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Fig. 4. x (normalized variable which corresponds to PTT) time history
comparison of nonlinear model, linear model, and linear model considering
uncertainty.

Fig. 5. x (normalized variable which corresponds to TTT) time history
comparison of nonlinear model, linear model, and linear model considering
uncertainty.

�2 = �5:305, �3 = �14:789 + j0:035, �4 = �14:789 � j0:035,
�5 = �15:510), and the linear model having uncertain eigen-
values (~�min

1 = �2:175, ~�max

1 = �0:055, ~�min

2 = �7:520,
~�max

2 = �2:186, Ref~�3g
min

= Ref~�4g
min

= �81:277,
Ref~�3g

max
=Ref~�4g

max
=�8:565, Imf~�3gmin

=�Imf~�4g
max

=

0:042, Imf~�3gmax
= �Imf~�4g

min
= 0:068, ~�min

5 = �86:615,
~�min

5 = �47:632) are compared. The linear model with uncertain
eigenvalues is a perfect match for the nonlinear model. The modeling
errors (1%–10%) meet current control requirements.

IV. CONCLUSION

A new method of multivariable linear model matrix parameter esti-
mation was developed. The method enables obtaining the bounds for
real and imaginary parts of uncertain matrix eigenvalues of a multivari-
able linear model from an aircraft turbofan engine detailed nonlinear
model response in the time domain. This linear model only takes into
account the difference between nonlinear and linear models and not the
uncertainty in the nonlinear model itself. Such linear model and non-
linear model match perfectly. Its modeling errors meet current control
requirements. The method uses nonlinear programming and can conse-
quently consider any constraints for the estimated bounds for real and
imaginary parts of uncertain matrix eigenvalues.

The results of this note may be applied to advanced turbofan engine
and aircraft control systems, as well as to other dynamic systems, which
may be described by multivariable linear models considering modeling
uncertainty.
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Asymptotic Learning Control for a Class of Cascaded
Nonlinear Uncertain Systems

Zhihua Qu and Jianxin Xu

Abstract—In this note, the problem of learning unknown functions in
a class of cascaded nonlinear systems will be studied. The functions to be
learned are those functions that are imbedded in the system dynamics and
are of known period of time. In addition to the unknown periodic time func-
tions, nonlinear uncertainties bounded by known functions of the state are
also admissible. The objective of the note is to find an iterative learning
control under which the class of nonlinear systems are globally stabilized
(in the sense of being uniform bounded), their outputs are asymptotically
convergent, and a combination of the time functions contained in system dy-
namics are asymptotically learned. To this end, a new type of differential-
difference learning law is utilized to generate the proposed learning control
that yields both asymptotic stability of the system output and asymptotic
convergence of the learning error. The design is carried out by applying the
Lyapunov direct method and the backward recursive design method.

Index Terms—Learning control, Lyapunov design, periodic function, sta-
bility, uncertain system.

I. INTRODUCTION

In a typical control design, one often begins with formulating the
so-called tracking-error system to define the dynamics of the error
between the plant output and a given output trajectory. There are many
control applications in which the desired trajectory for the system
output is repetitive. If so, the tracking-error system will contain time
functions of known period. In case that there exist unknown dynamics
(such as unknown parameters, unknown time functions, etc.) in the
plant, periodic time functions in the resulting tracking-error system
will be mixed with unknown, nonlinear dynamics of the plant. For
such an uncertain system, three different design methodologies can be
applied. One is the robust control theory which can be viewed as the
worst-scenario control design method [20]. The second is the adaptive
control which can be used to identify online nonlinear dynamics that
are parameterized in terms of a set of unknown constants [12]. The
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third is the learning control theory using which an iterative learning
control is designed to learn the unknown, periodic time functions and,
hence, to establish stability and performance. In this note, new results
will be presented to enrich the learning control theory so that it can be
applied to more nonlinear systems and to achieve better performance.

Several model-based approaches have been proposed to design
learning controls: linear learning design framework [2], [3], [4], [10]
using functional norm; linear learning design based on internal model
principle [21]; an approach parallel to adaptive control design [5],
[9], [13]; generalized inversion of input matrix [7]; linear high-gain
control [14], [17]; robustness analysis under disturbance [8]; removal
of derivative measurement of the state [11], [18], [22]; and nonlinear
design methods such as passivity design [1] and Lyapunov method
[6], [18]. For the history of learning control and for other approaches
of learning control that are not model based, the readers are referred
to [15]. It is noted that these results aforementioned (as well as the
proposed design in this note) are for systems with deterministic
models and that there is also probability learning theory [23].

For nonlinear systems, learning control has to be designed using
nonlinear techniques in order to achieve global stability. Although the
learning control in [1] achieves asymptotic stability for torque-level,
rigid-body mechanical systems, its extension to high-order system will
call for derivative measurement of the state as it is based on a difference
learning law. The result [6] overcomes this difficulty by employing a
differential-difference learning law and by a judicious choice of Lya-
punov function, but the resulting stability is a uniform bounded prop-
erty. Convergence of learning error is not established in either of these
two results. In this note, an improvement of the result in [6] is presented
so that both asymptotic stability of the system output and asymptotic
convergence of a composite learning error are obtained.

II. PROBLEM STATEMENT

In this note, the class of cascaded nonlinear systems is considered.
Specifically, a system consisting ofm sequentially connected subsys-
tems is of the form

hi;j(x1;j ; . . . ; xi;j ; t) _xi;j

= Fi;j(x1;j ; . . . ; xi;j ; �i(t)) + xi+1;j (1)

for i = 1; . . . ;m � 1, and

hm;j(x1;j ; . . . ; xm;j ; t) _xm;j

= Fm;j(x1;j ; . . . ; xm;j ; �m(t)) + uj (2)

wheret 2 [0; T ] is the time during a specific trial,T is the duration
of all trials,xi;j 2 <n is the state of theith subsystem during thejth
trial, �i(t) are unknown time functions of periodT , anduj 2 <n is
the control function (to be designed) during thejth trial. The design
objective is to find a control lawuj (which will be a function ofxi;j
(for i = 1; . . . ;m) anduj�1 in a closed form) such that the closed-loop
system is uniformly bounded, that the system output (given byx1;j )
is asymptotically convergent (asj ! 1), and that combinations of
unknown time functions are asymptotically learned. The design will
be carried out using the backward recursive method. For the ease of
presentation, we shall limit our derivation to the case ofm = 2 so that
the main idea of how to achieve asymptotic stability of the output and
asymptotic convergence of the learning error can be emphasized.

Letting

�i(t) =Fi;j(0; . . . ; 0; �i(t)) andgi;j(x1;j ; . . . ; xi;j ; t)

=Fi;j(x1;j ; . . . ; xi;j ; �i(t))� Fi;j(0; . . . ; 0; �i(t))

we can rewrite system (1) and (2) withm = 2 as

h1;j(x1;j ; t) _x1;j = �1(t) + g1;j(x1;j ; t) + x2;j (3)

and

h2;j(x1;j ; x2;j ; t) _x2;j = �2(t) + g2;j(x1;j ; x2;j ; t) + uj : (4)

It is obvious that time functions�i(t) are periodic with respect toT .
In a typical application, repeated trials can be implemented in one

of the following two ways: either resetting initial conditions (ICs) at
the beginning of each trial or letting the system resume its operation
(possibly after a pause but without resetting). Thus, it can be assumed
without loss of any generality that IC of thejth trial is given by either
xi;j(0) = ICi0 orxi;j(0) = xi;j�1(T )whereICi0 is a constant vector
for all j (as, for the same repeated tasks, resetting the ICs at different
values for different trials would not make much sense). IfICi0 6= 0,
one can introduce the transformationyi = xi�ICi0 and rewrite system
(3) and (4) as

h1;j(y1;j + IC10; t) _y1;j = �
0

1(t) + g
0

1;j(y1;j ; t) + y2;j (5)

and

h2;j(y1;j + IC10; y2;j + IC20; t) _y2;j

= �
0

2(t) + g
0

2;j(y1;j ; y2;j ; t) + uj (6)

where

�
0

1(t) =�1(t) + g
0

1;j(IC10; t) + IC20

g
0

1;j(y1;j ; t) =g1;j(y1;j + IC10; t)� g1;j(IC10; t)

�
0

2(t) =�2(t) + g
0

2;j(IC10; IC20; t)

and

g
0

2;j(y1;j ; y1;2; t) = g2;j(y1;j + IC10; y2;j + IC20; t)

�g2;j(IC10; IC20; t):

Equations (5) and (6) have the same structure as the original equations
(3) and (4) (which will be used in our control design for the case that
ICi0 = 0). Thus,ICi0 = 0 will be assumed without loss of any gen-
erality in the subsequent discussion. In fact, in many applications, re-
setting of ICs is done by making the system return to its home position
(which can be set as the origin of the state space).

For asymptotic stabilization of the system output and asymptotic
convergence of learning error, dynamics of system (3) and (4) are re-
quired to satisfy the following assumptions.

Assumption 1:Time functions�i(t) are periodic with respect toT
and are bounded in norm as, for all time

k�i(t)k ��i1 k _�i(t)k � �i2

k��i(t)k ��i3; and
d3�i(t)

dt3
� �i4:

Assumption 2:Matrix functions hi;j(�) are known, periodic in
t with respect toT , symmetric, and positive–definite as, for all
fx1;j ; x2;j ; tg

0 < hiI � hi;j � hiI
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for constantshi andhi. In addition, their time derivatives are bounded
by known functions as

k _h1;jk � �h (x1;j) andk _h2;jk � �h (x1;j ; x2;j):

Furthermore, matrixhi;j(�) is diagonally dominant in the sense that,
lettingwi;j = h�1i;j andwk;l

i;j be the element ofwi;j on thekth row and
lth column, inequalities

w
k;k
i;j �

n

l=1; l 6=k

w
k;l
i;j � cw;k

hold fork = 1; . . . ; n and for constantscw;k � cw > 0.
Assumption 3:Vector functionsgi;j(�) are bounded by known func-

tions as

kg1;j(x1;j ; t)k � �g (x1;j)kx1;jk (7)

and

kg2;j(x1;j ; x2;j)k � �g (x1;j ; x2;j)kx1;jk

+�g (x1;j ; x2;j)kx2;jk
4
=�g (x1;j ; x2;j): (8)

In essence, the assumptions imply that dynamics of the system are
bounded by nonlinear functions of the state. Many physical systems
meet these assumptions. For example, consider the dynamics of a
rigid-body robot driven by dc motors [16]

M(q)�q =N(q; _q) + �

� =KtI

La
_I =�RI � E( _q) + v (9)

whereq is the generalized coordinator,v is the voltage input,E(�) is the
back electromotive force (EMF), and� is the torque. Given a desired
periodic trajectoryqd(t), we can write dynamics of the tracking system
as

_x1 =x2

M(x1 + q
d(t)) _x2 =�1(t)

+ N(q; _q)�N(qd; _qd)

+ M(qd)�M(x1 + q
d) �qd + x3

LaK
�1
t _x3 =�2(t)�RK

�1
t x3 � [E( _q)� E( _qd)] + v

wherex1 = q � qd, x3 = �

�1(t) = N(qd; _qd)�M(qd)�qd and�2(t) = �E( _qd):

Due to the unknowns in the system (for example, friction inN(q; _q)),
functions�1(t) and �2(t) are unknown but periodic. The first sub-
system has no unknowns or dynamics that need to be compensated for.
It is easy to verify that subsystems 2 and 3 satisfy all the assumptions.

It is worth mentioning that, under the same assumptions listed above,
robust controls have been proposed in [19] and [20] to ensure stability
of being uniform and ultimate bounded. By taking advantage of pe-
riodicity, the proposed learning control can achieve asymptotic con-
vergence for system output and for learning error, which is the main
difference between the proposed result and the existing results.

III. L EARNING CONTROL DESIGN

Learning control will be designed for system (3) and (4) recursively.
To this end, consider the following fictitious system:

h1;j(x1;j ; t) _x1;j = �1(t) + g1;j(x1;j ; t) + v1;j (10)

wherev1;j is the fictitious control during thejth trial. An iterative
learning control ensuring asymptotic stability for the first-order vector
system (10) is provided by the following lemma.

Lemma 1: Consider system (10) under learning control

v1;j =� [�1x1;j + �1�g (x1;j)x1;j

+
1

2
�h (x1;j)x1;j +�1;j (11)


1 _�1;j =��1;j + (1� 
1)�1;j�1

+ �1x1;j + 
1�1h
�1
1;jsign[x1;j ] (12)

where�1 > 0 is a control gain,�1 is another control gain satisfying
inequality

�1 > max 1;
n

cwh1

0 < 
1 < 1 is the time constant of the differential-difference learning
law, �1 > 0 is a learning gain, and�1 is another learning gain satis-
fying inequality

�1 � max
(�1 + 1)(�11 + �12)

�1cw � nh�1
1

;
3(�11 + �12)

cw
;

�11 + �12 + ��1
1
h1(�12 + �13)

cw
; h1(�12 + �11)

sign[�] represents the vector sign function defined element by
element, and�1;j defined by (12) should be solved under IC
�1;j(0) = �1;j�1(T ) with �1;�1 arbitrarily chosen. Then, under
either a fixed IC (without loss of any generality,x1;j(0) = 0 is used1 )
or IC resetting(x1;j(0) = x1;j�1(T )), Lyapunov function

V1;j =
1

2
(1� 
1)

T

0

k�1(�)��1;j(�)k
2
d�

+
1

2

1k�1(T )��1;j(T )k

2 (13)

has the property that, for a constantc1 (independent ofj)

V1;j �

j

k=1

�
1
T

0

k�1 ��1;kk
2
d�

��1�1
T

0

kx1;kk
2
d� �

1

2
h
1
kx1;j(T )k+ c1: (14)

Furthermore, the system is asymptotically stable and its learning error
converges to zero.

Proof: It follows from the choice of IC of learning law (12) and
from periodicity of function�1(t) that the difference of Lyapunov func-
tion between two successive trials�V1;j = V1;j � V1;j�1 can be
rewritten as

�V1;j =
1

2
(1� 
1)

T

0

k�1 ��1;jk
2 � k�1 ��1;j�1k

2
d�

+
T

0

[�1 ��1;j ]
T


1 _�1 � 
1 _�1;j

T

d�:

It follows from (12) that (15), as shown at the bottom of the next page,
holds true.

1if x (0) = IC 6= 0, a state transformation should be applied as dis-
cussed prior to system (10) before applying this lemma.
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Applying control (11), together with learning term defined by (12),
to (10) yields

h1;j _x1;j = �1 + g1;j � �1x1;j � �1�g x1;j �
1

2
�h x1;j ��1;j

which renders

�[�1 ��1;j ] = �h1;j _x1;j �
1

2
�h x1;j � �1x1;j

��1�g x1;j + g1;j : (16)

Then, substituting the previous solution of�[�1 � �1;j ] into the
second integral term in (15) yields the first equation shown at the
bottom of the next page. It should be noted that, under either a fixed IC
(x1;j(0) = 0 is used here) or IC resetting (i.e.,x1;j(0) = x1;j�1(T )),
nxT1;k(0)h1;k(x1;k(0); 0)x1;k(0)�x

T
1;k�1(T )h1;k�1(x1;k�1(T); T )

x1;k�1(T ) � 0. Hence

�
j

k=1

1

2
x
T
1;kh1;kx1;k

T

0

� �1

2
x
T
1;j(T )h1;j(xi;j(T ); T )x1;j(T )

+
1

2
x
T
1;1(0)h1;1(x1;1(0);0)x1;1(0)

� �1

2
h
1
kx1;j(T )k2 + 1

2
h1kx1;1(0)k (17)

in which the positive term is independent ofj.
On the other hand, it follows from (16) that the third integral term in

(15) is

T

0

[�1 ��1;j ]
T [ _�1 + �1] � �1h

�1

1;jsign[x1;j ] d�

=
T

0

�1h
�1

1;jsign[x1;j ]� [ _�1 + �1]
T

� ��1x1;j � h1;j _x1;j � 1

2
�h x1;j d�

+
T

0

�1h
�1

1;jsign[x1;j ]� [ _�1 + �1]
T

� [��1�g x1;j + g1;j ] d�: (18)

It follows from Assumptions 2 and 3 that the second integral in (18)
is bounded from above as shown in the second equation at the bottom
of the next page. Similarly, it follows that the first integral in (18) is
bounded from above as the third equation shown at the bottom of the
next page, wherex1;j;k denotes thekth element of vectorx1;j(t). As
in (17), one can see that, since�1 > h1(�12 + �11)

��1
n

k=1

jx1;j;kj + [ _�1 + �1]
T
h1;kx1;k � 0

and, therefore

j

k=1

��1
n

k=1

jx1;j;kjjT0 + [ _�1 + �1]
T
h1;kx1;kjT0

� ��1
n

k=1

jx1;j;k(T )j+ [ _�1(T ) + �1(T )]
T

� h1;j(x1;j(T ); T )x1;j(T ) + �1

n

k=1

jx1;j;k(0)j

� [ _�1(0) + �1(0)]
T
h1;1(x1;1(0);0)x1;1(0)

� � �1 � h1(�12 + �11) kx1;j(T )k
+ �1

p
n+ h1(�12 + �11) kx1;1(0)k

� �1
p
n+ h1(�12 + �11) kx1;1(0)k

which is again independent ofj.
By noting that, forj > 0

V1;j � V1;0 =

j

k=1

�V1;k

and by combining the results on the last two integral terms in (15), we
can conclude inequality (14) and, therefore, convergence inL2 norm
to zero for both the state and the learning error.

To establish asymptotic stability of the state and asymptotic
convergence of the learning error, we note the following facts. First,
by applying the argument of induction up to the(j � 1)th trial,
one can assume that ICskx1;j(0)k and k�1;j(0) � �1(0)k are
uniformly bounded. Second, one can show using (14) thatkx1;j(T )k
andk�1;j(T ) � �1(T )k are uniformly bounded. Third, to show that

�V1;j =
1

2
(1� 
1)

T

0

k�1 ��1;jk2 � k�1 ��1;j�1k2 d� +
T

0

[�1 ��1;j ]
T

� 
1[ _�1 + �1] � �1x1;j � 
1�1h
�1

1;jsign[x1;j ]

�[�1 ��1;j ] + (1� 
1)[�1 ��1;j�1]g d�
=� 1

2
(1 + 
1)

T

0

k�1 ��1;jk2d� � 1

2
(1� 
1)

T

0

k�1 ��1;j�1k2d�

+ (1� 
1)
T

0

[�1 ��1;j ]
T [�1 ��1;j�1]d� � �1

T

0

[�1 ��1;j ]
T
x1;jd�

+ 
1

T

0

[�1 ��1;j ]
T [ _�1 + �1]� �1h

�1

1;jsign[x1;j ] d�

�� 
1

T

0

k�1 ��1;jk2d� � �1

T

0

[�1 ��1;j ]
T
x1;jd�

+ 
1

T

0

[�1 ��1;j ]
T [ _�1 + �1]� �1h

�1

1;jsign[x1;j ] d�: (15)
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kx1;j(t)k and k�1;j(t) � �1(t)k are bounded during thejth trial,
consider the continuous-time Lyapunov candidate

L1;j(x1;j(t);�1;j(t)) =
1

2
x
T
1;jh1;jx1;j +


1

2�1

k�1;j � �1k
2
;

t 2[0; T ]:

It follows (19), as shown at the bottom of the next page, holds. In an
argument of induction with respect to trial indexj, the term associated

with �1;j�1 in (19) is considered to be constant. Therefore,_L1;j is
negative oncekx1;jk or k�1;j(t)� �1(t)k is larger than a threshold
value. Using the uniform bounded theorem in [20], one can easily
establish by induction thatkx1;j(t)k and k�1;j(t) � �1(t)k are
uniformly bounded for allt 2 [0; T ] and for allj. This result in turn
implies uniform boundedness of_x1;j and _�1;j . By Barbalet lemma
[20], asymptotic stability of the state and asymptotic convergence
of the learning error can be concluded from theirL2 stability and
convergence.

�
T

0

[�1 ��1;j ]
T
x1;jd�

= �
T

0

x
T
1;j h1;j _x1;j +

1

2
�h x1;j + �1x1;j + �1�g x1;j � g1;j d�

� �
1

2
x
T
1;jh1;jx1;j

T

0

�
1

2

T

0

x
T
1;j [�h I � _h1;j ]x1;jd�

� �1

T

0

kx1;jk
2
d� �

T

0

�1�g kx1;jk
2 � kx1;jkkg1;jk d�

� �
1

2
x
T
1;jh1;jx1;j

T

0

� �1

T

0

kx1;jk
2
d�:

T

0

�1h
�1

1;jsign[x1;j ]� [ _�1 + �1]
T

[��1�g x1;j + g1;j ] d�

� �
T

0

�1 �1�g signT [x1;j ]w1;jx1;j � nh
�1

1
kg1;jk
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It should be noted that, for first-order vector systems in the form of
(10), constant
1 can be set to be zero in which case the learning law
(12) reduces to the standard iterative form, i.e., a difference learning
law. Such a learning can ensure asymptotic stability of the state. How-
ever, for high-order vector systems, a differential-difference learning
law (such as the one in (12) with
1 > 0) must be used in order not
to require derivative measurement of the state in the implementation of
the actual control.

Comparing system (3) (withi = 1) with fictitious system (10), we
can rewrite dynamics of the first subsystem as

h1;j(x1;j ; t) _x1;j = �1(t) + g1;j(x1;j ; t) + v1;j + z2;j (20)

wherez2;j = x2;j � v1;j . The following result can be concluded by
mimicking the analysis in Lemma 1.

Lemma 2: Consider (20) under learning control (11) and (12). Then,
under either a fixed IC (xi;j(0) = 0 is used without loss of any gen-
erality) or IC resetting(xi;j(0) = x1;j�1(T )), the Lyapunov function
(13) has the property that, for a constantc1 (independent ofj)

V1;j �

j

k=1

�
1
T

0

k�1 ��1;kk
2
d� � �1�1
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0

x
T
1;jz2;j � 
1

T

0

[ _�1 + �1]

��1h
�1
1;jsign[x1;j ]

T
z2;j + c1: (21)

Fictitious control design ofv1;j = v1;j(x1;j ;�1;j) provides the
avenue by which the actual controluj can be found recursively. This is
done by the partial state transformationz2;j = x2;j�v1;j . Specifically,
we want to find the equation governing dynamics ofz2 based on which
uj can be found in the same way as that for a first-order vector system
[as did for fictitious system (10)]. It follows that:

h2;j(x1;j ; x2;j ; t) _z2;j

= h2;j(x1;j ; x2;j ; t) _x2;j � h2;j(x1;j ; x2;j ; t) _v1;j
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0
2;j(x1;j ; x2;j ; t) + uj (22)

where _�1;j is defined by (12),�02(t) andG2;j(x1;j ; x2;j ; t) are those
shown in the first equation at the bottom of the next page, and

G
0
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4
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_�1;j :

The first two terms in the right-hand side of (22) are to cancel the cor-
responding terms in (21) in a Lyapunov argument. The time function
�02(t) (to be learned) is chosen such that, if system dynamics are linear,
v1;j is linear andG2;j(�) contains only uncertainties that vanish at the
origin. In other words,�02(t) is the periodic time function that needs to
be learned. The lumped uncertainty in system (22) can be bounded as
shown in the second equation at the bottom of the next page. It is easy
to verify that

dk�1�02(t)

dtk�1
� �

0

2k; k = 1; 2; 3

where (23)–(24), as shown at the bottom of the next page, hold true.
Applying the same argument in Lemma 1 to system (22), and then

combining the result with Lemma 2, we can reach the following con-
clusion.

Theorem: Consider (3) and (4) withm = 2 under learning control
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wherez2;j = x2;j � v1;j , v1;j is defined by (11) and (12), and�2;j

defined by (26) should be solved under IC�2;j(0) = �2;j�1(T ) with
�2;�1 arbitrarily chosen,�2 > 0 is a constant control gain,�2 is an-
other control gain satisfying inequality
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0 < 
2 < 1 is the time constant of the differential-difference learning
law, �2 > 0 is a learning gain,�2 is another learning gain satisfying
inequality

�2 � max
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2k (with k = 1, 2, 3) are defined by (23) up to (24). Then, under
either a fixed IC (xi;j(0) = 0 is used without loss of any generality)
or IC resetting(xi;j(0) = x1;j�1(T )), the Lyapunov function
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with �01(t) = �1(t) has the property that, for a constantc (independent
of j)

Vj �
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wherez1;k = x1;k. Furthermore, the transformed system (of state
variablesx1;j andz2;j ) is asymptotically stable and its learning error
(vector of elements in[�i;j � �0i], i = 1, 2) converges asymptotically
to zero.

It is worth noting again that, if there are only two subsystems, con-
stant
2 can be chosen to be zero. In general, as in the case of recur-
sively designing a linear control for linear time-invariant systems, de-
sign constants
i should be chosen such that0 < 
i � 
l for i > l.
Similarly, gains�i, �i, �i, and�i should be chosen to be positive and
nondecreasing as the index of the subsystems increases. This ensures
that the subsystems from themth to the first converge sequentially
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according to the physical interaction of cascaded systems so that the
system output will converge smoothly.

It is obvious that the proposed design readily applies to system (9),
as well as many other electrical–mechanical systems. The structure of
cascaded subsystems ensures that unknown but periodic time functions
can be compensated for by an iterative control law.

IV. CONCLUSION

In this note, a Lyapunov-based learning control design is presented
for cascaded nonlinear systems. Compared with the result of uniform
bounded stability in [6], the newly designed learning control is capable
of achieving both asymptotic stability of the system output and asymp-
totic convergence of a composite vector of learning errors. The result
is the first to show that periodic functions in a cascaded system can be
learned using an iterative learning law while ensuring output asymp-
totic convergence. Because of the use of a robust control part, nonperi-
odic uncertainties are also admissible in the system dynamics.
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Repeatability of Inverse Kinematics Algorithms for Mobile
Manipulators

Krzysztof Tchon´

Abstract—We introduce and examine the property of repeatability of
inverse kinematics algorithms for mobile manipulators. Similarly to sta-
tionary manipulators, repeatability of mobile manipulators is defined by
requiring that a closed path in the taskspace should be transformed by the
inverse kinematics algorithm into a closed path in the configuration space.
In a simply connected, singularity-free region of the taskspace a necessary
and sufficient condition for repeatability is derived as the integrability con-
dition of a distribution associated with the inverse kinematics algorithm.

Index Terms—Distribution, integrability, inverse kinematics, mobile ma-
nipulator, repeatability.

I. INTRODUCTION

We shall be concerned with mobile manipulators composed of a non-
holonomic mobile platform and a holonomic stationary manipulator
mounted atop of the platform. An increasing interest in mobile manip-
ulators observed recently in the literature has two sources: first, excel-
lent performance characteristics of mobile manipulators, second, chal-
lenging motion planning and control problems [1]–[3]. For a compre-
hensive review of literature, the reader is directed to [4] and [5].

The kinematics of a stationary or mobile manipulator can be re-
garded as a map from a configuration space into a taskspace. The in-
verse kinematics, assigning a configuration to a prescribed point in the
taskspace, are computed by inverse kinematics algorithms. An inverse
kinematics algorithm is called repeatable, if it maps closed paths in the
taskspace (cyclic sequences of tasks) to closed paths in the configura-
tion space (cyclic sequences of configurations). It is well known that
inverse kinematics algorithms based on optimization theory are repeat-
able by design. On the other hand, within the important class of Jaco-
bian algorithms relying on a right pseudoinverse of analytic Jacobian of
the kinematics, the repeatability issue becomes crucial. Repeatability
of Jacobian algorithms has an appealing geometric interpretation. If the
(regular) kinematics of a stationary or a mobile manipulator are treated
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