): Initial conditions are
z
1,0

(0)"z
2,0

(0)"0; desired trajectory is given by
z$"(1!cos t); learning trials are of length d¹"2 s;
unknown periodic functions are chosen to be
a
1
(t)"cos3(0.5t), a

2
(t)"cos(3.0t), and a

3
(t)"1; learn-

ing controls u
1,j

and u
j
are implemented with gains a"5

and b"5. Both types of learning laws were simulated:
di!erence updating law (i.e., c"0) and di!erential-di!er-
ence updating law with c"0.01.

The performance index used to evaluate tracking per-
formance is de"ned to be

PI( j)"P
dT

0

(z
1,j

!z$)2 dq.

Simulation results are given in Fig. 1. Performance under
learning control with c"0, shown by the solid line, is the
best as expected. For simple calculation, *0

1,j~1
can be

removed from matrix f
2,j

, whose performance is shown
by the dotted line. It is clear that *0

1,j~1
is not critical for

stability but its existence will enhance convergence. The
dashed line represents performance under learning con-
trol with c"0.01. As shown by theoretical analysis,
"ltering of 0(c(1 would degrade somewhat the learn-
ing performance.

4. Conclusion

Since most physical systems are nonlinear and perfect
knowledge of their dynamics are usually unavailable,
control design should be both nonlinearly based and
robust. Most existing learning control scheme are based
on Lipschitz condition and, in addition, they require
derivative measurement of the state and resetting of in-
itial conditions. The proposed nonlinear learning control
design not only extends the backward recursive (back-
stepping) design but also overcomes the shortcomings of
the existing learning designs. Two classes of learning
controls have been derived, and the designer has much
#exibility in choosing various combinations of feed-
forward and learning control parts. The trade-o! is that
the resulting control laws require more computation
time, which is acceptable using the current computer
technology.

Future study is needed to develop a learning control
design method for nonlinear systems not satisfying the
cascaded structure. Such an e!ort will call for nonlinear

analysis and design methods, such as the recursive-inter-
lacing design (Qu, 1995) that are more sophisticated and
advanced than the one-directional (backward or for-
ward) design.
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