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Robust Control of Nonlinear Systems by Estimating Time
Variant Uncertainties

Z. Qu

Abstract—In this note, robust control design is considered for non-
linear systems with time variant uncertainties. Instead of assuming that
bounding function on uncertainties is either known or parameterizable in
terms of unknown constants, uncertainties or their bounding functions
are estimated. It is shown that bounded uncertainties from a known
or partially known exo-system can be estimated as a part of a globally
stabilizing robust control. The proposed method extends the existing
results of adaptive robust control, and it makes robust control more
applicable by requiring less information on uncertainties.

Index Terms—Bounding function, estimation, Lyapunov direct method,
robust control, uncertainty.

I. INTRODUCTION

Robust control of nonlinear uncertain systems have attracted a lot of
attention. Much of the interests stem from the fact that nonlinear and
uncertain dynamics are common in many applications and that robust
control is the design method to guarantee stability and performance.
Robust stabilizability in terms of structure properties of uncertain sys-
tems, robust stability and performance, properties of robust controls,
their design procedures, and robust optimality are among of the sub-
jects studied in [6], [2], [1], [3], [16], [17], [8], [10], [11], [4], [23],
[21], [18]. Although exact knowledge of the plant is not required, ro-
bust control designs have to be done according to the extent of informa-
tion that is known. Information required in most of the existing results
include bounding functions on and structural properties of the uncer-
tainties in the system under consideration. It is adequate to assume in
analytical analysis that uncertainties be bounded in a certain sense, but
getting information about the size of uncertainties could be very diffi-
cult in many applications. Since uncertainties are uncertain by nature,
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the less information about uncertainty we have to know in our control
design, the more applicable the resulting robust control becomes.

In a standard robust control design result (for example, [2]),
bounding function on nonlinear uncertainty is assumed to be known.
In this case, robust control is designed to compensate for the worst
uncertainty within the bounding function. In the case that bounding
function can be parameterized in terms of unknown constants, adaptive
robust control can be designed to adaptively estimate the bounding
function [3]. While this result represents a major step forward in
reducing required information on uncertainty, it is often restrictive
and conservative as the unknowns have to be constants. In this
note, we investigate how to design robust control for systems whose
uncertainties or their bounding functions are parameterized in terms
of unknown outputs from a known or partially known exo-system.
Using the proposed method, time variant signals (not just unknown
constants) will be estimated and a globally stabilizing robust control
can be found.

The proposed result is also related to two other topics in systems and
control. One of them is control design for systems with time-varying
parameters. Standard adaptive control can be designed if system pa-
rameters are slowly time varying [7]. For systems with fast time varying
and bounded parameters, robust control [19] or robust adaptive control
[14] can be applied. In the case that time varying parameters are gen-
erated by a known quasilinear stable model, adaptive control can be
designed by incorporating the dynamics and treating the parameters as
state variables (see [13, Remark 4.5.2, p. 180]). The other is control de-
sign for feedback linearizable systems with internal dynamics [9], [5].
In terms of system structure and the resulting control (in the sense of
being dynamic or static), treatment of internal dynamics and exo-sys-
tems is similar in a control design. In this note, the idea of identifying
time varying unknowns is extended to bounding functions on nonlinear
uncertainties, and the exo-system itself could be partially unknown.

The note is organized as follows. In Section II, conditions used in
the literature and in this note are compared to illustrate the advantages
of the proposed extensions. In Section III, robust control design is pre-
sented for the case that time variant unknowns are outputs of a known
exo-system. In Section IV, direct estimation of nonlinear time variant
uncertainties is studied. In Section V, robust control design is pursued
for the case that exo-systems are only partially known. An illustrative
example is given in Section VI.

II. PROBLEM STATEMENT

An uncertain system considered in the note is of form

_x = f(x; t) + �fu(x; �; t) + �Bu(x; �; t)u

+B(x; t)[�fm(x; �; t) + �Bm(x; �; t)u+ u] (1)

wherex(t) 2 <
n is the state,u(t) 2 <

m is the control to be de-
signed,
 � <

p is a bounded set,�(t) 2 
 denotes the time variant
uncertainties,f(x; t) andB(x; t) are known parts of system dynamics,
�fu(x; �; t);�Bu(x; �; t);�fm(x; �; t), and�Bm(x; �; t) are un-
certainties, and the subscriptsu andm in (1) denote the so-called un-
matched and matched uncertainties [2] and [18], respectively.

The robust control problem is to design a controlu(x; t) such that the
resulting closed loop system is stable (in the sense of either asymptotic
stability or stability of uniform ultimate boundedness [2], [18]) for all
possible values of bounded uncertain vector�(t) in the prescribed set

. Robust control design requires several technical assumptions. Typ-
ically, robust control design is based upon stability or stabilizability
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of known dynamics. Specifically, the system consisting of known dy-
namics

_x = f(x; t) +B(x; t)u (2)

is referred to as the nominal system of system (1). The first assumption,
given as follows, is on stability of the nominal system.

Assumption 1:The origin,x = 0, is globally asymptotically stable
for the uncontrolled nominal system_x = f(x; t). Therefore, there
exists aC1 functionV (x; t) : <n � < ! <+ such that

1(kxk) � V (x; t) � 2(kxk);

@V (x; t)

@t
+rT

x V (x; t)f(x; t) � �(kxk) (3)

where1; 2;  : <+ ! <+ are classK1 functions.
It is easy to show that, as will be in the illustrative example, Assump-

tion 1 is equivalent to the nominal system being stabilizable under a
known, nominal control. Assumption 1 is important as it provides Lya-
punov functionV (x; t) used to synthesize robust control.

The second assumption, originally defined in [6], [2] and given
below, is the standard matching condition which ensures robust
stabilizability. It has been shown in [18] and in the references therein
that, in several cases, robust stability can be achieved without the
matching condition. Nonetheless, the assumption is employed here so
we can focus our attention on estimating uncertainties.

Assumption 2:Uncertain system (1) satisfies the matching condi-
tions (MC’s). That is, there exists a positive constant�b such that, for
all (x; �; t) 2 <n � S � <+; �fu(x; �; t) = 0; �Bu(x; �; t) = 0,
andk�Bm(x; �; t)k � 1��b. To make mathematical derivations sim-
pler, it is also assumed that�Bm(x; �; t) = 0.

The third assumption will be on the size of uncertainty�fm(x; t)
because, as stated in the definition of robust control problem, uncer-
tain variable vector�(t) is bounded. In principle, the assumption is
necessary as a successful robust control has to compensate for any and
potentially destabilizing uncertainty and to be bounded itself. In other
words, control in the presence of unbounded uncertainty is not only
mathematically impossible but also physically unrealistic. However,
there are several ways by which the assumption on uncertainty size
can be made, and the choices will have major impact on whether and
how robust control can be successfully applied.

Typically, uncertainties are handled and compensated for by defining
or estimating their size bounding functions. The first option in making
the third assumption, originally described in [6], [2] and restated below,
is to assume that size information on uncertainty is known.

Assumption 3A:The uncertainty is bounded in Euclidean norm by
a known nonlinear function as, for all(x; �; t) 2 <n � 
 � <+;
k�fm(x; �; t)k � �m(x; t), where�m(x; t) is Caratheodory, uni-
formly bounded with respect tot, and locally uniformly bounded with
respect tox.

Assumption 3A states that, although uncertain vector�(t) is un-
known, its range of variation is known pointwise in the state space,
and its contribution in�fm(�) and�Bm(�) can be quantified so that
known bounding functions can be found. Although this assumption is
reasonable in many cases, uncertainties are unknown by nature and,
in other cases, finding bounding functions may become the major ob-
stacle to applying robust control. To overcome this difficulty, it was
proposed in [3] that an adaptive version of robust control could be de-
veloped. Similar to the standard adaptive control results [12], [15], [20],
[22], [11], adaptive robust control is applicable if bounding function
�m(x; t) is parameterizable in terms of a set unknown but constant pa-
rameters as described by the following assumption.

Assumption 3B:The uncertainty is bounded in Euclidean norm as
follows: for all (x; �; t) 2 <n�
�<+; k�fm(x; �; t)k � �m(x; t),
and

�m(x; t) = W
T (x; t)� (4)

where vector� 2 <l contains all multiplicative and additive, unknown
constant parameters, andW (x; t) is a vector consisting of know func-
tions that are Caratheodory, uniformly bounded with respect tot, and
locally uniformly bounded with respect tox.

Since uncertain vector�(t) is bounded, choosing constant vector
� as its magnitude vector can always be done. However, as will be
shown in the subsequent section, such a treatment implies tradeoff.
First, demanding a constant upper bound introduces conservatism for
any time variant uncertainty. Second, adaptive robust control under As-
sumption 3B may not be one that is both continuous and asymptotically
stabilizing. These limitations prompt us to study better designs of ro-
bust control. The approach we take in the note is to properly estimate
time-varying uncertainties. To this end, we introduce the following as-
sumptions as the new options of defining bounding functions on uncer-
tainties. Compared with Assumptions 3A and 3B, bounding functions
are now allowed to be in terms of unknown time varying parameters or
to be simply the output of a known model.

Assumption 3C:The uncertainty is bounded in Euclidean norm as
follows: for all (x; �; t) 2 <n � 
 � <+

k�fm(x; �; t)k �W
T

1 (x; t)�1(t) (5)

where unknown vector�1(t) 2 <l is assumed to be the bounded
output of a quasilinear system

_�1 = g1(x; t)�1 + g2(x; t) (6)

vectorW1(x; t) and functionsgi(x; t) are known, they are uniformly
bounded with respect tot and locally uniformly bounded with respect
to x, and there exists a constant, positive–definite matrixP1 such that,
for all x 2 <n and fort, matrix

P1g1(x; t) + g
T

1 (x; t)P1 � 0 (7)

is negative–semidefinite.
Assumption 3D:The uncertainty is bounded in Euclidean norm

as follows: for all(x; �; t) 2 <n � 
 � <+; k�fm(x; �; t)k �
WT

2 (x; t)�2(t), and unknown vector�2(t) 2 <l is the bounded
output of a nonlinear exosystem

_�2 = h1(x; �2; t) + h2(x; t) (8)

where vectorW2(x; t) and functionshi(�) are known, they are uni-
formly bounded with respect tot and locally uniformly bounded with
respect tox, and vector functionh1(�) has the property that, for all
boundedx and for allz; w; t

(z � w)TP2 [h1(x; z; t)� h1(x;w; t)] � 0 (9)

is negative–semidefinite for a known positive–definite matrixP2.
It is obviously that, ifgi(x; t) = 0, Assumption 3C reduces to As-

sumption 3B and that Assumption 3D includes Assumption 3C as the
special case thath1(x; �2; t) is linear with respect to�2. Note that a
bound on�1(t) or�2(t) can only be developed by solving analytically
the corresponding differential equation (which may be nonlinear and
whose initial condition is unknown but bounded), and that the resulting
bound would be in general a function of statex. Therefore, although
�1(t) and�2(t) are assumed to be bounded (ifx is bounded) and the
model of exo-system is known, finding functionW (x; t) in (4) from
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either (5) or (8) could be quite difficult. In other words, the extensions
from Assumption 3B to 3C and 3D are not trivial.

Assumption 3C and 3D imply that bounding function on uncertainty
�fm(x; �(t); t) is generated by a known exosystem, either linear or
nonlinear. Various conditions in the assumptions are to ensure bound-
edness of the bounding function. Since�(t) is the source of time variant
uncertainty and since time variant uncertainty generated from a known
exosystem can be estimated, robust control design may be pursued
without the operation of developing a bounding function, which the
subject of Section IV. The issue of further relaxing Assumption 3C
(or 3D) to admit an uncertain model for exogenous signal�(t) will
be studied in Section V.

III. ROBUST CONTROL DESIGNS

We begin with two of existing results on robust control designs. The
first one is the standard result in [6] and [2].

Lemma 1: If system (1) satisfies Assumptions 1, 2 and 3A, the
closed loop system is either uniformly ultimate bounded (if� > 0)
or asymptotically stable (if� = 0) under control

u(x; t) = ��m(x; t)
�(x; t)

k�(x; t)k+ �
(10)

where � � 0 is a design constant, and�(x; t)
4

=
BT (x; t)rxV (x; t)�m(x; t).

Proof: It follows from Assumptions 2 and 3A that a system under
our consideration can be rewritten as

_x = f(x; t) +B(x; t)[�fm(x; t) + u]:

It follows from Assumptions 1 and 3A that, along the trajectory of the
above system

_V � �(kxk) +rT

x V (x; t)B(x; t)�fm(x; t)

+rT

x V (x; t)B(x; t)u(x; t)

� �(kxk) + krT

x V (x; t)B(x; t)k�m(x; t)

+rT

x V (x; t)B(x; t)u(x; t) (11)

� �(kxk) + � (12)

where the last inequality is ensured under robust control (10).
One can see from (11) to (12) that, if the bounding function is known,

robust control (10) achieves its compensation for uncertainties through
size domination. There are many robust controls equivalent to that in
(10), and all of them satisfy an inequality similar to that from (11) to
(12). In case the bounding function is unknown but parameterizable, an
adaptive robust control can be designed using the certainty-equivalence
principle as did in a standard adaptive control design. The main result
in [3] can be restated as the following lemma.

Lemma 2: Suppose that system (1) satisfies Assumptions 1, 2, and
3B. Then, the closed-loop system is uniformly ultimate bounded under
control

u(x; t) = ��̂m(x; t)
�̂(x; t)

k�̂(x; t)k+ �
(13)

where �̂m(x; t) = WT (x; t)�̂ � 0;
�̂(x; t) = BT (x; t)rxV (x; t)�̂m(x; t); � is a design
parameter given by

_� = �k�� (14)

with �(t0) > 0; �̂ is the estimate of� and is generated by adaptation
law

_̂
� = W (x; t)kBT (x; t)rxV (x; t)k � ka�̂ (15)

andka � 0 andk� � 0 are gains. Furthermore, ifk� > 0 andka = 0,
the original statex(t) becomes asymptotically stable with respect to
the origin ofx = 0 in the original state space.

Proof: Consider the Lyapunov functionL(x; t; �; �̂) =
V (x; t) + 0:5k~�k2 + kl�, where ~� = � � �̂ is the parameter
estimation error, andkl = 0 if k� = 0 andkl = 1=k� if otherwise. It
follows from (10), (13), (12), (11), and (14) that

_L � �(kxk) + k�(x; t)k+ �� k�̂(x; t)k+ ~�T
_~�+ kl _�

� �(kxk)�
ka
2
k~�k2 +

ka
2
k�k2 + (1� klk�)� (16)

from which the claimed stability result can be concluded using stability
theorems in [2], [18].

The above adaptive robust control scheme provides an avenue for
us to apply robust control to the cases that uncertainties are bounded
by a parameterizable nonlinear function. Since uncertainties are often
generated by exo-systems, Assumption 3C or 3D is introduced in order
to make robust control more applicable while reducing conservatism.
Robust control designs under these two assumptions are given by the
following two theorems.

Theorem 1: Assume that system (1) satisfy Assumptions 1, 2, and
3C. Then, the closed-loop system is uniformly ultimate bounded under
control

u(x; t) = ��̂m1(x; t)
�̂1(x; t)

k�̂1(x; t)k+ �
(17)

where �̂m1(x; t) = WT

1 (x; t)�̂1 � 0; �̂1(x; t) =
BT (x; t)rxV (x; t)�̂m1(x; t); � is a design parameter given by (14),
�̂1 is the estimate of�1(t) and is given by adaptation law

_̂
�
1
= g1(x; t)�̂1 + g2(x; t) + P�11 W1(x; t)

kBT (x; t)rxV (x; t)k � kaP
�1

1 �̂1 (18)

andka � 0 andk� � 0 are gains. Moreover,x(t) converges asymp-
totically to zero ifk� > 0 andka = 0.

Proof: Consider the Lyapunov functionL1(x; t; �1; �̂1) =
V (x; t) + 0:5~�T1 P1 ~�1 + kl�, where ~�1 = �1 � �̂1 is the output
estimation error, andkl = 0 if k� = 0 andkl = 1=k� if otherwise. It
follows from (18) and (5) that

_~�
1
= g1(x; t)~�1 � P�11 W1(x; t)kB

T (x; t)rxV (x; t)k

� kaP
�1

1
~�1 + kaP

�1

1 �1:

Therefore, differentiatingL1 and applying control (17) and adaptation
law (7) yield

_L1 � �(kxk) + �� k�̂1(x; t)k+ k�1(x; t)k+ ~�T1 P1
_~�
1
+ kl _�

� �(kxk)�
ka
2
k~�1k

2 +
ka
2
k�1k

2 + (1� klk�)� (19)

from which stability claims can be made using theorems in [2], [18].
Theorem 2: If system (1) satisfies Assumptions 1, 2, and 3D, the

closed-loop system is ensured to be uniformly ultimate bounded under
control

u(x; t) = ��̂m2(x; t)
�̂2(x; t)

k�̂2(x; t)k+ �
(20)

where �̂m2(x; t) = WT

2 (x; t)�̂2 � 0;
�̂2(x; t) = BT (x; t)rxV (x; t)�̂m2(x; t); � is a design
parameter given by (14),̂�2 is the estimate of�2 and is given
by adaptation law

_̂
�
2
= h1(x; �̂2; t) + h2(x; t) + P�12 W2(x; t)

kBT (x; t)rxV (x; t)k � kaP
�1

2 �̂2 (21)
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andka � 0 andk� � 0 are gains. In addition,x(t) is asymptotically
convergent to zero ifk� > 0 andka = 0.

Proof: Consider the Lyapunov functionL2(x; t; �2; �̂2) =
V (x; t) + 1

2
~�T2 P2 ~�2 + kl�, where~�2 = �2 � �̂2 is the estimation

error, andkl = 0 if k� = 0 andkl = 1=k� if otherwise. It follows
from (21) that:

_~�2 = [h1(x; �2; t)� h1(x; �̂2; t)]� P�12 W2(x; t)

kBT (x; t)rxV (x; t)k+ kaP
�1

2 �̂2:

Under Assumption 3D, we know from (20) and (19) that

_L2 � �(kxk)�
ka
2
k~�2k

2 +
ka
2
k�2k

2 + (1� klk�)� (22)

from which the closed loop stability result and asymptotic convergence
of x(t) can be concluded using theorems in [2] and [18].

IV. DIRECT ESTIMATION OF UNCERTAINTY

If system uncertainty is bounded by a function parameterized in
terms of outputs from a known exo-system (rather than constants only),
we can use the results in Theorems 1 and 2 to reduce conservatism in
developing bounding functions. In the theorems, global boundedness
of the estimation error and asymptotic convergence of statex can be
concluded only if, in robust controls (17) and (20), design parameter
� is set to an exponential decaying function as defined by (14). It has
been shown in [18] that, if�(t) is anL1 time function, robust control
of form (17) becomes discontinuous in the limit unlessWi(0; t) = 0.
Thus, trade-off between asymptotic stability of statex and continuity
of robust control is needed in an application of the theorems.

Possible discontinuity of robust control is due to the use of
bounding function in its design. As defined in (4) and (5), uncertainty
�fm(x; �; t) is known to be bounded in norm by a function. In robust
control design and stability analysis, every possibility of the uncer-
tainty within the given bounding function must be considered. The
worst uncertainty that is admissible by inequality (5) is one of those
that change arbitrarily fast within the bound and may even become
discrete or jump dynamics in the limit. Therefore, to compensate
asymptotically for such uncertainty, robust control must be capable of
becoming discontinuous itself.

The extension from Assumption 3B to 3C (or 3D) brings about an-
other way of handling uncertainties in robust control. Since uncertain-
ties are general time-varying (due to their own dynamics), Assumption
3A or 3B must be made if only unknown constants can be estimated
in the design. By admitting unknown time variant output of a known
exo-system, we can get rid of the process of developing bounding func-
tion (which is conservative by its nature) and focus upon directly esti-
mating time variant uncertainties. The following corollary corresponds
to Theorem 1, its proof is almost identical to that of Theorem 1, and
its resulting control will be both continuous and asymptotically stabi-
lizing (for x(t)). Theorem 2 can be restated in a similar fashion.

Corollary 1: Assume that system (1) satisfy Assumptions 1 and 2.
If the uncertainty is generated as: for all(x; �; t) 2 <n � 
 � <+;
�fm(x; �; t) = W1(x; t)�1(t), where unknown vector�1(t) 2 <l

is the bounded output of exo-system (6), matrixW1(x; t) 2 <m�l

and functionsgi(x; t) are known and continuous, they are uniformly
bounded with respect tot and locally uniformly bounded with respect
to x, andg1(x; t) satisfies (7) for a constant, positive definite matrix
P1. Then, the closed-loop system is uniformly ultimate bounded under
control

u(x; t) = �W1(x; t)�̂1 (23)

where�̂1 is the estimate of�1 and is generated by the following adap-
tation law:

_̂
�1 = g1(x; t)�̂1 + g2(x; t) + P�1

1 W1(x; t)

BT (x; t)rxV (x; t)� kaP
�1

1 �̂1

for a constant scalar gainka � 0. In addition,x(t) is asymptotically
convergent to zero ifka = 0.

Of course, Theorem 1 and Corollary 1 can be combined. Specif-
ically, both uncertainty generated by an exosystem and uncertainty
whose bounding function is generated by an exo-system can be
estimated. Consider a system of form (1) in which�fm(x; t) =
W11(x; t)�11(t) + �f 0m(x; t) andk�f 0m(x; t)k � WT

12(x; t)�12(t),
where�1i(t) are outputs of known exo-systems. By Theorem 1 and
its corollary, robust control should be chosen to be

u(x; t) = �W11(x; t)�̂11 �WT

12(x; t)�̂12

BT (x; t)rxV (x; t)WT

12(x; t)�̂12

kBT (x; t)rxV (x; t)kWT

12(x; t)�̂12 + �

where�̂1i are defined according to the expressions given in Theorem
1 and Corollary 1, respectively.

V. ESTIMATION BASED ONUNCERTAIN MODEL OFEXO-SYSTEM

As those in (1), dynamics of the exosystem (with output�i(t)) may
not be known exactly. If the model of the exosystem is merely a black
box (completely unknown), the corresponding robust control problem
is in general ill-defined. This is because, unlike a typical model identifi-
cation problem or state observation problem, output of the exo-system
is itself an uncertainty to be estimated. Thus, in this section, we shall
investigate the problem of robust control design under the following
assumption in order to extend the result of Theorem 2. In essence, the
assumption implies that the exosystem is stable (for all boundedx), is
partially known, and has a bounded output. Stability results in Theorem
1 and Corollary 1 can be extended in a similar fashion.

Assumption 3E:Uncertainty �fm(x; �; t) is bounded by in-
equality (8) where unknown vector�2(t) 2 <l is assumed to be the
bounded output of a nonlinear system

_�2 = h1(x; �2; t) + �h1(x; �2; t) + h2(x; t) + �h2(x; t) (24)

vectorW2(x; t) and functionsh1(x; �2; t) andh2(x; t) are known,
but functions�h1(x; �2; t) and�h2(x; t) are uncertain. Furthermore,
vector functionh1(�) has the property that, for a constant� > 1, for a
known positive definite matrixP2, and for a nonnegative function�(�)
and

(z � w)TP2 [h1(x; z; t)� h1(x;w; t)]

� ��(kxk; kzk; kwk)kz� wk�

and uncertainties�h1(x; �2; t) and�h2(x; t) are bounded as, for all
x, for all t, and for a known scalar function�(�); k�h1(x; �2; t) +
�h2(x; t)k � �(kxk).

Corollary 2: Consider that system (1) satisfies Assumptions 1, 2,
and 3E. Then, the closed-loop system is globally, uniformly and ulti-
mately bounded under robust control

u(x; t) = ��̂m2(x; t)
�̂02(x; t)

k�̂02(x; t)k+ �
(25)

where �̂m2(x; t) = WT

2 (x; t)�̂2 � 0;
�̂02(x; t) = kvV

b(x; t)BT (x; t)rxV (x; t)�̂m2(x; t); �
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is a design parameter given by (14),b > �1 is another design
parameter,̂�2 is the estimate of�2 and is given by adaptation law

_̂
�2 = h1(x; �̂2; t) + h2(x; t) + kvV

b(x; t)P�12 W2(x; t)

kBT (x; t)rxV (x; t)k � kaP
�1
2 �̂2 (26)

and gainskv > 0; ka � 0 andk� � 0 and constantb � 0 are chosen
such that

lim
s!+1

kvka
b
1(s)(s)

�2max(P2)�2(s)
> 1: (27)

Furthermore, if gainkv > 0 and constantb > �1 can
be chosen such that, for alls � 0 and for all (x; t);
V b(x; t)WT

2 (x; t)kBT (x; t)rxV (x; t)k is well defined and

inf
� ;� �0

kv� (s; �1; �2)
b
1(s)(s)

> (� � 1)2 �� �max (P2)� (s) (28)

state vectorx(t) can be made globally and asymptotically convergent
to zero by simply settingka = 0 andk� > 0.

Proof: Consider the modified Lyapunov function

L02(x; t; �2; �̂2) =
kv

1 + b
V b+1(x; t) +

1

2
~�T2 P2 ~�2 + kl�

where~�2 = �2 � �̂2 is output estimation error, andkl = 0 if k� = 0
andkl = 1=k� if otherwise. It follows from Assumption 3E and from
(25), (26), and (22) that

_L02 � �kvV b(x; t)(kxk) + �� k�̂02(x; t)k
+ k�02(x; t)k+ ~�T2 P2

_~�2 + kl _�

� �kvb1(kxk)(kxk)� �k~�2k� � ka
2
k~�2k2

+ �max(P2)k~�2k�(kxk) + ka
2
k�2k2 + (1� klk�)�:

(29)

Depending upon the properties of functions�(�) and�(�), two types
of stability results can be concluded from (29) forkxk (while k~�2k is
bounded). Consider first�(s; �1; �2) > 0 for all (s; �1; �2), in which
case inequality

� kv
b
1(kxk)(kxk)� �k~�2k� + �max(P2)k~�2k�(kxk)

� �kvb1(kxk)(kxk) + (� � 1)2 �� ��

�max (P2)� (kxk)� 1

2
�k~�2k�

can be concluded from the Hölder inequality. Therefore, ifkv andb can
be chosen to satisfy inequality (28), the right-hand side of inequality
(29) is negative–semidefinite (after settingka = 0 andk� > 0), and
control (25) is asymptotically stabilizing forx(t).

In the general case that inequality (28) cannot be satisfied for all
s � 0, it follows that, by settingka > 0:

�ka
4
k~�2k2 + �max(P2)k~�2k�(kxk) � �2max(P2)

ka
�2(kxk):

By the gain selections specified by inequality (27), we know that the
right-hand side of inequality (29) is negative ifkxk or k~�2k exceeds a
certain threshold value. Consequently, stability of uniform and ultimate
boundedness can be claimed using the boundedness theorem in [2] and
[18].

It is worth noting that inequality (28) implies that, as(0) = 0,
uncertainties�hi(�) (rather than�(t) or�2(t) as would be required by
the existing results) must be vanishing in order to achieve asymptotic
stability. On the other hand, inequality (29) can always be satisfied by
increasingb andkv .

Fig. 1. A disturbed pendulum.

VI. I LLUSTRATIVE EXAMPLE

The following example on a simple pendulum is used here, as did in
[2], to illustrate the proposed robust control design based on estimating
system uncertainties.

Consider the simple pendulum shown in Fig. 1. It is of massM and
length l, and is subject to a control momentU(t) and an unknown
bounded disturbancev(t) in the form of a horizontal acceleration of its
point of support. It was shown in [2] and [18] that pendulum dynamics
are described by

_x1 = x2 _x2 = � g

l2
sin x1 + u� v

l
cosx1

where x1 and x2 are angular position and velocity of the rigid
weightless link between the mass and the point of support, andu(t) =
(U(t)=Ml2) is the control. To have a stable nominal system as required
in Assumption 1, we choose the control asu = �k1x1(t)�k2x2(t)+
ur , where ur is the robust control part to be selected, and
gains k1; k

0
1; k2 > 0 are chosen such thatk1 = k01 +

supx 2<(� sinx1)g=(x1l
2). It is straightforward to verify using

Lyapunov function (generated via the gradient technique)

V (x) = xTPx+
2g

l
(1� cosx1) with

P =
k1 + 0:5k22 0:5k2

0:5k2 1

that the nominal system under the nominal control is asymptot-
ically stable and that, for Lyapunov functionV (x); (kxk) =
minfk2; k01k2g; 1(kxk) = �min(P )kxk2, and

2(kxk) = �max(P )kxk2

+
2g(1� cos kxk)=l if kxk � �

4g=l if kxk > �

where �min(P ); �max(P ) = 0:5[1 + k1 + 0:5k22 �
(1 + k1 + 0:5k22)

2 � 4(k1 + 0:25k22)].
It is assumed that the disturbancev(t) is the bounded output of a

partially known exosystem whose dynamics are described by

_z1 = �z1 � z31 + x21 + cos t;

_z2 = �z2 + x22 + sin 2t+�(x; t); v = (1 + x22)z1 + z2

wherek�(x; t)k � kxk2. Therefore, by comparing Corollaries 1 and
2, we know that the robust control which directly estimatesv(t) should
be

ur =
1

l
v̂ cosx1 =

1

l
cosx1 1 + x22 1 [ẑ1 ẑ2]

T

where_̂z1 = �ẑ1� ẑ31+x21+cos t�kvV
b(x)(1+x22)(k2x1+2x2)�

kaẑ1, and _̂z2 = �ẑ2 + x22 + sin 2t� kvV
b(x)(k2x1 + 2x2)� kaẑ2.

Computer simulation of the above control was performed using Matlab
with the following choices:l =

p
g; k1 = 9; k2 = 6; b = 1; kv = 20;

ka = 0, x1(0) = �=4; x2(0) = 0; z1(0) = z2(0) = 0; ẑ1(0) =
ẑ2(0) = 0; �(x; t) = 5jx1x2j(1 + cos 3t). The simulation results,
shown in Figs. 2 and 3, verify the theoretical analysis.
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Fig. 2. State trajectory of the disturbed pendulum under robust control.

Fig. 3. Estimation error of time variant uncertainty.
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VII. CONCLUSION

Robust control can be made more applicable by designing it in con-
junction with estimation of nonlinear time variant uncertainties. It is
proposed in the note that, despite of their nonlinearity and time vari-
ance, uncertainties or their bounding functions can be estimated as long
as they are generated by exosystems whose models are either known
or partially known. Technical conditions are found in the note under
which estimation and stability can be achieved. Compared with the ex-
isting results on adaptive robust control, the proposed result represents
a step forward in handling nonlinear time variant uncertainties.
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An Observer Design for Linear Time-Delay Systems

M. Hou, P. Zítek, and R. J. Patton

Abstract—An observer design is proposed for linear systems with time
delay. The key of the design is to find a generalized coordinate change such
that in the new coordinates all the time-delay terms are injected by the
system’s output. The existence of such a coordinate change is guaranteed
by a rank condition on the observability matrix. Novelty of the proposed
design is clearly reflected in the multiple-output case where a dimensional
expansion in the coordinate change could become necessary and hence is
allowed.

Index Terms—Observability matrix, observer design, output injection,
polynomial matrix, time-delay systems.

I. INTRODUCTION

An observer asymptotically reconstructs the state of a dynamic
system and has important applications in realization of feedback
control, system supervision and fault diagnosis of dynamic processes.
Time-delay systems describe a wide range of dynamic processes
arising often in chemical, biological and economic applications.

There are various observer design methods for time-delay systems,
see, e.g., [2], [4], [7], [9], [12], [13], and [17]. Most of these designs
are based on the spectrum assignment [10], [11], which is consider-
ably complicated in the multiple-input–multiple-output (MIMO) case
in comparison with the conventional pole assignment. Recently, design
of linear functional observers for time-delay systems was considered in
[14] with a set of matrix equations for observers’ coefficients to satisfy.

This paper presents a simple observer design for linear time-delay
systems. The key in the design is to find a coordinate change such that in
the new coordinates all the time-delay terms in the system description
are associated with the output only. This method corresponds to the
output injection approach in the nonlinear observer designs [1], [5], [6],
[15]. The output injection approach can deal with a very restrictive class
of nonlinear systems, while this method can cover all linear time-delay
systems satisfying a rank condition on the observability matrix.

To illustrate the idea, consider the following example representing
the dynamics of a heat exchanger with zero inlet temperature [17].

Example 1: A linear time-delay system with a single output is

_x1(t) = �x1(t) + x2(t); _x2(t) = �x1(t)� x2(t� � );

y(t) = x1(t):

By inspection, if choose a coordinate change as

�1(t) = x1(t); �2(t) = x2(t) + x1(t� � )

in the�-coordinates

_�1(t) = �2(t)� y(t� � )� y(t) _�2(t) = �y(t� � )� y(t);

y(t) = �1(t):

Designing an observer for� and further forx then becomes trivial.
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