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Robust and Adaptive Boundary Control of a
Stretched String on a Moving Transporter

Zhihua Qu

Abstract—Suppression of vibration is an important engineering
problem. In this note, control problem of a flexible system that includes
a stretched string supported on a transporter is defined and solved.
Such a system may be encountered in device manufacturing and process
automation. Robust and adaptive control is designed to damp out trans-
verse oscillation of the string via compensating for possible uncertainties
in string dynamics and transporter motion. Standard robust control
design based on a straightforward Lyapunov argument commonly seen in
control design for rigid-body systems is extended to the flexible system.
Asymptotically/exponentially and robustly stabilizing controls are found.

Index Terms—Adaptive control, flexible system, Lyapunov functional,
robust control, string system.

NOMENCLATURE

fx0; y0; z0g, fx; y; zg, t Inertia frame, coordinate
system fixed onto the trans-
porter, and time.

x, dx Axial coordinate along the
equilibrium of the string,
and an element along thex
axis.

y(x; t) Transverse displacement
with respect to the equilib-
rium of the string (w.r.t. the
transporter).

yt, yx, ytt, yxt, yxx (@y(x; t))=(@t),
(@y(x; t))=(@x),
(@2y(x; t))=(@t2),
(@2y(x; t))=(@t@x),
(@2y(x; t))=(@x2).

A(x), �(x) Cross-section area, linear
density of the string, and the
mass per unit length.

E, l Elastic modulus, and axial
length between supports.

T0(x), T (x; t) String initial tension, and
nonlinear tension in the
string.

yb(t), _yb(t) [or vb(t)], �yb(t), andMb Position, velocity, accelera-
tion, and mass of the moving
transporter.

p0(t), pl(t) Positions of the control
mechanism (atx = 0; l
and of massM0; Ml) w.r.t.
fx; y; zg.

b0; bl Dynamic friction coeffi-
cients between the control
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Fig. 1. A stretched string on a transporter.

mechanism and the trans-
porter.

f0(t), fl(t) Boundary control forces.

I. INTRODUCTION

A string is a model that can be used to represent and understand
dynamic behavior of many continuous time flexible systems. For
example, strings have been used for modeling telephone wires,
cables, conveyor belts, and even human DNA. String models and their
boundary controls have been studied for decades, for example, [8],
[10], [1], [2], [9], and the references cited therein. Although a majority
of these results are based on linear models and perfect knowledge,
nonlinearities in string dynamics are considered in recent results such
as [15] and [16]. Nonlinear models are also used in [4] to design
adaptive control that compensates for unknown friction and in [5] to
design variable structure modal control. In the case that boundary mass
is present or that advanced control schemes (such as adaptive control)
are pursued, controls can be designed but more feedback information
than boundary velocity are typically required; for instance, those
developed in [9], [4] also need boundary slope and boundary slope
rate, and that in [5] needs modal displacements and velocities.

This note addresses a general robust and adaptive control problem for
string systems. Compared to the existing work, the following advances
and extensions are made in the proposed result. First, nonlinear dy-
namics and their uncertainties are admitted in the model. For example,
the string under consideration does not have to be uniform, and its ten-
sion can be a nonlinear function of both the transverse gradient and
the axial coordinate. To compensate for the nonlinear dynamics and
uncertainties, an everywhere-stabilizing1 robust control is proposed.
Second, the proposed robust control design is done by a straightforward
Lyapunov argument (parallel to that for rigid-body systems). Third,
a new control setting is considered here, in which the string system
is supported on a transporter whose motion is uncertain, for which a
combined robust and adaptive control is designed. Finally, an adap-
tive control requiring only boundary velocity feedback is proposed to
compensate for unknown dynamic friction. As in the previous results,
when boundary mass is present, robust and adaptive controls can be de-
signed, but more boundary feedback information than boundary rates
are required.

1All controls proposed in this note are stabilizing everywhere in the region in
which the nonlinear string model, given by (1), holds.
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Fig. 2. Transverse vibration of a stretched string.

II. PROBLEM STATEMENT

In this note, a control problem extracted from device manufacturing
and process automation is considered. A system under consideration,
specifically that sketched in Fig. 1, belongs to the class of nonlinear
flexible systems whose main characteristics are those of a string. As
shown in the figure, the string system is being moved from one pro-
cessing station to another on a transporter. The motion of transporter is
characterized by a constant cruising speed plus a (possibly uncertain)
variation. The establishment of cruising speed and the presence of its
variation may cause the string to have transverse vibration, as shown
by Fig. 2, wherefx; y; zg is a fixed frame on the transporter. To sup-
press the vibration with respect to the inertia framefx0; y0; z0g, force
control is applied at the two supporting assemblies that are actuated on
parallel sliding tracks on the transporter.

A. Dynamics of a String on a Transporter

Dynamic equation that governs the motion of the string system in
Fig. 1 can be derived using either continuous limit of a discrete formu-
lation, Hamilton’s principle, or Newton’s law with a free body diagram.
It has been shown in [3] that, assuming small displacements and, thus,
keeping Taylor series expansion at the first order, one can obtain the
following equation of motion:

m(x)ytt(x; t) =
@

@x
[T (x; t)yx(x; t)] : (1)

In the system under consideration, the string is supported and con-
trolled on a moving transporter. As argued in [3] for beam dynamics,
the motion equation for the string with a moving base is the same as (1)
except thaty(x; t) is replaced byY0(x; t)

�
= y(x; t) + yb(t). Thus,

the dynamic equation becomes

m(x)
@2Y0(x; t)

@t2
=

@

@x
T (x; t)

@Y0(x; t)

@x

whereY0(x; t) is the position of the string in the inertia frame. Since
yb(t) is only a function of time, the string equation modified to account
for base motion can also be rewritten as

m(x)ytt =
@

@x
[T (x; t)yx(x; t)]�m(x)�yb(t)

which can be rewritten as

m(x)
@2Y (x; t)

@t2
=

@

@x
T (x; t)

@Y (x; t)

@x
(2)

whereY (x; t) = Y0(x; t) � cbt for any constantcb. In essence, a
constant cruising speed of the base does not induce any vibration in the
string.

It can be assumed that the tension in the string is of form

T (x; t) = T0(x) + w(x)y2x(x; t) (3)

whereT0(x) > 0 is the tension in the undisturbed string, andw(x) �
0 (for all x 2 [0; l]) is the weighting that, together withy2x(x; t),
accounts for the strain in the displaced string. In the case where the
uniformity of the string is assumed, and the tension is assumed to be
independent ofx, we haveT0(x) = T0 andw(x) = 0:5AE, which are
used in [8] and [9]. If functionw(x) is set to be zero, the string tension
is a function of onlyx, and it includes the model in [4] as a special case.

Substituting the tension expression (3) into dynamic model (2) yields

m(x)ytt(x; t)� T0(x) + 3w(x)y2x(x; t) yxx(x; t)

�
@T0(x)

@x
yx(x; t)�

@w(x)

@x
y
3

x(x; t) = �m(x)�yb(t)

which provides the detailed expression of the model used in this paper
for the system in Fig. 1. The initial conditions for displacement and
velocity of the string are

y(x; 0) = c1(x) and yt(x; 0) = c2(x) (4)

and boundary conditions needed for solving the above motion equation
are

y(0; t) = p0(t); y(l; t) = pl(t) (5)

wherep0(t), pl(t), andyb(t) are described by the following dynamic
equations for control mechanism and transporter:

M0[�p0(t) + �yb(t)] = f0(t)� T (0; t)yx(0; t)� b0 _p0(t) (6)

Ml[�pl(t) + �yb(t)] = fl(t) + T (l; t)yx(l; t)� bl _pl(t) (7)

and

Mb�yb = sum of all forces exerted onto the transporter.

In (6) and (7),f0(t) andfl(t) are the two boundary control forces at
pointsx = 0; l and in the direction of they axis. It is worth noting that,
if M0 = Ml = b0 = bl = 0, boundary conditions in (5) for solving
equation (2) should be replaced by

f0(t) = T (0; t)yx(0; t); and fl(t) = �T (l; t)yx(l; t)

which was the case studied in the earlier version [14] of this note.

B. Robust and Adaptive Control Problem

Using forcesf0(t) andfl(t) as the control variables, we define our
robust and adaptive control problem in terms of the following assump-
tions and design objective.

Assumption 1:Motion profile of the transporter can be expressed as

_yb(t) = cb + �b(t) (8)

wherecb is a constant cruising speed,�b represents a speed variation
of form

�b(t) = �1 sin(wbt+ �2)

wb is a known oscillation frequency,�1 and�2 represent unknown mag-
nitude and phase angle, respectively. In addition, friction coefficients
b0 andbl are unknown, but constant.
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Assumption 2:Functions such asm(x), T0(x), andw(x) may be
uncertain to the control designer, but they are bounded by known, con-
stant lower and upper bounds as follows: for allx 2 [0; l]

m �m(x) � m

cT �T0(x) � cT

w �w(x) � w:

Assumption 3:General size information on partial derivatives of
functionsm(x), T0(x) andw(x) with respect tox is available. That
is, values of

@m(x)

@x

@T0(x)

@x

@w(x)

@x

are known to be within a certain range.
Design Objective:Under Assumptions 1–3, find boundary controls

f0(t) andfl(t) using boundary measurements [includingYt(0; t) and
Yt(l; t) measured in the inertia frame] such that, with respect to the
inertia framefx0; y0; z0g, the stretched string will asymptotically (or
exponentially) converge to its equilibrium (i.e.,Y (x; 1) = 0 for all
x 2 [0; l]).

Remark 2.2.1: It follows from Fourier series expansion that As-
sumption 1 can be relaxed to admit any unknown, periodic function
that has a known oscillation frequency by setting

�b(t) =

j

j=1

[�j1 sin(jwbt+ �j2) + �j3 cos(jwbt+ �j4)]

wherejmaxwb is the maximum frequency worth considering. �
Remark 2.2.2:As can be seen from model (2), constant cruising

speed has no steady state impact on string vibration. Unknown base
motion defined in (8) could come from imperfectly circular wheels of
the transporter, or their actuators, or tracks. If the cruising speed is also
changing, boundary control can be designed similarly to compensate
directly for its impact on string oscillation. Alternatively, the impact
of the short-term transient in establishing a new cruising speed can
be embedded into the above design problem through nonzero initial
conditions of the string transverse motion. �

C. Robust Control Design Using Knowledge of Transporter Motion

Robust boundary control will be synthesized using Lyapunov’s di-
rect method. To this end, consider the following Lyapunov function
candidate for the string:

Vs(t) =
l

0

m(x) [yt(x; t) + �b(t)]
2 +

T0(x)

m(x)
y2x(x; t)

+
w(x)

2m(x)
y4x(x; t) +

�(x)x

l

� [yt(x; t) + �b(t) ]yx(x; t) dx (9)

where its initial condition can be computed using the initial conditions
in (4), and�(x) is a positive scalar function satisfying the following
inequalities: for allx 2 [0; l] and for some constant� > 0

x2�2(x)m <cT l2 (10)

11�2(l)m < 32cT (11)

11�2(l)m � 4 2cT + 32cT � 11�2(l)m
2

(12)

@[�(x)m(x)x]

@x
> � (13)

@[�(x)x]

@x
T0(x) >�(x)x

@T0(x)

@x
+ � (14)

and

3
@[�(x)x]

@x
w(x) >�(x)x

@w(x)

@x
+ 2�: (15)

Remark 3.1.1: Inequalities (10)–(12) all imply that magnitude of
weighting function�(x) in Lyapunov functionV (t) should be chosen
to be small and be based upon bounds on system parameters or upon
bounding functions on system dynamics. Inequalities (13)–(15) can
be satisfied if�(x) is chosen to be a highly increasing function. The
two sets of inequalities can be simultaneously met by setting�(x) =
�1e

� x with �1 > 0 being sufficiently small and�2 > 0 being large.
For example, ifm(x) = m0 + �m sin(2�x=l) with j�mj � m1 <
m0, inequality (13) can be met by setting�2 > 2�m1=[l(m0�m1)].�

Remark 3.1.2: Inequalities (13)–(15) can be restated as that,
through the choice of�(x), functions

�(x)m(x)x
�(x)x

T0(x)
and

�3(x)x3

w(x)

are all strictly increasing with respect tox, which can be guaranteed
by chosen�(x) provided that, as stated in Assumption 3, such min-
imum information as general trends of functionsm(x), T0(x) and
w(x) are available. In case thatT0(x) andw(x) are constants, inequal-
ities (13)–(15) become trivial by choosing�(x) such that�(x)m(x)
and�(x) are nondecreasing. �

The property of Lyapunov functionVs(t) is summarized by the fol-
lowing lemma. The proof of the lemma can easily be done using scalar
inequalitya2 + b2 � 2ab.

Lemma 1: Under condition (10), Lyapunov function for the string
is positive definite with respect toYt(x; t) andYx(x; t) as

Vs(t) �
1

2
minfm; cT g

l

0

[yt(x; t)+�b(t)]
2+y2x(x; t) dx

and

Vs(t) �
l

0

max m+ 0:5�2(x)m; cT + 0:5m; 0:5w

� [yt(x; t) + �b(t)]
2 + y2x(x; t) + y4x(x; t) dx:

(16)

It is obvious that, ifVs(t) converges to zero (which can be achieved
by making _Vs(t) negative definite through a control design), the string
will be at its equilibrium (which either stands still or moves at a constant
speed in the inertia frame) as bothYt(x; t) = yt(x; t) + �b(t) and
Yx(x; t) = yx(x; t) converge to zero for allx.

The proposed results on robust boundary control are summarized by
the following theorem and its corollary.

Theorem 1: Consider system (2) with boundary conditions (5). If
Assumptions 2 and 3 hold, if there is a scalar function�(x) satisfying
inequalities (10)–(15), if parameters�1, �2, b0, andbl are known, and
if M0 = Ml = 0, the following boundary controls are robust and
exponentially stabilizing [measured by exponential stability ofVs(t)]
with respect to the equilibrium of the string:

f0(t) = k0Yt(0; t) + b0 [Yt(0; t)� �b(t)]

fl(t) = kl(l)Yt(l; t) + bl [Yt(l; t)� �b(t)] (17)

where control gains arek0 � 0 andkl(l) 2 [kl(l); kl(l)]

kl(l) =
4�(l)m

8 + 64� 22
�2(l)m

cT

(18)

and

kl(l) =
16cT + 256c2T � 88�2(l)mcT

11�(l)
:
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The stability result holds everywhere in the region in which model (1)
is valid.

Proof: It follows from dynamic equation (2) that the time deriva-
tive of Vs(t) is

_Vs(t) =
l

0

2m(x)Yt(x; t)Ytt(x; t) + 2T (x; t)yx(x; t)

� yxt(x; t) +
�(x)m(x)x

l
Yt(x; t)yxt(x; t)

+
�(x)m(x)x

l
Ytt(x; t)yx(x; t) dx

=
l

0

2Yt(x; t) T0(x) + 3w(x)y2x(x; t) yxx(x; t)

+
@T0(x)

@x
yx(x; t) +

@w(x)

@x
y
3
x(x; t)

+ 2T (x; t)yx(x; t)yxt(x; t) +
�(x)m(x)x

l

� Yt(x; t)yxt(x; t) +
�(x)x

l
yx(x; t)

� T0(x) + 3w(x)y2x(x; t) yxx(x; t)

+
@T0(x)

@x
yx(x; t) +

@w(x)

@x
y
3
x(x; t) dx

=
l

0

2
@ fT (x; t)yx(x; t)Yt(x; t)g

@x
+

1

2

�(x)m(x)x

l

�
@Y 2

t (x; t)

@x
+

1

2

�(x)x

l

@ T0(x)y
2
x(x; t)

@x

+
3

4

�(x)x

l

@ w(x)y4x(x; t)

@x
+

1

2

�(x)x

l

�
@T0(x)

@x
y
2
x(x; t)+

1

4

�(x)x

l

@w(x)

@x
y
4
x(x; t) dx:

Integrating by part yields

_Vs(t) =�2T (0; t)yx(0; t)Yt(0; t) + 2T (l; t)yx(l; t)

� Yt(l; t) +
3
8
�(l)yx(l; t) � 1

4
�(l)T0(l)y

2
x(l; t)

�
l

0

1

2l

@[�(x)m(x)x]

@x
Y

2
t (x; t) dx�

l

0

1

2l

�
@[�(x)x]

@x
T0(x)� �(x)x

@T0(x)

@x
y
2
x(x; t) dx

�
l

0

1

4l
3
@[�(x)x]

@x
w(x)� �(x)x

@w(x)

@x

� y
4
x(x; t) dx+

1

2
�(l)m(l)Y 2

t (l; t)

��2T (0; t)yx(0; t)Yt(0; t) + 2T (l; t)yx(l; t)

� Yt(l; t) +
3
8�(l)yx(l; t) � 1

4�(l)T0(l)y
2
x(l; t)

+
1

2
�(l)m(l)Y 2

t (l; t)�
�

2l

l

0

� Y
2
t (x; t) + y

2
x(x; t) + y

4
x(x; t) dx (19)

in which the last inequality is obtained by applying properties (13)–(15)
of function�(x).

SinceM0 = Ml = 0, it follows from (6) and (7) that, under
boundary controls given by (17)

T (0; t)yx(0; t) = k0Yt(0; t)

and

T (l; t)yx(l; t) =�klYt(l; t):

Therefore, we have

3
4�(l)T (l; t)y

2
x(l; t)�

1
4�(l)T0(l)y

2
x(l; t)

= 1
2
�(l)T0(l)y

2
x(l; t) +

3
4
�(l)w(l)y4x(l; t)

=
1

2
�(l)T0(l)

k2l (l)Y
2
t (l; t)

[T0(l) + w(l)y2x(l; t)]2

+
3

4
�(l)w(l)

k2l (l)Y
2
t (l; t)y

2
x(l; t)

[T0(l) + w(l)y2x(l; t)]2

�
11k2l (l)

16T0(l)
�(l)Y 2

t (l; t):

Substituting the above expression, and invoking properties (11), (12),
and (16), yields

_Vs(t) ��2k0Y
2
t (0; t)

� 2kl(l)�
1

2
�(l)m(l)�

11

16T0(l)
�(l)k2l (l) Y

2
t (l; t)

�
�

2l

l

0

Y
2
t (x; t) + y

2
x(x; t) + y

4
x(x; t) dx

��2k0Y
2
t (0; t)� k

0

l(l)Y
2
t (l; t)

�
�

2l

l

0

Y
2
t (x; t) + y

2
x(x; t) + y

4
x(x; t) dx

���v Vs (20)

wherek0l(l) = kl(l)� kl(l) � 0, kl(l) is that defined in (18), and

�v =
�

2lmaxfm+0:5maxx2[0;l] �2(x)m; cT +0:5m; 0:5wg
:

The solution to the above differential inequality is

Vs(t) � Vs(t0)e
�� (t�t )

which demonstrates exponential stability.
Corollary 1: Consider system (2) with boundary conditions (5). If

Assumptions 2 and 3 hold, if there is a scalar function�(x) satisfying
inequalities (10), and (13)–(15) and

�
2(l)m < 16

9
cT (21)

and if parameters�1, �2, b0, andbl are known, the following boundary
controls are robust and exponentially stabilizing everywhere [measured
by Vs(t) and in the region in which model (1) is valid] with respect to
the equilibrium of the string:

f0(t) =�k0Yt(0; t) + 3cf(0; t) + b0 [Yt(0; t)� �b(t)]

fl(t) =�kl Yt(l; t) +
3
8
�(l)yx(l; t) � 3cf(l; t)

+ bl [Yt(l; t)� �b(t)]�
3
8
Ml�(l)yxt(l; t) (22)

where k0 � 0 and kl � 2�(l)m are positive control gains,
cf(0; t) = T (0; t)yx(0; t) and cf(l; t) = T (l; t)yx(l; t) are
boundary contacting forces.

Proof: Choose a Lyapunov function candidate to be

V (t) = Vs + V0 + Vl

whereVs is that in (9), andV0 andVl are defined to be the sub-Lya-
punov functions for the control mechanism and as

V0(t) =
1
2
M0 [ _p0(t) + �b(t)]

2
;

Vl(t) =
1
2Ml _pl(t) + �b(t) +

3
8�(l)yx(l; t)

2
:



474 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 3, MARCH 2001

It follows from dynamic equations (6) and (7) that, under boundary
controls in (22)

_V0 =Yt(0; t) [f0(t)� T (0; t)yx(0; t)� b0yt(0; t)]

=�
2k0
M0

V0 + 2Yt(0; t)T (0; t)yx(0; t)

and
_Vl = Yt(l; t) +

3
8
�(l)yx(l; t)

� fl(t)+T (l; t)yx(l; t)�blyt(l; t)+
3
8Ml�(l)yxt(l; t)

=�
2kl
Ml

Vl � 2 Yt(l; t) +
3

8
�(l)yx(l; t) T (l; t)yx(l; t):

Combining the above two results with (19) yields

_V (t) ��
2k0
M0

V0 �
2kl
Ml

Vl �
1

4
�(l)T0(l)y

2
x(l; t)

+
1

2
�(l)m(l)Y 2

t (l; t)�
�

2l

l

0

� Y
2
t (x; t) + y

2
x(x; t) + y

4
x(x; t) dx:

It follows that, under a choice of�(l) satisfying (21) and under the
choice ofkl

� 1
2kl Yt(l; t) +

3
8�(l)yx(l; t)

2
� 1

4�(l)T0(l)y
2
x(l; t)

+ 1
2
�(l)m(l)Y 2

t (l; t)

= � 1
2
[kl��(l)m(l)]Y 2

t (l; t)�
9
128

kl�
2(l)+ 1

4
�(l)T0(l)

� y
2
x(l; t)�

3
8
kl�(l)Yt(l; t)yx(l; t)

� � kl � �(l)m(l) 9
64
kl�2(l) +

1
2
�(l)T0(l)

� jYt(l; t)yx(l; t)j �
3
8
kl�(l)Yt(l; t)yx(l; t) � 0:

Therefore, it is shown in the equation at the bottom of the page from
which exponential stability can be concluded.

Remark 3.1.3:Robust control (22) in the corollary is synthesized
via the backward recursive design in [13]. In other words, its design is
based on robust control (17), and their stability proofs are almost iden-
tical except that additional sub-Lyapunov functions are introduced to
include state variables in the dynamics of control mechanism. Conse-
quently, more feedback information is required in control (22), as both
(22) and (17) belong to state feedback controls. �

Remark 3.1.4: If boundary valuesm(l) and T0(l) are exactly
known, condition (12) required in theorem 1 is no longer needed,
condition (11) should be modified to be

11�2(l)m2(l)� 32T0(l)

and admissible values for control gainkl(l) is given by the interval
[k0l(l); k

0

l(l)] where

k
0

l(l) =
16T0(l)� 256T 2

0 (l)� 88�2(l)m(l)T0(l)

11�(l)

and

k
0

l(l) =
16T0(l) + 256T 2

0 (l)� 88�2(l)m(l)T0(l)

11�(l)
:

It is apparent that the control gain is a nonlinear function of boundary
values of the system dynamics. �

Remark 3.1.5: In practice, boundary controls in (17) cannot have
their gains exceed certain threshold values, which can be satisfied ac-
cording to (18) by choosing a small�(l) as required also in remark
3.1.1. It is obvious that, ifb0 = 0, no control force is needed atx = 0
by settingk0 = 0. That is, boundaryx = 0 is free along its track, ac-
tive control is only needed atx = l to compensate for speed variations
of the transporter. However, during the transient period that the trans-
porter accelerates or decelerates, force must also be applied atx = 0.
This is why it is better to implement control (17) withk0 > 0 for all
time. �

D. Robust and Adaptive Control Designs

In this section, the robust boundary control developed in Section 2-C
is converted into an adaptive one in order to compensate for unknown
motion of the transporter. For adaptive control design, consider the fol-
lowing Lyapunov function candidate

L(t)=
1

2ka
b0�b̂0(t)

2

+
1

2ka
bl�b̂l(t)

2

+
1

2ka

4

i=1

�i��̂i(t)
2

(23)

where
ka > 0 adaptation gain;
�1 = b0�1 cos �2;
�2 = b0�1 sin �2;
�3 = bl�1 cos �2;
�4 = bl�1 sin �2;
â(t) estimate ofa.

It follows from the certainty equivalence principle that, ifM0 = Ml =
0, robust and adaptive control should be chosen as

f0(t) = k0Yt(0; t)+b̂0(t)Yt(0; t)��̂1 sin(wbt)��̂2 cos (wbt)

(24)

and

fl(t) = kl(l)Yt(l; t)+b̂l(t)Yt(l; t)��̂3 sin(wbt)��̂4 cos(wbt)

(25)

where control gainsk0 andkl(l) are the same as those for controls in
(17). Choices of adaptation laws and the resulting stability are given by
the following theorem.

Theorem 2: Consider system (2) with boundary conditions in (5).
If Assumptions 1–3 hold, if function�(x) is chosen according to in-
equalities (10)–(15), and ifM0 = Ml = 0, adaptive boundary controls
(24) and (25) are asymptotically stabilizing everywhere [measured by
Vs(t) and in the region where model (1) is valid] with respect to the
equilibrium of the string provided that the adaptation laws are set to be

db̂0(t)

dt
=2kaY

2
t (0; t)

d�̂1(t)

dt
=�2kaYt(0; t) sin(wbt)

d�̂2(t)

dt
=�2kaYt(0; t) cos(wbt)

db̂l(t)

dt
=2ka Yt(l; t) +

3

8
�(l)yx(l; t) Yt(l; t)

d�̂3(t)

dt
=�2ka Yt(l; t) +

3

8
�(l)yx(l; t) sin(wbt)

d�̂4(t)

dt
=�2ka Yt(l; t) +

3

8
�(l)yx(l; t) cos(wbt) (26)

where initial conditions can be selected by the designer.

_V (t) � �min
2k0
m0

;
kl

ml

;
�

2lmaxfm+ 0:5maxx2[0;l] �2(x)m; cT + 0:5m; 0:5wg
V

�
= ��vV:
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Proof: It follows from (6) and (7), withM0 = Ml = 0, that,
under boundary controls given by (24) and (25)

T (0; t)yx(0; t) = k0Yt(0; t)� [b0 � b̂0(t)]Yt(0; t)

+ [�1 � �̂1] sin(wbt) + [�2 � �̂2] cos(wbt)

and

T (l; t)yx(l; t) =�kl(l)Yt(l; t) + [bl � b̂l(t)]Yt(l; t)

� [�3 � �̂3] sin(wbt)� [�4 � �̂4] cos(wbt):

Therefore, substituting the two expressions into (19), one can show

_Vs(t) ��2kl(l)Yt(l; t) Yt(l; t) +
3

8
�(l)yx(l; t)

� 1

4
�(l)T0(l)y

2

x(l; t)+
1

2
�(l)m(l)Y 2

t (l; t)�2Yt(0; t)

� � b0 � b̂0(t) Yt(0; t) + �1 � �̂1 sin(wbt)

+ �2��̂2 cos(wbt) +2 Yt(l; t)+
3

8
�(l)yx(l; t)

� bl � b̂l(t) Yt(l; t)� �3 � �̂3 sin(wbt)

� �4 � �̂4 cos(wbt) �
�

2l

l

0

� Y 2

t (x; t) + y2x(x; t) + y4x(x; t) dx:

It follows that

�2kl(l)Yt(l; t) Yt(l; t) +
3

8
�(l)yx(l; t)

� 1

4
�(l)T0(l)y

2

x(l; t) +
1

2
�(l)m(l)Y 2

t (l; t)

� � 2kl(l)�
1

2
�(l)m(l)�

11

16T0(l)
�(l)k2l (l) Y 2

t (l; t)

� 1

22
�(l)T0(l)y

2

x(l; t)

� � 1

22
�(l)T0(l)y

2

x(l; t):

Therefore, under adaptation laws in (26), we have

_Vs + _L � ��v Vs �
1

22
�(l)T0(l)y

2

x(l; t) � ��v Vs (27)

from which asymptotic stability can be concluded by invoking Lemma
3.6 in [12, p. 38].

Remark 3.2.1:Similar to other asymptotic adaptive control designs,
the adaptive laws in (26) are chosen such that the time derivative of
composite Lyapunov functionVs+L is negative semi-definite. This is
obvious by comparing (20) and (27). As in other combined estimation
and control problems, adaptation gainka should be chosen to be larger
than control gainsk0 andkl(l) so that estimateŝ�i(t) quickly con-
verge and the boundary controls become effective. On the other hand,
ka being too large makes the closed-loop adaptive system sensitive to
unmodeled dynamics. �

Remark 3.2.2: In case that eitherM0 or Ml is not zero (or suffi-
ciently small), robust adaptive control can be synthesized based on the-
orem 2 and using the backstepping design in [7] (as did in the robust
control design in Corollary 1 and based on Theorem 1). In this case,
additional adaptation laws can be introduced to estimate online masses
M0 andMl. �

Compared to Theorem 1, adaptive control in Theorem 2 requires the
measurement of boundary slopeyx(l; t). In case that such a measure-
ment is not available, but friction coefficient is known, the following
corollary can be applied.

Corollary 2: Consider system (2) with boundary conditions in (5).
If Assumptions 1–3 hold, if function�(x) is chosen according to in-
equalities (10)–(15), ifM0 = Ml = 0, and if bl is known, adaptive
boundary controls (24) and (25) (witĥbl = bl) are uniformly and ulti-
mately bounded with respect to the equilibrium of the string provided

that the adaptation laws are chosen to be: there exists a constantk
r
> 0

such that, for any gainkr > 99�(l)ka=(8cT ),

db̂0
dt

=�krb̂0 + 2kaY
2

t (0; t)

d�̂1
dt

=�kr�̂1 � 2kaYt(0; t) sin(wbt)

d�̂2
dt

=�kr�̂2 � 2kaYt(0; t) cos(wbt)

d�̂3
dt

=�kr�̂3 � 2kaYt(l; t) sin(wbt)

d�̂4
dt

=�kr�̂4 � 2kaYt(l; t) cos(wbt) (28)

where initial conditions can be set by the designer.
Proof: It follows from the proof of Theorem 2 that, under

boundary controls given by (24) and (25), but with adaptation laws in
(28)

_Vs + _L ���v Vs �
1

22
�(l)T0(l)y

2

x(l; t) +
3

4
�(l)yx(l; t)

� � �3��̂3 sin(wbt)� �4��̂4 cos(wbt)

+
kr
ka

b0�b̂0(t) b̂0(t)+
kr
ka

4

i=1

�i��̂i(t) �̂i(t)

���v Vs +
99�(l)

16T0(l)
�3 � �̂3

2

+ �4 � �̂4
2

�
kr
2ka

b0 � b̂0(t)
2

�
kr
2ka

4

i=1

�i � �̂i(t)
2

+
kr
2ka

b20 +
kr
2ka

4

i=1

�2i

���v Vs� kr�
99�(l)ka
8T0(l)

L+
kr
2ka

b20+
kr
2ka

4

i=1

�2i

(29)

which is negative definite except for several constant bias terms. It fol-
lows from Lemma 3.4 in [12, p. 35] that the closed-loop system is ro-
bustly stable in the sense that all signals are uniformly and ultimately
bounded.

Remark 3.2.3:The adaptation laws in Corollary 2 belong to the
class of leakage-like adaptation laws [11] or to the class of robust adap-
tive controls [13]. According to Theorem 1, design parameter�(l)
should be chosen to be small. As a result, it follows from (29) that
the leakage gainkr can be made small as well. However, due to less
feedback information required, performance ensured in Corollary 2 is
weaker than that in Theorem 2. �

III. CONCLUSION

In this note, the problem of designing a robust and adaptive boundary
control for a string system is considered in the presence of both uncer-
tain dynamics and unknown motion of its support. The system under
consideration is modeled by a partial differential equation in which
the tension may be an uncertain nonlinear function of both its trans-
verse gradient and the position along its equilibrium. It is shown that,
if the base motion is known (through feedback measurement), a robust
boundary control can be designed to ensure exponential stability every-
where and that, if otherwise, the robust control can easily be converted
into a robust and adaptive control to ensure either asymptotic stability
or uniform and ultimate bounded stability. It is believed that the re-
sult is the first complete solution to the nonlinear robust boundary con-
trol problem of suppressing transverse oscillation for the string system.
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This also represents an important step in extending nonlinear robust
control theory to distributed-parameter systems.
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Identification in the Presence of Symmetry:
Oscillator Networks

Ernest Barany

Abstract—It is well known that the presence of symmetry in the equa-
tions of a dynamical system has a profound effect on the resulting behavior.
This note examines how this effect is manifested in the corresponding pa-
rameter identification problem. Our work shows that standard ideas such
as persistent excitation in a trajectory can beexplainedby symmetry. More-
over, by understanding how symmetry affects the dynamics, it may be pos-
sible to obtain sufficient information to achieve full identification even when
typical trajectories are not persistently exciting. Alternately, our analysis
shows how properly interpreting the output of the identification process
can give useful information even if full identification is not possible.

Index Terms—Coupled oscillators, identification, parameter estimation,
symmetry.

II. I NTRODUCTION

Obtaining an accurate quantitative model for a given dynamical
system is of central importance in many areas of systems theory,
including control theory. In many applications the basic structural
features of the system model can be determined from a consideration
of the physical laws which govern the system behavior, so that what
remains isparametric system identification, that is, determining the
values of the parameters in the model using measurements of inputs
and outputs. In this note, we focus in particular onadaptiveparameter
identification [1]–[3], since the inherently dynamical context lends
itself easily to the standard methodology of equivariant dynamics,
and also because this approach has proven to be compatible with a
great many system theoretic objectives (e.g., model-based prediction
and control). The results we obtain are a manifestation of a structural
property in this particular context, but it is likely that similar restric-
tions will occur in the presence of symmetry regardless of the specific
identification methodology considered.

The subject of adaptive identification (and control) has been studied
extensively during the past few decades [1]–[3]. However, there has
been very little attention devoted to parameter identification in systems
for which the dynamics possesses a symmetry [4]. Symmetric systems
have been the subject of a great deal work in the dynamics commu-
nity, but have received limited attention in control theory despite the
many parallels between the disciplines. One of the best known exam-
ples of the use of symmetry in engineering is based on the study of
continuous symmetries of mechanical systems, which give rise to con-
servation laws [5]. Symmetries can also result from the geometry of
spatial domains [6]. Also, observe that engineered devices might easily
possess symmetric dynamics as a consequence of the way they are de-
signed and constructed, for example because of the use of connection
of identical components. An example of this kind of application is the
analysis of gaits of locomotion systems [7]. The example we consider
below is also interpretable as a system ofN identical electrical oscil-
lators with equal mutual coupling, see [8] for an application involving
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