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This paper develops a new Lyapunov recursive design for the tracking control problem of rigid-link electrically-driven
robot manipulators with uncertainty by taking a tracking performance into account. The tracking performance is
evaluated by L2-gain from a torque level disturbance signal to a penalty signal for the tracking error between outputs
of the manipulator and desired trajectories. The novelty of our approach is in the strategy to construct such a Lyapunov
function recursively that ensures not only stability of a tracking error system but also an L2-gain constraint, which
provides a closed-form solution for non-linear H1 control problem without using a Hamilton± Jacobi inequality. Two
controllers, i.e. robust and robust adaptive control laws with L2-gain performance, are designed such that the closed-loop
error system is globally stable in the sense of uniform ultimate bounded stability with the L2-gain less than any given
small level. Experimental works are carried out for a two-link electrically-driven manipulator. Experimental results show
an enhanced tracking performance of the proposed control scheme.

1. Introduction

The tracking control problem of rigid-link robot

manipulators has attracted the attention of robot con-

trol engineers. Many diŒerent approaches to this prob-

lem have been proposed such as adaptive control

schemes (e.g. Slotine et al. 1987, Ortega 1989), and

robust control schemes (e.g. Slotine 1985, Spong et al.

1987). Recently, H1 control theory tends to be applied

to this problem (e.g. Chen et al. 1994, Ishii et al. 1997).

However, all these control schemes have been developed

for second-order non-linear diŒerential equations used

to represent rigid-link robot manipulator dynamics, in

which the torques or forces acting on arm joints are

inputs to the system. In other words, the actuator

dynamics are excluded from the robot model.

However, as addressed in Goor (1982), the actuator

dynamics play an important role in robot control prob-

lems, especially in the cases of high-velocity movements

and highly varying loads. Several researchers also have

pointed out that the detrimental eŒects of neglected

actuator dynamics degrade a tracking performance of

the robot. Tarn et al. (1991) demonstrated by experi-

mental works that better performance could be achieved

when the actuator dynamics were considered during the

design of the robot controller. Therefore, it is believed

that additional progress can be made by including the

eŒects of actuator dynamics in the controller synthesis.

Recently, the tracking control problem of robotic

systems including actuator dynamics has been studied.

The inclusion of actuators into system dynamics com-

plicates stability analysis and controller synthesis. The

reason for this is that the dynamics of robotic systems

including the actuators are described by third-order

non-linear diŒerential equations. In early literature

(e.g. Guez 1983, Beekmann and Lee 1988), non-linear

feedback linearization and decoupling was studied.

However, it should be noted that the design procedure

in these control schemes is based on full knowledge of

the dynamics of robotic systems. If there are uncertain-

ties in the system dynamics, use of a designed controller

based on an inaccurate system model will degrade a

tracking performance and may incur instability. To

deal with the uncertainties in the dynamics of robotic

systems, various control methods have been developed,

including robust control schemes (e.g. Dawson et al.

1992), adaptive control schemes (e.g. Yuan 1995), and

hybrid schemes (e.g. Su and Stepanenko 1995, 1997).

Most recently, along the same lines, Burg et al. (1996)

and Su et al. (1998) proposed a partial state-feedback

controller to avoid the velocity measurements. However,

it should be mentioned that the main attention of these

control schemes is focused on only stability analysis and

evaluation for the tracking performance is not consid-

ered in control design.

In this paper, we develop a new non-linear feedback

control design to the tracking control of rigid-link elec-

trically-driven robot manipulators with uncertainty that

incorporates manipulator dynamics as well as actuator

dynamics, taking a tracking performance into considera-

tion. In modelling of the electrically-driven robot
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manipulators, diŒerent choices of link actuators provide

vastly diŒerent electrical dynamics. In this study, we

consider the eŒects of permanent magnet brushed dc

motor dynamics in the overall robot dynamic model.

In practice, most of the literature (e.g. Tarn et al.

1991, Dawson et al. 1992, Mahmoud 1993, Su and

Stepanenko 1995, 1997, 1998) have adopted this electri-
cal dynamic model.

On the other hand, although many researchers

applied H1 control theory to the tracking control prob-

lem for the second-order rigid-link robot dynamic model
(see, e.g. Fujita et al. 1992, Hashimoto et al. 1992, Chen

et al. 1994), H1 control approach for robotic systems

including actuator dynamics has not been studied

enough at this point. Tomei (1999) proposed an excel-

lent adaptive control algorithm which guaranteed arbi-

trary transient performance as well as arbitrary
disturbance attenuation for second-order robot manip-

ulators with unknown and time-varying parameters,

which are subject to bounded disturbances. It takes

account of time-varying parameter variations in the con-

trol synthesis. However, a modelling error such as

unmodelled dynamics is not taken into account in the
theoretical development. The modelling error is not

easily dealt with in the approach pursued by Tomei

(1999). Since a modelling error is inevitable in actual

systems, a control scheme is needed that guarantees

robustness in the presence of the modelling error.
Besides, the validation of the control scheme is shown

in only a simulation example applied to a simple single-

link robot arm. In Ishii et al. (1997), we developed a

robust model following a control scheme with L2-gain

performance for a second-order robot dynamic model,

in which robot dynamics were linearized by feedback
linearization and a reference model was introduced to

give a desired trajectory. However, feedback lineariza-

tion erased the Hamiltonian structure of the robot

dynamic model, which failed to use several physical

properties of the mathematical manipulator model in
control design. Besides, introduction of the reference

model restricted the kinds of trajectories that the manip-

ulator must follow.

In this paper, we improve these drawbacks, and cast

an L2-gain synthesis to the robotic systems including

actuators. We use no linearization and no reference
model in control design, which allows us to exploit

some useful physical properties of manipulators to facil-

itate controller synthesis. Furthermore, unknown torque

level disturbance is introduced in robot dynamics, and

disturbance attenuation is considered to accomplish
high tracking performance. Then, the tracking perform-

ance is evaluated by L2-gain from the disturbance signal

to the penalty signal for the tracking error between the

outputs of the manipulator and the desired trajectories.

A voltage level state feedback control law is designed

recursively based on a Lyapunov recursive design

(Khalil 1996, Sepulchre et al. 1997) such that the track-

ing error system is globally stable in the sense of uniform

ultimate bounded stability with the L2-gain less than any

given small level. The proposed controller does not

require the joint acceleration feedback, which only

requires measurement of link position, link velocity
and electrical current. The contributions of this paper

are described as follows.

First, the proposed control scheme enlarged the pre-

vious methods of Dawson et al. (1992), Yuan (1995),
and Su and Stepanenko (1995, 1997) by incorporating

the criterion of tracking performance given by L2-gain

constraint in controller synthesis. The novelty is in the

strategy to construct such a Lyapunov function recur-

sively that ensures not only stability of the tracking error

system but also satis® es the dissipation inequality ensur-
ing L2-gain performance. However, it should be noted

that our scheme is not merely a simple extention of the

aforementioned existing approaches to the L2-gain syn-

thesis, since the control design problem that combines

both stability and L2-gain performance is not trivial.

Besides, the proposed scheme was extended so as to
deal with uncertain payloads without knowledge of par-

ameters in manipulator dynamics.

Second, it is well known that a control design to

achieve L2-gain performance for a non-linear a� ne

system, also called non-linear H1 control synthesis,
often reduces to the problem of solving a Hamilton±

Jacobi inequality. In general, the inequality is a matrix

partial diŒerential inequality and hence very di� cult to

solve. We proposed a recursive design approach to

obtain a closed-form solution for the non-linear H1
control problem without using a Hamilton± Jacobi
inequality.

Finally, the control scheme was applied to a two-link

horizontal robot manipulator driven by dc motors. The

eŒectiveness of the proposed control scheme was veri® ed

by experimental works. As a matter of fact, in the lit-
erature developed for the tracking control problem of

robotic systems including actuator dynamics, their

results are mainly supported by simulation works.

Only a few papers (e.g. Tarn et al. 1991) present the

experimental results on the actual robot.

The paper is organized as follows. In } 2, robot
dynamics including actuators is expressed in the form

of two cascaded loops, and the objective of control

design is stated. Then, a robust tracking control law

with L2-gain performance is derived in } 3. In } 4, the

result in } 3 is extended to a robust adaptive tracking
control scheme in which the manipulator parameters

are estimated by a parameter adaptation law.

Experimental results are presented in } 5. Finally, con-

clusions are given in } 6. Although our scheme depends

on full state-feedback, the measurements of velocity can
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be obtained without di� culty in experiments, and the

experimental results show an enhanced tracking per-

formance. A preliminary version of this paper appears

in Ishii et al. (1999 a,b).

2. Problem statement

Consider an n-link manipulator with each joint

driven by a dedicated, armature-controlled dc motor.
In general, it is considered that there exist several

kinds of uncertainties in actual robot systems described

as follows.

(1) Parameter perturbation induced by load vari-

ation.

(2) Modelling error such as unmodelled dynamics of

friction term and so on, which can be expressed
as a function of joint angle and its derivative.

(3) Disturbance such as measurement noise.

Taking these uncertainties into account, the proper

dynamics of the robotic system should be given by

M…h† �hh ‡ C…h; _hh† _hh ‡ D… _hh† ‡ G…h† ‡ ¢f …h ; _hh† ‡ w ˆ KNI

…1†

L _II ‡ RI ‡ Ke
_hh ˆ v …2†

where h 2 Rn is the vector of joint angle, I 2 Rn is the

vector of armature currents and v 2 Rn is the vector of

armature voltages in each joint actuator. M…h† 2 Rn£n is

the inertia matrix, C…h ; _hh† _hh 2 Rn represents the centri-

petal and Coriolis forces, D… _hh† 2 Rn represents the static
and dynamic friction terms, G…h† 2 Rn denotes the grav-

itational force, ¢f …h; _hh† 2 Rn is an unknown non-linear

function representing modelling error and parameter

peturbation, and w 2 Rn denotes unknown torque level

disturbance. L 2 Rn£n is the actuator inductance matrix,

R 2 Rn£n is the actuator resistance matrix, Ke 2 Rn£n is
the voltage constant matrix of motor back-electromotive

forces, and KN 2 Rn£n is the matrix that characterizes

the electromechanical conversion from electrical current

and mechanical torque. Matrices L, R, Ke and KN are

positive de® nite, constant and diagonal.
The statement of the control objective is based on

the following two assumuptions.

Assumption 1: Let hd 2 Rn denote an achievable de-

sired trajectory for joint angles of the robot. While de-

sired trajectory hd is normally generated through oV-line
trajectory planning, it is necessary for guaranteed

asymptotic tracking that hd has the following properties:

. hd is smooth in the sense that its third-order time

derivative is bounded by a constant for all time.

. If w ˆ 0 and if h…t0† ˆ hd…t0†, there exists an uncer-

tainty-independent, smooth voltage control v (or

simply a torque s ˆ KNI ) under which tracking of

hd by h is achieved asymptotically.

The combination of the two properties in

Assumption 1 ensures trackability of hd under a

bounded control. To facilitate the introduction of the
second assumption, let us de® ne the so-called vector of

tracking errors, that is

·ee ˆ ‰eT _eeTŠT

where e :ˆ h hd .

Assumption 2: The unknown non-linear function

¢f …h ; _hh† ˆ ¢f …e ‡ hd ; _ee ‡ _hhd† and torque level disturb-

ance w are bounded in norm as

k¢f …h ; _hh†k µ »¢f …e; _ee† …3†

kwk µ ·ww …4†

where »¢f …e; _ee† and ·ww are a non-negative, known function

and a constant, respectively.

It will be shown in the next section that dynamics of
a rigid-body robot are at most quadrate. Therefore, it

can be assumed without loss of any generality that

»¢f …e; _ee† ˆ ±2k·eek2 ‡ ±1k·eek ‡ ±0 …5†

where constants ±2, ±1 and ±0 can be easily found using

information about the upper bounds on parameters and

on the desired trajectory (see Lemma A.2 in Dawson

et al. 1990).

The objective of control design is to achieve trajec-
tory tracking in the presence of non-linear uncertainty

¢f …h ; _hh† and disturbance w, which is restated mathemat-

ically as follows.

Design problem: Under Assumptions 1 and 2, ® nd a

voltage level state feedback control law such that the
closed-loop system satis® es the following design speci-

® cations.

(S1) Stability: If w 6ˆ 0, the closed-loop error

system is globally stable in the sense of uniform
ultimate bounded stability. If w ˆ 0, the vector

of tracking errors, ·ee…t†, converges to zero

asymptotically.

(S2) L2-gain performance : Under zero initial con-

ditions …e…0† ˆ 0 and _ee…0† ˆ 0†, integral

inequality kzkT µ ®kwkT ‡ "0 holds for all

T ¶ 0 and for all w 2 L2…0; T†, where

k ¢ kT ˆ
…T

0

k ¢ k2 dt

» ¼1=2

L2…0; T† is the space consisting of all functions

whose k ¢ kT norm is ® nite, z is the vector

de® ned by
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z ˆ W·ee with W ˆ diag fq1I ; q2Ig

to evaluate the tracking performance, q1 and q2

are positive weighting coe� cients chosen to

specify the level of penalty on tracking errors,

® is a positive constant specifying the attentua-

tion level and "0 is a su� ciently small positive

constant.

In what follows, we shall develop such a control for

trajectory tracking in robots.

3. Derivation of the robust control law

Traditionally, the robotic control literature (see

Slotine 1988) had emphasized the use of the manipula-

tor’ s physical properties to facilitate the stability analy-

sis. Therefore, we note the following useful properties of
manipulator model.

Property 1. Inertia: The inertia matrix M…h† deWned

in …1† is positive deWnite symmetric and is uniformly

bounded as a function of h . That is, there exist positive

constants ¶min and ¶max which satisfy

¶minI µ M…h† µ ¶maxI ; 8h …6†

Property 2. Skew symmetry: For a proper deWnition of
C…h ; _hh†, the matrix _MM…h† 2C…h ; _hh† is skew symmetric.

That is, for any x 2 Rn

xTf _MM…h† 2C…h ; _hh†gx ˆ 0 …7†

holds.

The dynamic model (1) and (2) consists of two cas-

cade loops. Unlike the dynamic model of manipulators,

assuming the joint torque can be commanded directly,

the torque term KNI in (1) cannot be synthesized

directly. Instead, it is an output of the actuator
dynamics. In accordance with the backstepping control

strategy described in Dawson et al. (1992) and Su and

Stepanenko (1995), the design procedure is organized in

the following two steps. First, the armature currents

vector I is regarded as a control variable for subsystem
(1) and an embedded control input Id is designed so that

the tracking objective may be achieved. Then, voltage

level control input v is designed such that I tracks Id . To

this end, we rewrite (1) as

M…h† �hh ‡ C…h; _hh† _hh ‡ D… _hh† ‡ G…h† ‡ ¢f …h ; _hh† ‡ w

ˆ KNId ‡ KNg …8†

where g :ˆ I Id represent a current level perturbation

to the rigid-link dynamics. The subsystem (8) can be

viewed as a rigid model system with an input disturb-
ance KNg, controlled by torque level input KNId . In this

paper, (8) is called the manipulator loop and (2) is called

the actuator loop.

Consider the following desired Id given by

Id ˆ K 1
N fM…h† �hhd ‡ C…h ; _hh† _hhd ‡ D… _hh† ‡ G…h† ‡ u1g

…9†

where u1 is an auxiliary control input, which is deter-

mined later.

Now, consider the following change of coordinate
(which is known as the ® ltered tracking error (see

Slotine 1988))

y ˆ _ee ‡ ¬1e …10†

where ¬1 > 0 is a control gain that will appear in the

controller to be designed.

Then, the tracking error dynamics of the manipula-

tor loop are given by

_ee ˆ y ¬1e …11†

M…h† _yy ˆ …¬1M…h† C…h ; _hh†† _ee ¢f …h ; _hh†

‡ KNg‡ u1 w …12†

A control law is derived by pursuing the following

three steps in turn.

Step 1. Filtered tracking error: De® ne a positive de® -

nite function V0…e† by

V0…e† ˆ 1
2
eTe …13†

The time derivative of V0…e† along the trajectory of
(11) is given by

_VV0…e† ˆ eT _ee

ˆ eT… ¬1e ‡ y†

ˆ ¬1kek2 ‡ eTy …14†

Step 2. Error dynamics for the manipulator loop: Let a

positive de® nite function V1…e; y;h† be

V1…e; y;h† ˆ ¬1 ‡ q2
1 ‡ ¬2

1q
2
2

¬1

V0…e† ‡ 1
2
yTM…h†y …15†

Note that the positive de® niteness of the function
V1…e; y;h† is ensured from Property 1.

Using (14) the time derivative of V1…e; y;h† along the

trajectory of (11) and (12) is given by

_VV1…e; y;h† ˆ ¬1 ‡ q2
1 ‡ ¬2

1q
2
2

¬1

_VV0…e† ‡ yTM…h† _yy

‡ 1
2
yT _MM…h†y

ˆ …¬1 ‡ q2
1 ‡ ¬2

1q
2
2†kek2 ‡ ¬1 ‡ q2

1 ‡ ¬2
1q

2
2

¬1

eTy

‡ yTf…¬1M…h† C…h; _hh†† _ee ¢f …h ; _hh†

‡ KNg‡ u1 wg ‡ 1
2
yT _MM…h†y
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Using Property 2

_VV1…e; y;h† ˆ …¬1 ‡ q2
1 ‡ ¬2

1q2
2†kek2 ‡ yTKNg

‡ yT

(

¬1M…h† _ee ‡ ¬1C…h; _hh†e ¢f …h ; _hh†

‡ ¬1 ‡ q2
1 ‡ ¬2

1q2
2

¬1
e ‡ u1 w

)
…16†

Now, we add and subtract the terms ®2kwk2
and kzk2

to the right-hand side of (16), and complete the square.

Then

_VV1…e; y;h† ˆ …¬1 ‡ q2
1 ‡ ¬2

1q2
2†kek2 yT¢f …h ; _hh†

‡ yT

(

¬1M…h† _ee ‡ ¬1C…h; _hh†e

‡ ¬1 ‡ q2
1 ‡ ¬2

1q2
2

¬1

e ‡ u1

)

1

2®
y ‡ ®w

®®®®

®®®®
2

‡®2kwk2 ‡ 1

4®2
yTy kzk2

‡ q2
1kek2 ‡ q2

2k _eek2 ‡ yTKNg

µ ¬1kek2 ‡ ®2kwk2 kzk2 ‡ yTKNg

‡ kyk ¢ k¢f …h; _hh†k

‡ yT

(

¬1M…h† _ee ‡ ¬1C…h; _hh†e

‡ ¬1 ‡ q2
1 ‡ ¬2

1q
2
2

¬1

e

‡ 1

4®2
‡ q2

2

³ ´
y 2¬1q2

2e ‡ u1

)
…17†

Determine u1 as follows so as to make the last term
in (17) negative

u1 ˆ ¬1M…h† _ee ¬1C…h ; _hh†e ¬1 ‡ q2
1 ‡ ¬2

1q2
2

¬1

e

1

4®2
‡ q2

2

³ ´
y ‡ 2¬1q2

2e ¬2M…h†y

y»2
¢f

kyk»¢f ‡ "1 e ­ 1t
…18†

where ¬2 is an arbitrary positive constant chosen by the

designer which plays an important role in stability

analysis, "1 is a su� ciently small positive scalar control

gain, and ­ 1 is an adequate positive constant. Thus, we

have

_VV1…e; y;h† µ ¬1kek2 ¬2kyk2
M…h† ‡ ®2kwk2 kzk2

‡ yTKNg‡ kyk»¢f

kyk2»2
¢f

kyk»¢f ‡ "1 e ­ 1 t

µ ¬1kek2 ¬2kyk2
M…h† ‡ ®2kwk2 kzk2

‡ yTKNg‡ "1 e ­ 1 t …19†

where kyk2
M…h† ˆ yTM…h†y:

Step 3. Error dynamics for the actuator loop: We now

design a control law at the voltage input v which

forces g to zero. However, the Lyapunov recur-
sive design requires us to calculate

_IId ˆ K 1
N f _MM…h† �hhd ‡ M…h†h …3†

d
‡ _CC…h ; _hh† _hhd ‡ C…h ; _hh† �hhd

‡ _DD… _hh† ‡ _GG…h† ‡ _uu1g …20†

Clearly, _IId requires the measurement of �hh . In order

to avoid the intensive computation of _IId , we consider

using a bound of _IId , rather than _IId itself. It has been

shown that k _IIdk can be written in terms of combinations

of constants and functions of h , _hh , I (see, e.g. Dawson
et al. 1992). This implies that it is possible to generate a

bounding function »Id
…e; _ee; g† such that

k _IIdk µ »Id
…e; _ee; g† …21†

As shown in (5), the following form of »Id
…e; _ee; g† is

assumed

»Id
…e; _ee; g† ˆ ¹4k·eek3 ‡ ¹3k·eek2 ‡ ¹2k·eek ‡ ¹1kgk ‡ ¹0 …22†

where constants ¹4, ¹3, ¹2, ¹1, and ¹0 can be found using

information about the upper bounds on parameters and
on the desired trajectory (see also Lemma A.2 in

Dawson et al. 1990).

Hence, we simply apply the following voltage control

input v given by

v ˆ RId ‡ Ke
_hhd ‡ u2 …23†

where u2 is an auxiliary control input, which is deter-

mined later. Then, the error dynamics of the actuator

loop is given by

L _II ‡ Rg‡ Ke _ee ˆ u2 …24†

We subtract a ®̀ ctitious’ term L _IId from both sides of
(24). Then, the error dynamics (24) is rewritten as

L _gg ˆ Rg Ke _ee L _IId ‡ u2 …25†

Let a Lyapunov function candidate be

V2…e; y;h ; g† ˆ V1…e; y;h† ‡ 1
2
gTLg …26†

Design of robust adaptive tracking control 815



Using (19) the time derivative of V2…e; y;h ; g† along the

trajectory of (11), (12) and (25) is given by

_VV2…e; y;h ; g† ˆ _VV1…e; y;h† ‡ gTL _gg

µ ¬1kek2 ¬2kyk2
M…h† ‡ ®2kwk2 kzk2

‡ yTKNg‡ "1 e ­ 1 t

‡ gTf Rg Ke _ee L _IId ‡ u2g

µ ¬1kekj2 ¬2kjyk2
M…h† ‡ ®2kwk2 kzk2

‡ "1 e ­ 1 t ‡ kgTLk ¢ k _IIdk

‡ gTf Rg Ke _ee ‡ KT
Ny ‡ u2g …27†

Determine u2 as follows so as to make the last term

in (27) negative

u2 ˆ Rg‡ Ke _ee KT
Ny ¬3Lg

LLTg»2
Id

kgTLk»Id
‡ "2 e ­ 2t

…28†

where ¬3 is an arbitrary positive constant chosen by the
designer which plays an important role in stability

analysis, "2 is a su� ciently small positive scalar control

gain and ­ 2 is an adequate positive constant. Thus, we

have

_VV2…e; y;h ; g† µ ¬1kek2 ¬2kyk2
M…h† ‡ ®2kwk2 kzk2

‡ "1 e ­ 1 t ¬3kgk2
L ‡ kgTLk»Id

kgTLk2»2
Id

kgTLk»Id
‡ "2 e ­ 2 t

µ ¬1kek2 ¬2kyk2
M…h† ¬3kgk2

L

‡ ®2kwk2 kzk2 ‡ "1 e ­ 1 t ‡ "2 e ­ 2t …29†

where kgk2
L ˆ gTLg.

Then, (29) is rewritten as

_VV2…e; y;h; g† µ 2¬V2…e; y;h; g†

‡ ®2kwk2 kzk2 ‡ 2" e ­ t …30†

where

¬ ˆ min
¬2

1

¬1 ‡ q2
1 ‡ ¬2

1q2
2

; ¬2; ¬3

( )

" ˆ maxf"1; "2g

­ ˆ minf­ 1; ­ 2g

Now, we show that speci® cations …S1† and …S2†
hold. When w 6ˆ 0, from the boundedness of w in

Assumption 2, along the same line in Dawson et al.

(1992) we can conclude that the closed-loop error system

is globally stable in the sense of uniform ultimate

bounded stability. Moreover, take w ˆ 0, from (30) we

have

_VV2…e; y;h; g† µ 2¬V2…e; y;h ; g† ‡ 2" e ­ t; 8t ¶ 0

…31†

Equation (31) implies that V2…e; y;h ; g† tends to zero as t
tends to in® nity. This means that the tracking errors e, _ee
and g tend to zero as t tends to in® nity when w ˆ 0.

Next, we show the L2-gain condition. For any

T ¶ 0, integrating (30) from 0 to T with zero initial

conditions …e…0† ˆ 0, _ee…0† ˆ 0 and g…0† ˆ 0† yields
…T

0

kzk2 d½ µ ®2

…T

0

kwk2 d½ ‡ 2"

…T

0

e ­ td½

8w 2 L2…0; T† …32†

This implies kzkT µ ®kwkT ‡ "0, 8w 2 L2…0; T†. It

should be noted that the time-independent decaying

exponential terms e ­ 1 t and e ­ 2t, which appear in the

denominator of the control inputs (18) and (28) respect-

ively, allow a constant "0 being su� ciently small.
From the above observations, we have the following

result.

Theorem 1: The voltage level robust tracking control

law that accomplishes control objectives …S1† and …S2†
is given by

v ˆ RK 1
N fM…h† �hhd ‡ C…h ; _hh† _hhd ‡ D… _hh† ‡ G…h† ‡ u1g

‡ Ke
_hhd ‡ u2 …33†

where control inputs u1 and u2 are given by …18† and …28†
respectively.

Remark 1: In this paper, a recursive design approach

is proposed to obtain a closed-form solution for non-

linear H1 control problem without using a Hamilton±

Jacobi inequality. This is possible for two reasons.

First, the Lyapunov direct method can be used to gen-
erate and manipulate Hamilton± Jacobi inequality (Qu

1998). Second, a simpler L2-gain performance is pur-

sued in this paper. In general, an L2-gain performance

is characterized by inequality kzkT µ ®kwkT ‡ "0,

where z ˆ h…x; v† is a so-called penalty function, x is a
state, and v is a control input. The L2 performance in

this paper is de® ned by the choice of z ˆ W ·ee. If func-

tion h…¢† depends on control input v, a closed-form

controller can only be obtained by numerically solving

the corresponding Hamilton± Jacobi inequality. In this

sense, removing v from penalty function h…¢† is a good
choice in order to design our controller in closed-form.

This choice of z, independent of control input v, was

motivated from almost the disturbance decoupling

problem (e.g. Isidori 1996, Mario et al. 1994).
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Remark 2: In this formulation of the penalty function

z, theoretically we can select in® nitely smaller ®. How-

ever, such a small choice of ® allows excessive large

control input. Since saturation for actuators is inevit-

able in practical problems, trade-oŒis required between
choice of smaller ® and practical tracking performance.

The proper value of ® will only be found by trial-and-

error through the experiments.

4. Derivation of the robust adaptive control law

In this section, the result in the previous section is

extended to a robust adaptive control scheme so as to

estimate the parameters in the manipulator dynamics. It

should be noted that the third property of the manipu-

lator model is as follows.

Property 3. Linearity: The matrices M…h†, C…h ; _hh†,
D… _hh† and G…h† can be expressed as

M…h†u ‡ C…h ; _hh†c ‡ D… _hh† ‡ G…h† ˆ F…h ; _hh ; u; c†a
…34†

where F…h; _hh; u; c† 2 Rn£m is the regressor matrix inde-

pendent of the unknown parameters and a 2 Rm is the
vector of unknown parameters.

To derive a control law, we add more two assump-

tions.

Assumption 3: The upper bound of M…h† is known, i.e.

¶max satisfying …6† is known.

Assumption 3 requires the knowledge of the upper

bounds of the inertia matrix. However, this is not a strict

assumption, since it can be found easily by the informa-

tion of the upper bounds on parameters.

Assumption 4: The unknown parameters are only in

the manipulator dynamics, parameters in actuator

dynamics are known.

Remark 3: Su and Stepanenko (1995, 1997, 1998)
considered not only an uncertainty of parameters in

manipulator dynamics but also an uncertainty of par-

ameters in actuator dynamics in control design. It is

also possible to discuss the uncertainty of actuator

parameters in this paper by establishing the bounds of

parameter ¯ uctuation as in the same way given in Su
and Stepanenko (1995). However, we omit to include

the parameter ¯ uctuation in the actuator dynamics,

since in comparison with manipulator parameters,

actuator parameters are not liable to variation.

The control objective is the same as that in } 2.
Hence, the design problem is stated as follows: Under

Assumptions 1± 4, ® nd a parameter update law and a

voltage level state feedback control law such that the

closed-loop system satis® es the design speci® cations

…S1† and …S2†. The procedure for derivation of the con-

trol law is also almost in the same lines as } 3. Therefore,

we just outline the procedure. We rewrite the manipu-

lator dynamics (1) as (8), and de® ne the change of co-

ordinate (10). Besides, we introduce the variable

_hh r ˆ _hhd ¬1e …35†

Then, (10) is rewritten as

y ˆ _hh _hhr …36†

Now consider the following desired Id based on the

adaptive tracking control law given in Slotine et al.

(1987)

Id ˆ K 1
N fF…h ; _hh ; �hh r; _hh r†âa ‡ u1g …37†

where âa represents the estimation of the unknown par-

ameter vector a.
Then, the tracking error dynamics of the manipula-

tor loop are given by

_ee ˆ y ¬1e …38†

M…h† _yy ˆ C…h ; _hh†y ‡ F…h ; _hh ; �hh r; _hhr†~aa ¢f …h ; _hh†

‡ KNg‡ u1 w …39†

where ~aa ˆ âa a denotes the parameter estimation error

and (39) is derived as follows. Substitute (37) to (8), and

subtract the term F…h ; _hh ; �hh r; _hh r†a from both sides, noting

Property 3, we have

M…h†… �hh �hh r† ‡ C…h ; _hh†… _hh _hh r† ‡ ¢f …h ; _hh† ‡ w

ˆ F…h ; _hh ; �hh r; _hh r†~aa ‡ u1 ‡ KNg …40†

Thus, from (36), (39) is obtained.

However, in the case of robust adaptive controller

design, Id includes the estimated parameter vector âa as
in (37). Therefore, the existence of such a bounding

function of the form (22) that satis® es (21) is not guar-

anteed if boundedness of the estimated parameters is not

assured. To guarantee the boundedness of âa, we adopt a
projection operator given in Su et al. (1998) in par-

ameter update law.

Consider a set

P ˆ fajai min µ ai µ ai max ; i 2 f1; mgg …41†

where ai min and ai max are real numbers denoting the

lower bounds and the upper bounds of the ith element

of âa respectively.

The projection operator is de® ned as
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fProj…âa; GFTy†gi ˆ

0; if âai ˆ ai max and ¼i…FTy†i < 0

¼i…FTy†i ; if ‰ai min < âai < ai max Š

or ‰âai ˆ ai min and ¼i…FTy†i ¶ 0Š

or ‰âai ˆ ai min and ¼i…FTy†i µ 0Š

0; if âai ˆ ai min and ¼i…FTy†i > 0

8
>>>>>>>>>>><

>>>>>>>>>>>:

…42†

where G 2 Rm£m is arbitrary positive de® nite and diag-

onal matrix and ¼i is …i; i† element of G.

Then, the following properties hold.

(a) if âa…0† 2 P, âa…t† 2 P.

(b) kProj…p; q†k µ kqk.

(c) …p p¤†TL Proj…p; q† µ …p p¤†TLq, where L is

a positive de® nite and diagonal matrix.

Now, we show the existence of the bounding func-

tion »Id
…e; _ee; g†. Determine parameter update law as

_̂aâaa ˆ Proj…âa; GFT…h ; _hh ; �hhr; _hh r†y†; âa…0† 2 P …43†

Then, from (37) we have

_IId ˆ K 1
N f _FFâa ‡ F _̂aâaa ‡ _uu1g

ˆ K 1
N f _FFâa ‡ F Proj…âa; GdFTy† ‡ _uu1g …44†

Using properties (a) and (b), the following inequality
holds.

k _IIdk µ kK 1
N kfk _FFkkâak ‡ kFkk Proj…a; GdFTy†k ‡ k _uu1kg

µ kK 1
N kf ·mmk _FFk ‡ kFkkGdFTyk ‡ k _uu1kg

µ kK 1
N kf ·mmk _FFk ‡ kGdkkFk2kyk ‡ k _uu1kg …45†

where ·mm is a positive constant which satis® es kâak µ ·mm.

Therefore, from the same argument in Step 3 of } 3,

we can insist on the existence of such bounding function
(22) that satis® es (21).

As in } 3, a control law is derived recursively by fol-

lowing the three steps.

Step 1. Filtered tracking error: Same as Step 1 in } 3.

Step 2. Error dynamics for the manipulator loop: Let a

positive de® nite function V1…e; y;h ; ~aa† be

V1…e; y;h ; ~aa† ˆ ¬1 ‡ q2
1 ‡ ¬2

1q
2
2

¬1

V0…e†

‡ 1
2
yTM…h†y ‡ 1

2
~aaTG 1~aa …46†

where G 2 Rm£m is arbitrary positive de® nite matrix.

Using the same technique as Step 2 in } 3, ® nally the

time derivative of V1…e; y;h ; ~aa† along the trajectory of

(11) and (12) is given by

_VV1…e; y;h ; ~aa† µ ¬1kek2 ‡ ®2kwk2 kzk2

‡ yTKNg‡ kyk ¢ k¢f …h; _hh†k

‡ yT ¬1 ‡ q2
1 ‡ ¬2

1q
2
2

¬1

e

(

‡ 1

4®2
‡ q2

2

³ ´
y 2¬1q2

2e ‡ u1

¼

‡ ~aaTfFT…h ; _hh ; �hh r; _hhr†y ‡ G 1 _~aa~aag …47†

From property …c† of the projection operator

~aaTfFT…h ; _hh ; �hh r; _hhr†y ‡ G 1 _~aa~aag

ˆ ~aaTfFTy ‡ G 1 Proj…âa; GFTy†g

µ ~aaTFTy ~aaTG 1GFTy …48†

Thus, (47) becomes

_VV1…e; y;h ; ~aa† µ ¬1kek2 ‡ ®2kwk2 kzk2 ‡ yTKNg

‡ kyk ¢ k¢f …h ; _hh†k

‡ yT ¬1 ‡ q2
1 ‡ ¬2

1q2
2

¬1

e ‡ 1

4®2
‡ q2

2

³ ´
y

(

2¬1q
2
2e ‡ u1

)
…49†

Determine control input u1 as follows so as to make

the last term in (49) negative

u1 ˆ ¬1 ‡ q2
1 ‡ ¬2

1q2
2

¬1

e
1

4®2
‡ q2

2

³ ´
y ‡ 2¬1q

2
2e

¬2 ¢ ¶max y
y»2

¢f

kyk»¢f ‡ "1 e ­ 1t
…50†

Thus, we have

_VV1…e; y;h ; ~aa† µ ¬1kek2 ¬2kyk2
M…h† ‡ ®2kwk2 kzk2

‡ yTKNg‡ "1 e ­ 1 t …51†

Step 3. Error dynamics for the actuator loop: Here, we

also use the bounding function »Id
…e; _ee; g† satis-

fying (21) instead of _IId itself. By applying the

voltage control input (23), we have the error

dynamics of the actuator loop (25).

Let a Lyapunov function candidate be

V2…e; y;h ; ~aa; g† ˆ V1…e; y;h; ~aa† ‡ 1
2
gTLg …52†

Consider the time derivative of V2…e; y;h; ~aa; g† along

the trajectory of (11), (12) and (25) as Step 3 in } 3, and

determine control input u2 as
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u2 ˆ Rg‡ Ke _ee KT
Ny ¬3Lg

LLTg»2
Id

kgTLk»Id
‡ "2 e ­ 2t

…53†

Thus, we have

_VV2…e; y;h ; ~aa; g† µ ¬1kek2 ¬2kyk2
M…h† ¬3kgk2

L

‡ ®2kwk2 kzk2 ‡ "1 e ­ 1 t ‡ "2 e ­ 2t

…54†

The validation of the speci® cations …S1† and …S2†
follows the same argument developed in } 3. Finally,

we have the following result.

Theorem 2: The voltage level robust adaptive tracking

control law that accomplishes control objectives …S1†
and …S2† is given by

v ˆ RK 1
N fF…h; _hh; �hhr; _hhr†âa ‡ u1gKe

_hhd ‡ u2 …55†

where control inputs u1 and u2 are given by …50† and …53†
respectively, and parameter update law is given by …43†.

Remark 4: Theorem 2 ensures the global uniform ul-
timate bounded stability of the link tracking errors e

and _ee, and the boundedness of the estimated par-

ameters. However, convergence of the estimated par-

ameters to the real values is not guaranteed.

5. Experimental example

In order to evaluate the tracking performance of the

derived controllers, robust tracking control law with L2-
gain performance (hereafter denoted as RBL controller)

and robust adaptive tracking control law with L2-gain

performance combined with the parameter estimator

(hereafter denoted as RAL controller), experimental

works are carried out for a two-link horizontal robot
manipulator driven by dc motors, shown in ® gure 1.

The dynamics of the system are described by (1) and

(2) with

M…h† ˆ
j1 ‡ j2 ‡ 2j3 cos ³2 j2 ‡ j3 cos ³2

j2 ‡ j3 cos ³2 j2

" #

C…h; _hh† ˆ j3 sin ³2

_³³2
_³³1

_³³2

_³³1 0

2

4

3

5

D… _hh† ˆ
d1

_³³1

d2
_³³2

2

4

3

5 G…h† ˆ
0

0

" #
h ˆ

³1

³2

" #

I ˆ
i1

i2

" #
v ˆ

v1

v2

" #

KN ˆ
KN1 0

0 KN2

" #
L ˆ

L1 0

0 L2

" #

R ˆ
R1 0

0 R2

" #
Ke ˆ

Ke1 0

0 Ke2

" #

where j1 ˆ m1s2
1 ‡ m2l

2
1 ‡ I1, j2 ˆ m2s2

2 ‡ I2, j3 ˆ m2l1s2,

d1 and d2 are parameters. For the implementation of

RAL controller, the regressor matrix F…h ; _hh ; u; c† and

the unknown parameter vector a in (34) are expressed as

F…h ; _hh ; u;c† ˆ
¼11 ¼12 ¼13 ¼14 ¼15

¼21 ¼22 ¼23 ¼24 ¼25

" #

…56†

a ˆ ‰ j1 j2 j3 d1 d2ŠT …57†

where

¼11 ˆ ¿1 ¼12 ˆ ¿1 ‡ ¿2

¼13 ˆ …2¿1 ‡ ¿2† cos ³2 … _³³2Á1 ‡ _³³1Á2 ‡ _³³2Á2† sin ³2

¼14 ˆ _³³1 ¼15 ˆ 0 ¼21 ˆ 0 ¼22 ˆ ¿1 ‡ ¿2

¼23 ˆ ¿1 cos ³2 ‡ _³³1Á1 sin ³2 ¼24 ˆ 0 ¼25 ˆ _³³2
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Figure 1. Two-link horizontal robot manipulator driven by
dc motors.



The kinematic parameters of the manipulator and

actuator are shown in table 1.

In this experimental work, we consider the situation
that the manipulator holds diŒerent weight of loads, and

we set the non-linear function ¢f …h ; _hh† as parameter

perturbation due to the load variations. Let jni and dni

represent nominal parameter values, and let real par-

ameter values ji and di be given by

ji ˆ jni ‡ ¢ji …i ˆ 1; 2; 3† …58†

di ˆ dni ‡ ¢di …i ˆ 1; 2† …59†

where ¢ji and ¢di represent uncertain parameter per-

turbations. Then, M…h†, C…h ; _hh† and D… _hh† are written as

M…h† ˆ Mn…h† ‡ M¢…h† …60†

C…h ; _hh† ˆ Cn…h ; _hh† ‡ C¢…h ; _hh† …61†

D… _hh† ˆ Dn… _hh† ‡ D¢… _hh† …62†

where Mn…h†, Cn…h ; _hh† and Dn… _hh† represent nominal

matrices of M…h†, C…h ; _hh† and D… _hh† respectively, which

are composed of nominal parameter values, and M¢…h†,
C¢…h ; _hh† and D¢… _hh† represent non-linear functions with

uncertain perturbations, which are composed of uncer-

tain parameter perturbations. Let us represent the non-

linear perturbation term ¢f …h ; _hh† as

¢f …h ; _hh† ˆ M¢…h† �hh ‡ C¢…h ; _hh† _hh ‡ D¢… _hh† …63†

It should be noted that ¢f …h ; _hh† is occurred by the devi-

ation from the real parameter values. This means that

¢f …h ; _hh† ˆ 0, provided the dynamics of the robot have

real parameters.

We will design controllers which provides robustness

under the restriction that manipulator holds 0 g to 250 g
load. Then, jni , dni and ¢ ji, ¢di are determined in the

following way. We executed experiments for parameter

identi® cation … ji di† with two loads (0 g, 250 g). Let us

represent the identi® ed parameter values by

ji…0†; ji…250† …i ˆ 1; 2; 3†

di…0†; di…250† …i ˆ 1; 2†

They are shown in table 2. The identi® ed parameter
values … ji…0†; di…0†† are used as the nominal parameter

values jni and dni , and … ji…250†, di…250†† are regarded as

the real parameter values ji and di. The parameter per-

turbations ¢ji and ¢di can be obtained from (58) and

(59).

We consider the desired joint trajectories

³1d ˆ º

4
sin

4

5
ºt

³2d ˆ º

4
sin

4

5
ºt

9
>>=

>>;
…64†

In addition, additive disturbances are injected into

the robot dynamics of the form

w ˆ
1:0 sin 3

2 ºt

0:1 sin 3
2 ºt

2

4

3

5 Nm …65†

Now, we must determine the bounding function

»¢f …e; _ee† given by (5) such that (3) is satis® ed. The

right-hand side of (63) includes �hh. However, we evaluate

¢f …h ; _hh† in the following way. Substitute the real par-

ameters … ji…250†, di…250†† to (1), then ¢f …h; _hh† is anni-

hilated due to the experimental setting of ¢f …h ; _hh†.
Thus, the information of �hh is obtained from the inverse

dynamics of (1) without ¢f …h ; _hh†. The coe� cients ±2 and

±1 were estimated as ±2 ˆ 1:0 and ±1 ˆ 10:0 respectively

by calculating the bounds of ¢f …h; _hh† using the inverse

dynamics of (1) and (63) based on the information about
the upper bounds on parameters and on the desired

trajectory given by (64). As in the same way, the bound-

ing function »Id…e; _ee; g† given by (22) must be determined

such that (21) is satis® ed. The coe� cients ¹4, ¹3, ¹2 and

¹1 were estimated as ¹4 ˆ 25:0, ¹3 ˆ 15:0, ¹2 ˆ 10:0 and

¹1 ˆ 1:0 respectively by calculation. In the estimation of

coe� cients ±i and ¹i, the conservative estimation of the

constant terms ±0 and ¹0 is inevitable due to the norm

expanding in the procedure to derive equations (5) and

(22). This causes a designed controller to be too conser-

vative and will degrade a tracking performance.
Therefore, we set ±0 and ¹0 as 0. Instead, the in¯ uence

of omission of the constant terms ±0 and ¹0 on the track-

ing performance is guaranteed from L2-gain perform-

ance of disturbance attenuation. For the
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Link 1 Mass m1 1.8970 kg
Link 2 Mass m2 0.253 kg
Link 1 Length l1 0.32 m
Link 2 Length l2 0.23 m
Motor 1 Inductance L1 0.016 H
Motor 2 Inductance L2 0.003 H
Motor 1 Resistance R1 7.5 «
Motor 2 Resistance R2 8.9 «
Motor 1 Back EMF constant Ke1 0.4994 Vs/rad
Motor 2 Back EMF constant Ke2 0.0859 Vs/rad
Motor 1 Torque constant KN1 0.5017 Nm/A
Motor 2 Torque constant KN2 0.0854 Nm/A

Table 1. Kinematic parameters of the manipulator and
actuator.

j1…0† 0.1894 j1…250† 0.2285
j2…0† 0.0047 j2…250† 0.0275
j3…0† 0.0063 j3…250† 0.0311
d1…0† 0.0215 d1…250† 0.0471
d2…0† 0.0024 d2…250† 0.0189

Table 2. Identi® ed parameter values.



implementation of the RAL controller, ¶max was esti-

mated as ¶max ˆ 0:3295 by calculating ¶…M…h†† for

0 µ ³2 µ 2º.

All control design parameters were tuned by trial-

and-error until the best link position tracking perform-

ance was achieved for the desired trajectories given

by (64). They were determined as q1 ˆ q2 ˆ 1:0,

¬1 ˆ ¬2 ˆ ¬3 ˆ 10:0, "1 ˆ "2 ˆ 0:01, and ­ 1 ˆ
­ 2 ˆ 1:0, in RAL controller the adaptation gain G was

determined as G ˆ diagf0:01, 0:01g. We designed RBL

and RAL controllers for ® ˆ 1:0, ® ˆ 0:3 and ® ˆ 0:15

respectively. Experiments are carried out with the

following three types of controllers for a purpose of

comparison.

(a) A robust tracking control law proposed in

Dawson et al. (1992) (hereafter denoted as RB

controller).

(b) RBL controller.

(c) RAL controller.

The RB controller corresponds to a RBL controller

in which the speci® ed tracking performance level ® is

chosen as ® ˆ 1. Note that the RB controller guaran-

tees only the global uniform ultimate bounded stability

of the tracking error system. However, the RBL and

RAL controllers guarantee both the global uniform ulti-

mate bounded stability of the tracking error system and

L2-gain performance.

In experiments, link position errors, link velocity

errors, and motor current perturbations were initialized

to zero. A standard backwards diŒerence algorithm

applied to the link position measurements and then

passed through a low-pass ® lter was used to generate
the link velocity signals. In the cases of RB and RBL

controllers implementation, parameters in the state

feedback control law (33) was based on the nominal

parameters … ji…0†, di…0††, and in the case of RAL

controller implementation, initial condition of the par-

ameter update law (43) was set to … ji…0†, di…0†† and in
the projection operator, amin was chosen as

amin ˆ ‰0:5j1…250† 0:15j2…250† 0:2j3…250†

0:4d1…250† 0:1d2…250†ŠT

and amax was chosen as

amax ˆ ‰1:5j1…250† 1:85j2…250† 1:8j3…250†

1:6d1…250† 1:9d2…250†ŠT

In practice, however, experiments were carried out

under the condition that the manipulator had 250 g

load. The sampling periods was 1 ms.
To see the in¯ uence of disturbance signal w on track-

ing errors in later experimental results clearly, we exe-

cuted a fundamental experiment in the case of w ˆ 0

using the RBL controller for ® ˆ 0:15 in advance.

Experimental results are shown in ® gures 2 and 3.

Figure 2 shows the position errors and velocity errors,
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Figure 2. Position errors and velocity errors: w ˆ 0.



and ® gure 3 shows the input voltages of each motor. As

shown in ® gure 2, when w ˆ 0 the tracking errors for

link position and link velocity are almost zero in spite of

the presence of model inaccuracy. However, small oscil-

lation can be seen in velocity errors. This seems to be

caused by a mechanical reason that the derivative of the

link position is obtained by a backwards diŒerence

algorithm applied to the link position measurements.

In the following experiments, disturbance w given by

(65) was injected. Experimental results using the RB

controller are shown in ® gures 4 and 5. Experimental

results using the RBL controller for ® ˆ 0:15 are shown

in ® gures 6 and 7. To see the eŒect of the value of ® on

the tracking performance, we executed experiments

using the RBL controller for the diŒerent values of ®.

Experimental results of the position for ® ˆ 0:3 and

® ˆ 1:0 are shown in ® gures 8 and 9. The same experi-

mental study was implemented for the RAL controllers.

Experimental results are shown in ® gures 10± 14, where

® gure 12 shows the estimated parameter values for

® ˆ 0:15.

Comparing the tracking performance of the RB

controller (® gure 4) and of the RBL controller (® gure

6), the RB controller generates fairly large tracking
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Figure 3. Input voltages: w ˆ 0.

Figure 4. Position errors and velocity errors: RB controller.
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Figure 5. Input voltages: RB controller.

Figure 6. Position errors and velocity errors: RBL controller …® ˆ 0:15†.

Figure 7. Input voltages: RBL controller …® ˆ 0:15†.
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Figure 8. Position errors: RBL controller …® ˆ 0:3†.

Figure 9. Position errors: RBL controller …® ˆ 1:0†.

Figure 10. Position errors and velocity errors: RAL controller …® ˆ 0:15†.
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Figure 11. Input voltages: RAL controller …® ˆ 0:15†.

Figure 12. Estimated parameters: RAL controller …® ˆ 0:15†.



errors, while the RBL controller generates much smaller

tracking errors. This illustrates that the RB controller is

highly aŒected by the disturbance, however, the RBL

controller attenuates the in¯ uences of the disturbance.

Comparing the tracking performance of the RBL con-

troller for diŒerent values of ®, from the link position

errors in ® gures 6, 8 and 9, it is seen that the link posi-

tion errors in steady-state response become considerably

small in proportion to the decrease of value of ®. This

demonstrates that enhanced e� ciency of disturbance

attenuation is achieved by selecting small ®.

The tracking performance of the RAL controller for

® ˆ 0:15 (® gure 10) is quite similar to that of the RBL

controller for ® ˆ 0:15 (® gure 6) as well as input volt-

ages (® gures 7 and 11). However, as mentioned in

Remark 4, since convergence of parameters is not guar-

anteed, the estimated parameters are not likely to con-

verge to the real values as seen in ® gure 12. Comparing

the tracking performance of the RAL controller for dif-

ferent values of ®, as shown in the link position errors in

® gures 10, 13 and 14, although overshoot is observed in

transient position error for link 1 ® is small, the steady-

state position errors result as smaller in proportion to

the decrease of ®.

Comparing the tracking performance of the RAL

controller and of the RBL controller, as mentioned

above, when ® is small the tracking performance for
the RAL controller is almost the same as that of the

RBL controller. However, when ® becomes large the

tracking errors in using the RAL controller are much

smaller than those in using the RBL controller (see
® gures 9 and 14). This is caused by the reason that in

the case of RAL controller implementation, the in¯ u-

ence of the disturbance on tracking errors is eased due

to the parameter adaptation independently of value of ®.

In terms of these observations, we conclude that the
eŒectiveness of the proposed robust and robust adaptive

tracking controllers for rigid-link electrically-driven

robot manipulators was veri® ed.

Remark 5: For vertical type robot manipulators

driven by dc motors, it is considered that the gravity

term is signi® cant and the gravity compensation error

degrade the control performance. We have executed

simulation works for a two-link vertical type electri-
cally-driven robot manipulator. Simulation results

using the RBL controller are shown in Ishii et al.

(1999 a) and simulation results using the RAL control-

ler are shown in Ishii et al. (1999 b) respectively. In
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Figure 13. Position errors: RAL controller …® ˆ 0:3†.

Figure 14. Position errors: RAL controller …® ˆ 1:0†.



both cases, the tracking errors of each joint result

fairly small without setting the attenuation level ® too

small. In particular, the tracking errors of each joint in

using RAL are extremely smaller than those in using

RBL. From this point of view, also for the vertical
type robot manipulators, the usefulness of the pro-

posed control scheme is validated.

6. Conclusions

In this paper, we developed a new approach to a

tracking control of rigid-link electrically-driven robot

manipulators with uncertainty by incorporating the

criterion of a tracking performance given by L2-gain

constraint in controller synthesis. We proposed a robust

tracking control law with L2-gain performance based on

Lyapunov recursive design, which ensures the global
uniform ultimate bounded stability of the tracking

error system with the L2-gain less than any given small

level. Besides, the approach was extended to a robust

adaptive tracking control law with L2-gain performance
so as to deal with uncertain payloads, in which the

manipulator parameters are estimated by a parameter

adaptation law. There are two features in our approach.

The ® rst one is that a Lyapunov function is constructed

recursively so as to not only guarantee stability of the
tracking error system but also satisfy dissipation

inequality ensuring the L2-gain constraint. The second

one is that it does not require to solve any Hamilton±

Jacobi inequality. Experimental works were carried

out to evaluate the tracking performance of the pro-

posed controllers. Experimental results showed an

improved tracking performance of the proposed con-
trollers compared with a controller given in Dawson

et al. (1992).
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