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Using the proposed method, time variant signals (not just unknown
constants) will be estimated and a globally stabilizing robust control
can be found.

The proposed result is also related to two other topics in systems and
control. One of them is control design for systems with time-varying
parameters. Standard adaptive control can be designed if system pa-
rameters are slowly time varying [7]. For systems with fast time varying

Z.Qu and bounded parameters, robust control [19] or robust adaptive control
[14] can be applied. In the case that time varying parameters are gen-
erated by a known quasilinear stable model, adaptive control can be
Abstract—n this note, robust control design is considered for non- designed by incorporating the dynamics and treating the parameters as
linear systems with time variant uncertainties. Instead of assuming that state variables (see [13, Remark 4.5.2, p. 180]). The other is control de-
bounding function on uncertainties is either known or parameterizable in - g, for feedback linearizable systems with internal dynamics [9], [5].
terms of unknown constants, uncertainties or their bounding functions . . ’
are estimated. It is shown that bounded uncertainties from a known N terms of system structure and the resulting control (in the sense of
or partially known exo-system can be estimated as a part of a globally being dynamic or static), treatment of internal dynamics and exo-sys-
stabilizing robust control. The proposed method extends the existing tems is similar in a control design. In this note, the idea of identifying
results of adaptive robust control, and it makes robust control more  time varying unknowns is extended to bounding functions on nonlinear
applicable by requiring less information on uncertainties. uncertainties, and the exo-system itself could be partially unknown.

Index Terms—Bounding function, estimation, Lyapunov direct method, The note is organized as follows. In Section II, conditions used in
robust control, uncertainty. the literature and in this note are compared to illustrate the advantages
of the proposed extensions. In Section Ill, robust control design is pre-
sented for the case that time variant unknowns are outputs of a known
exo-system. In Section |V, direct estimation of nonlinear time variant
Robust control of nonlinear uncertain systems have attracted a lo{@fcertainties is studied. In Section V, robust control design is pursued

attention. Much of the interests stem from the fact that nonlinear afist the case that exo-systems are only partially known. An illustrative
uncertain dynamics are common in many applications and that robgghmple is given in Section VI.

control is the design method to guarantee stability and performance.

Robust stabilizability in terms of structure properties of uncertain sys-

tems, robust stability and performance, properties of robust controls, Il. PROBLEM STATEMENT

their design procedures, and robust optimality are among of the sub- ] ) . )

jects studied in [6], [2], [1], [3], [16], [17], [8], [10], [11], [4], [23], An uncertain system considered in the note is of form

[21], [18]. Although exact knowledge of the plant is not required, ro-

bust control designs have to be done according to the extent of informa= f(x,t) + Afu (2, v,t) + AB, (2, v, t)u

Fion thatis knoyvn. Infor.mation required in most of the.existing results 1 B, )[Afm(z,vst) + ABp (2,0, )u + 1] (1)

include bounding functions on and structural properties of the uncer-

tainties in the system under consideration. It is adequate to assume in o )

analytical analysis that uncertainties be bounded in a certain sense igre«(t) € R" is the stateu(t) € R™ is the control to be de-

getting information about the size of uncertainties could be very difffigned2 C R is a bounded set;(t) € €2 denotes the time variant

cult in many applications. Since uncertainties are uncertain by natuf@certaintiesf (x, #) andB(z, t) are known parts of system dynamics,
Afu(z,v,t), ABy(z,v,t), Afr,(z,v,t),andAB,, (z, v, t) are un-
certainties, and the subscriptand,, in (1) denote the so-called un-
matched and matched uncertainties [2] and [18], respectively.
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of known dynamics. Specifically, the system consisting of known dy- Assumption 3B:The uncertainty is bounded in Euclidean norm as

namics follows: for all (z, v, t) € R x QX RY, |A Lo (2, 0, t)|| < pon(, 1),
and
= f(l” t) + B(I‘t)u (2) pm(l‘-/ t) = 117T(-Tvt)@ (4)
is referred to as the nominal system of system (1). The first assumptigfhere vectors € ®' contains all multiplicative and additive, unknown
given as follows, is on stability of the nominal system. constant parameters, abid(x, t) is a vector consisting of know func-

Assumption 1: The origin,» = 0, is globally asymptotically stable {ons that are Caratheodory, uniformly bounded with respettand
for the uncontrolled nominal system = f(x,t). Therefore, there locally uniformly bounded with respect te

1 1 1 /7 o o ) T I + . . . .
exists aC" functionV' (i, #) : R" x R — R such that Since uncertain vectar(t) is bounded, choosing constant vector

¢ as its magnitude vector can always be done. However, as will be

2] < V(1) < v2(||=]]), shown in the subsequent section, such a treatment implies tradeoff.

OV (x,t) First, demanding a constant upper bound introduces conservatism for

T or zl)) (3) any time variant uncertainty. Second, adaptive robust control under As-

sumption 3B may not be one that is both continuous and asymptotically
stabilizing. These limitations prompt us to study better designs of ro-
ust control. The approach we take in the note is to properly estimate
gg]e-varying uncertainties. To this end, we introduce the following as-

+ VIV(z ) f(a,t) < —(

wherevi, vz, v : R — RT are classC.. functions.
Itis easy to show that, as will be in the illustrative example, Assum
tion 1 is equivalent to the nominal system being stabilizable unde

known, nominal control. Assumption 1 is important as it provides I_y(,f_umptions as the new options of defining bounding functions on uncer-

punov functionV (z, t) used to synthesize robust control. tainties. lempz(ijrtedt\)/vnh :—\ssump;tlonks SA apd 3B, bqundlng funtctlons
The second assumption, originally defined in [6], [2] and giveﬁre now aflowedto be in terms of unknown ime varying parameters or

below, is the standard matching condition which ensures robdgtbe S'mp'_y the output of a knqwn _model. . .

stabilizability. It has been shown in [18] and in the references therei Assumption 3C:The unc::rtalnty IS Eounded in Euclidean norm as
that, in several cases, robust stability can be achieved without {Rllows: for all (x, v, t) € R" x 2 x R

matching condition. Nonetheless,. the.assumptlor.l is employed here so Afola, v 0] < I}Vll“(;l:‘/ 0é1(t) )
we can focus our attention on estimating uncertainties.

Assumption 2:Uncertain system (1) satisfies the matching condizhere unknown vectop, (1) € Rt is assumed to be the bounded
tions (MC’s). That is, there exists a positive constansuch that, for output of a quasilinear system
all (z,v,t) € R" x S x RT, Afu(z,v,t) =0, AB,(x,v,t) = 0,
and||A B, (z,v,t)|| £ 1—e,. To make mathematical derivations sim- b1 = gi(z,t)d + gala, 1) (6)
pler, it is also assumed th&B,, (=, v, t) = 0.

The third assumption will be on the size of uncertaitty, (=, t)  vectorWi(x,t) and functionsy (., t) are known, they are uniformly
because, as stated in the definition of robust control problem, uncepunded with respect toand locally uniformly bounded with respect
tain variable vectow(t) is bounded. In principle, the assumption id0 =, and there exists a constant, positive—definite matisuch that,
necessary as a successful robust control has to compensate for anyfemall + € ®" and fort, matrix
potentially destabilizing uncertainty and to be bounded itself. In other -
words, control in the presence of unbounded uncertainty is not only Pigi(x.t) + g1 (2,6)P <0 )
mathematically impossible but also physically unrealistic. However, . S
there are several ways by which the assumption on uncertainty gﬁgegatwe—semmeﬂmte.

can be made, and the choices will have major impact on whether ané\ssumptlon 3D:The uncertalllnty IS bourlded in Euclidean norm
how robust control can be successfully applied. asvlfollows: for all(w,v,1) € R" x 5,2 x ®7, ”,'Af’“(‘”’ v. )] <

Typically, uncertainties are handled and compensated for by definiw" (,1)02(1), _and unknown vectop(t) € R is the bounded
or estimating their size bounding functions. The first option in makin% tput of a nonlinear exosystem
the third assumption, originally described in [6], [2] and restated below,
is to assume that size information on uncertainty is known.

Assumption 3A:The uncertainty is bounded in Euclidean norm by, here vectoiV,(z, +) and functionsh, (-) are known, they are uni-

a known nonlinear function as, for ali,v.) € R" x © x R™.  formly bounded with respect toand locally uniformly bounded with

[Afm (@0, D < pmla,t), wherep,,(z,t) is Caratheodory, Uni- regpect tar, and vector functiori, (-) has the property that, for all
formly bounded with respect tg and locally uniformly bounded with p51nded: and for allz. w. #

respect tor.

Assumption 3A states that, although uncertain veet@n is un- (z — w)l Py [hy(z, z,t) = hy (2, w, )] < 0 (9)
known, its range of variation is known pointwise in the state space,
and its contribution im\ f,.,(-) andA B,..(-) can be quantified so that is negative—semidefinite for a known positive—definite maffix
known bounding functions can be found. Although this assumption islt is obviously that, ifg; (x,¢) = 0, Assumption 3C reduces to As-
reasonable in many cases, uncertainties are unknown by nature aadjption 3B and that Assumption 3D includes Assumption 3C as the
in other cases, finding bounding functions may become the major aipecial case thdt; (z, ¢-, t) is linear with respect t@.. Note that a
stacle to applying robust control. To overcome this difficulty, it wabound onp(t) or ¢-(¢) can only be developed by solving analytically
proposed in [3] that an adaptive version of robust control could be d&e corresponding differential equation (which may be nonlinear and
veloped. Similar to the standard adaptive control results [12], [15], [2Q}hose initial condition is unknown but bounded), and that the resulting
[22], [11], adaptive robust control is applicable if bounding functiomound would be in general a function of stateTherefore, although
pm(x, t) is parameterizable in terms of a set unknown but constant par-(¢) and¢-(¢) are assumed to be boundedxifs bounded) and the
rameters as described by the following assumption. model of exo-system is known, finding functid#i (z, ¢) in (4) from

G2 = hy(w, d2.t) + ho(w,t) (8)
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either (5) or (8) could be quite difficult. In other words, the extensiorendk, > 0 andk. > 0 are gains. Furthermore,if > 0 andk., = 0,

from Assumption 3B to 3C and 3D are not trivial. the original state:(¢) becomes asymptotically stable with respect to
Assumption 3C and 3D imply that bounding function on uncertainthe origin ofz = 0 in the original state space.

Afm(x,v(t),t) is generated by a known exosystem, either linear or  Proof: Consider the Lyapunov functionZ{z,t, o, (,)) =

nonlinear. Various conditions in the assumptions are to ensure boufid=, t) + 0.5]|6||> + ke, where¢ = ¢ — ¢ is the parameter

edness of the bounding function. Singg) is the source of time variant estimation error, anél; = 0 if k. = 0 andk; = 1/k. if otherwise. It

uncertainty and since time variant uncertainty generated from a knofatiows from (10), (13), (12), (11), and (14) that

exosystem can be estimated, robust control design may be pursued . ot .

without the operation of developing a bounding function, which the L < =v(llz[]) + [lu(2, )| + € = |la{z, )l + 67 ¢ + kué

subject of Sectllon IV. The issue of further relaxing A§sumptlpn 3C < —([lzlh) = If_a”g,)”z + ]{.'—“||¢||2 + (1 = Erko)e (16)
(or 3D) to admit an uncertain model for exogenous signa) will 2 2
be studied in Section V. from which the claimed stability result can be concluded using stability
theorems in [2], [18]. O
Ill. RoBUST CONTROL DESIGNS The above adaptive robust control scheme provides an avenue for

L I . us to apply robust control to the cases that uncertainties are bounded
We begin with two of existing results on robust control designs. The - . - . L

) ; . y a parameterizable nonlinear function. Since uncertainties are often
first one is the standard result in [6] and [2].

Lemma 1: If system (1) satisfies Assumptions 1, 2 and 3A, th enerated by exo-systems, Assumption 3C or 3D is introduced in order

o . . . 0 make robust control more applicable while reducing conservatism.
closed loop system is either uniformly ultimate bounded: (it 0) . . .
. : Robust control designs under these two assumptions are given by the
or asymptotically stable (f = 0) under control

following two theorems.
e, t) Theorem 1: Assume that system (1) satisfy Assumptions 1, 2, and

we,t) = =pml(2,1) [|p(z, )| + € (10) 3C. Then, the closed-loop system is uniformly ultimate bounded under
) . A control
where ¢ > 0 is a design constant, andi(x,t) = )
B (a0, )V V (w, t)pm (. ). w(irst) = —pot () D) (17)
Proof: Itfollows from Assumptions 2 and 3A that a system under [l (e, )] + €
our consideration can be rewritten as where joi(e.t) = Woiet)d > 0, ju(et) =
i = f(x.t) + B(a,)[Afm (2, t) + ul. B (2,)V.V (2, t)pm1 (w, 1), € is a design parameter given by (14),

¢1 is the estimate of; (t) and is given by adaptation law
It follows from Assumptions 1 and 3A that, along the trajectory of the

above system by = gi(x.t)61 + go(e, ) + PT Wi (2. t)

V< —v(||]]) + VfV(;E,t)B(;v,t)Afm(:L’, t) ”BT(mJ)va(m’f)H — kPl o1 (18)
+ ViV (2, t)B(x. t)u(x,t) andk, > 0 andk. > 0 are gains. Moreover;(t) converges asymp-
< A2l + 1INV (e, ) B )| pon (,) totically to zero if@6 > 0 andk, = 0. . R
T, Proof: Consider the Lyapunov functiod(x,t, ¢1,¢1) =
+ Ve Via.0) Bz, u(z.1) (11) V(x,t) + 0.50{ Pidy + kie, whereg, = &, — ¢, is the output
< =v(ll=l]) + € (12)  estimation error, andl, = 0 if k. = 0 andk; = 1/k. if otherwise. It
follows from (18) and (5) that

where the last inequality is ensured under robust control (10). [J
One can see from (11) to (12) that, if the bounding function is know@, = gi(x.1)61 — Py YW (o, t)||BT(,r, HVV (2, 1)l
robust control (10) achieves its compensation for uncertainties throug]h
size domination. There are many robust controls equivalent to that in
(10), and all of them satisfy an inequality similar to that from (11) tqherefore, differentiatind., and applying control (17) and adaptation
(12). In case the bounding function is unknown but parameterizable,jgy (7) yield
adaptive robust control can be designed using the certainty-equivalence B .
principle as did in a standard adaptive control design. The main resulf., < —~(||x|]) + € — [Jji1 (&, )| + |1 (2, )] + &1 Prd, + keé
in [3] can be restated as the following lemma. ko~ 2 ka2
Lemma 2: Suppose that system (1) satisfies Assumptions 1, 2, and < ==l = ?”m” + 7”@1” + (1= kuko)e (19)

3B. Then, the closed-loop system is uniformly ultimate bounded undgs, which stability claims can be made using theorems in [2], [18].

—ka P71 + ko P71

control Theorem 2: If system (1) satisfies Assumptions 1, 2, and 3D, the
. f(x,t) closed-loop system is ensured to be uniformly ultimate bounded under
ula,t) = —pm (o) g i 13)  control
(e, Dl + €
. A R no(x,t
where  pn.(x,t) = WT(x,t)é > 0, w(x,t) = —pma(z, t)% (20)
ala,t) = BT (2, )V, V(x,t)pm(z,t), € is a design K2\,
parameter given by where (1) = Wi (2.)6 > 0,
c= e (14) fo(z, t) = B (z.t)V.V(z.t)pme2(x.1), € is a design

parameter given by (14)p. is the estimate ofy. and is given

with e(to) > 0, ¢ is the estimate of and is generated by adaptation®y adaptation law

law P ~ _
by = hi(w,62,) + ho(w,t) + Py ' Wa(w, 1)

6 = W, OlIB" (2, )V, V (@)l — kad (15) IB" (2, )V V (2, )| = ka Py 02 (21)

/
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andk, > 0 andk. > 0 are gains. In additiony(t) is asymptotically whereg, is the estimate of; and is generated by the following adap-
convergent to zero ik. > 0 andk, = 0. tation law:

Proof: Consider the Lyapunov functiods (. t, ¢2,d2) = .
V(a,t) + 1oL Pady + kie, whereg, = 65 — ¢ is the estimation ¢, = g (x, 1)1 + go (2, 1) + P{ Wi (2, 1)
error, andk; = 0 if k. = 0 andk; = 1/k. if otherwise. It follows BT (e, )V V (2.t) — ko P 61
from (21) that:

for a constant scalar gaf, > 0. In addition,z(¢) is asymptotically

by = [l (2, $2,t) — hi(w, do,t)] — Py ' Wa(a, t) convergent to zero ik, = 0.
I1BT (2. )V V(2 t)|| + ka Py o Of course, Theorem 1 and Corollary 1 can be combined. Specif-
ically, both uncertainty generated by an exosystem and uncertainty
Under Assumption 3D, we know from (20) and (19) that whose bounding function is generated by an exo-system can be

estimated. Consider a system of form (1) in whidly,, (z,t) =
7. ! ! 5T
- R Wi, £)ou1 (1) + Afy (2. 1) and||A ), (2. )| < Win (2, 1)o12(2),
Ly < =([J=) - 7”9”2” + 7”02” +(L=kike)e  (22)  \whereo,;(t) are outputs of known exo-systems. By Theorem 1 and
its corollary, robust control should be chosen to be
from which the closed loop stability result and asymptotic convergence

of 2(¢) can be concluded using theorems in [2] and [18]. O u(e,t) = =Wii(z, t)b11 — [/1,,*115(%13)(;12
BT (2, )V, V(2. t)yWh (2, 1) 12
IV. DIRECT ESTIMATION OF UNCERTAINTY |BT (2, )V, V (2, t)||WT (, f><;12 +e

If system uncertainty is bounded by a function parameterized i
terms of outputs from a known exo-system (rather than constants on rk'
we can use the results in Theorems 1 and 2 to reduce conservatis
developing bounding functions. In the theorems, global boundedness

of the estimation error and asymptotic convergence of staten be V. ESTIMATION BASED ONUNCERTAIN MODEL OF EXO-SYSTEM

concluded only if, in robust controls (17) and (20), design parameteras those in (1), dynamics of the exosystem (with outpaft)) may
¢ is set to an exponential decaying function as defined by (14). It hagt be known exactly. If the model of the exosystem is merely a black
been shown in [18] that, if(t) is an L, time function, robust control poy (completely unknown), the corresponding robust control problem
of form (17) becomes discontinuous in the limit unlégs(0.7) = 0. s in generalill-defined. This is because, unlike a typical model identifi-
Thus, trade-off between asymptotic stability of statand continuity  cation problem or state observation problem, output of the exo-system
of robust control is needed in an application of the theorems. is itself an uncertainty to be estimated. Thus, in this section, we shall
Possible discontinuity of robust control is due to the use Ghyestigate the problem of robust control design under the following
bounding function in its design. As defined in (4) and (5), uncertaintyssumption in order to extend the result of Theorem 2. In essence, the
A fm (2, v,t) is known to be bounded in norm by a function. In robushssumption implies that the exosystem is stable (for all boumdied
control design and stability analysis, every possibility of the uncepartially known, and has a bounded output. Stability results in Theorem
tainty within the given bounding function must be considered. Thgand Corollary 1 can be extended in a similar fashion.
worst uncertainty that is admissible by inequality (5) is one of thoseAssumption 3E:Uncertainty Af,,(z,v,t) is bounded by in-

that change arbitrarily fast within the bound and may even becorgguality (8) where unknown vecten (t) € R’ is assumed to be the
discrete or jump dynamics in the limit. Therefore, to compensagRyunded output of a nonlinear system

asymptotically for such uncertainty, robust control must be capable of

becoming discontinuous itself. by = Dhi(x, b2 t) + Ahy(2, 62,8) + ho(x.t) + Aho(2, 1) (24)
The extension from Assumption 3B to 3C (or 3D) brings about an-

other way of handling uncertainties in robust control. Since uncertaifactor 17, («, t) and functionsh, («, ¢.t) and ks (x,t) are known,

ties are general time-varying (due to their own dynamics), Assumptigyt functionsA h, (-, 62, t) andAhs (z, £) are uncertain. Furthermore,

3A or 3B must be made if only unknown constants can be estimatggitor functions: (-) has the property that, for a constant 1, for a

in the design. By admitting unknown time variant output of a knowpnown positive definite matrix,, and for a nonnegative functiat-)
exo-system, we can get rid of the process of developing bounding fuRgpy

tion (which is conservative by its nature) and focus upon directly esti-

mating time variant uncertainties. The following corollary corresponds _ )7 P, [, (x, z,t) — hy (2, w, )]

to Theorem 1, its proof is almost identical to that of Theorem 1, and '

its resulting control will be both continuous and asymptotically stabi-

lizing (for =(¢)). Theorem 2 can be restated in a similar fashion.
Corollary 1: Assume that system (1) satisfy Assumptions 1 and

If the uncertainty is generated as: for &ll, v,t) € R™ x Q x R,

/ U — T ( ! it

é]tcﬁle(gc:ljrizje_d ?Jét’:g?;%:g/ggiu(gl)(’n;\/;gﬁ;?igl (Et)génﬁl Corollary 2: Consider that system (;) satisfies As§umptions 1, 2

and functionsy; («, t) are known and continuous, they are unh‘ormlyand 3E. Then, the closed-loop system is globally, uniformly and ulti-

bounded with respect tband locally uniformly bounded with respectmately bounded under robust control

ered,; are defined according to the expressions given in Theorem
ﬁpd Corollary 1, respectively.

< =gl iD= = wll”

Qnd uncertainties\n; (, ¢, t) andAhs(x, ¢) are bounded as, for all
z, for all ¢, and for a known scalar function(-), || Ak (z, ¢2.t) +
Abs (e 1)]| < a(le])).

to @, andg: (x, t) satisfies (7) for a constant, positive definite matrix R fih (1)
P1. Then, the closed-loop system is uniformly ultimate bounded under w(a,t) = =pma(x,t) Tt Ol + (25)
control ’

where  pma(z, 1) = Wi (2,4)2 > 0,

u(z,t) = —Wi(z, )b (23) pbh(z,t) = eV (2, )BT (2. )V, V (2, ) pma (2. 1), €
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is a design parameter given by (14), > -1 is another design
parametero, is the estimate of. and is given by adaptation law
Gy = hi(w, do,t) + ha(a,t) + ko VP (2, t) Py "Wa (2, t)

IB" (2, )V V (@, 0| = ka Py "6 (26)

and gainge, > 0, k, > 0 andk. > 0 and constant > 0 are chosen
such that

kokavi(s)7(s)
li —_ = > 1.
SJ}I‘EDO /\IIldK PZ ( > (27)
Furthermore, if gaink, > 0 and constanty > -1 can ©9-1. Adisturbed pendulum.
be chosen such that, for alk > 0 and for all (x,t),

VP (a, )W (2, )| BT (2,t)V.V (2,1)| is well defined and VI. ILLUSTRATIVE EXAMPLE
. ) The following example on a simple pendulum is used here, as did in
f k., 37eT L A1, A2) (8)y . . - .
/\11}\]2 ! (5,21, 22)71 ()3(5) [2], to illustrate the proposed robust control design based on estimating

B S Y o, system uncertainties.
—1)25To 7T A\Jax (P)a=—T(s) (2 . . - .
>(o=1) 7 x (P2)a==3(s) (28) Consider the simple pendulum shown in Fig. 1. Itis of massnd

state vector:(¢) can be made globally and asymptotically convergerength/, and is subject to a control mome&it(#) and an unknown

to zero by simply setting, = 0 andk. > 0. bounded disturbanast) in the form of a horizontal acceleration of its
Proof: Consider the modified Lyapunov function point of support. It was shown in [2] and [18] that pendulum dynamics
X ks are described by
Liy(x,t, b, 02) = Vot (e, t) + = ¢§P2¢7 + ke _ . v
1+5 T = X2 ;L’g:—]—)blnr1+u—7cosr1

whereg, = P2 = o is output estimation error, arid = 0 if k. = 0 where «; and z» are angular position and velocity of the rigid
andk; = 1/k. if otherwise. It follows from Assumption 3E and from weightless link between the mass and the point of supportyand=
(25), (26), and (22) that (U(t)/MI?) is the control. To have a stable nominal system as required
i g o1sb " WAl in Assumption 1, we choose the controkass —k; 21 (t) — koo (¢) +
Ly < =k V(@ )y(l2ll) 4 e = llfta (2, D u,, where u, is the robust control part to be selected, and

+ b (@, t)]] + &3 Pocry + kyé gains ki, ki,k2 > 0 are chosen such that;, = &k +
SN . ka sup,. eqn(—sinzi)g/(z11*). It is straightforward to verify using
< =koyi([leDy(lzlD) = Bllo=1" - —||<t>2|| Lyaphnov function (generated via the gradient technique)
- Fay w2 .
Amax (P2)[|@2[la(||=(]) + 7”(52” + (1= kikc)e. V(;t):arl Px + 2Tg(l—cosm) with
(29) e {kl +0.5k3 0.51@2}
Depending upon the properties of functigi(s) anda(-), two types 0.5k 1

of stability results can be concluded from (29) for|| (while [|é2]| is  that the nominal system under the nominal control is asymptot-
bounded). Consider firgt(s, A1, A2) > 0 for all (s, A1, A2), inwhich ically stable and that, for Lyapunov functioli (z), v(||z||) =

case inequality min{ks, ki ke b, v (|2]]) = Amin(P)||z|*, and
— ket UlzlDvlell) = Bl162ll” 4 Aasx (Po)l|S2]la(]|]]) Y2 (ll[1) = A (P) ]|
1 -1 g ¢ _ ] i .
< =kt lelD (el + (0 = 1277 57707 1 { 2ot cosliell/t Nl < 7
ﬁ o 1 it e 4g/l if ||35|| >7
Afiax (P2) oz =1 ([le]]) = 58] 62| _ - o
2 where Amin (P), Amax(P) = 0.5[1 + ki + 0.5k =+

can be concluded from the Hélder inequality. Therefork, iindb can /(1 + ki + 0.5k2)2 — 4(k; + 0.25k3)].

be chosen to satisfy inequality (28), the right-hand side of inequality It is assumed that the disturbancg) is the bounded output of a
(29) is negative—semidefinite (after settihg = 0 andk. > 0), and partially known exosystem whose dynamics are described by
control (25) is asymptotically stabilizing far(¢). :

) ‘ L —zl—zf—l—.r%—l—mst,
In the general case that inequality (28) cannot be satisfied for all

= —zy 4 a3 +sin 2t + Az, t), v=(14+ £3)z1 + 2

s > 0, it follows that, by settingc. > 0: 2
S ~ A2 (Po) s 2. Therefore, by comparing Corollaries 1 and
——||¢2|| + Amax (P2)[| o] ae([l]]) £ % G (||]))- 2, we know that the robust control which directly estimatgs should
By the gain selections specified by inequality (27), we know that thbe 1 1
right-hand side of inequality (29) is negativeif|| or ||¢2 || exceeds a u, = Sdcosxr = Scosay [L+ay 1[5 2]
certain threshold value. Consequently, stability of uniform and ultimate ' !
boundedness can be claimed using the boundedness theorem in [2)ainere?, = — 24 frl +eost— R, VP(x)(1+22) (kyry +222) —
[18]. O k.z, andég =%+ ai4sin2t— ]\.7,‘/71)(1')(]\2’5] + 2x2) — koo,

It is worth noting that inequality (28) implies that, 60) = 0, Computer simulation of the above control was performed using Matlab
uncertainties\ h;(-) (rather than:(¢) or ¢, () as would be required by with the following choicest = VI k1t =9,k =6,0=1,k, =20,
the existing results) must be vanishing in order to achieve asymptotic = 0, x1(0) = 7/4, 22(0) = 0, z21(0) = 22(0) = 0, 21(0) =
stability. On the other hand, inequality (29) can always be satisfied By(0) = 0, A(x,¢) = 5|z122|(1 4 cos 3t). The simulation results,
increasingb andk.,. shown in Figs. 2 and 3, verify the theoretical analysis.
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Position (solid) and velocity (dashed) under robust control
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Fig. 2. State trajectory of the disturbed pendulum under robust control.

Direct estimation of exo-system in robust control
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Fig. 3. Estimation error of time variant uncertainty.
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VIl. CONCLUSION An Observer Design for Linear Time-Delay Systems

Robust control can be made more applicable by designing it in con- M. Hou, P. Zitek, and R. J. Patton
junction with estimation of nonlinear time variant uncertainties. It is
proposed in the note that, despite of their nonlinearity and time vari- o _ -
ance, uncertainties or their bounding functions can be estimated as |0ngbstract—An observer design is proposed for linear systems with time

as they are generated by exosystems whose models are either kn@?gﬁh

The key of the design is to find a generalized coordinate change such
the new coordinates all the time-delay terms are injected by the

or partially known. Technical conditions are found in the note undeystem'’s output. The existence of such a coordinate change is guaranteed
which estimation and stability can be achieved. Compared with the éx-a rank condition on the observability matrix. Novelty of the proposed

isting results on adaptive robust control, the proposed result repres

&gsign is clearly reflected in the multiple-output case where a dimensional
expansion in the coordinate change could become necessary and hence is

a step forward in handling nonlinear time variant uncertainties. allowed.
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