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Abstract—n this note, the problem of learning unknown functions in
lass of cascaded nonlinear systems will be studied. The functions to be
rned are those functions that are imbedded in the system dynamics and
are of known period of time. In addition to the unknown periodic time func-
tions, nonlinear uncertainties bounded by known functions of the state are

. _ . . . also admissible. The objective of the note is to find an iterative learning
A2 = —5.305, As = —14.789 + j0.035, Ay = —14.789 — j0.035,  control under which the class of nonlinear systems are globally stabilized

Fig. 5. x5 (normalized variable which corresponds to TTT) time history
comparison of nonlinear model, linear model, and linear model consideriﬁg
uncertainty.

As = =—15.510), and the linear model having uncertain eigengn the sense of being uniform bounded), their outputs are asymptotically
values (\Ilnin = —2.175, :\rlnax = —0.055, A" = _7.590, convergent,andacombination of the time functions contained in system dy-
S\f;,ax — _92.186 Re{:\g}mn. _ Re{jw}mi; —  _81.277 namics are asymptotically learned. To this end, a new type of differential-

X Y max 2 mas < ymin Y max difference learning law is utilized to generate the proposed learning control
Re{As}"% = Re{ A4} = =8.565, Im{ A3 }™" = —Im{Aa } "™ =y yields both asymptotic stability of the system output and asymptotic
0.042, Im{A;}™** = —Im{A4}™" = 0.068, \z"" = —86.615, convergence of the learning error. The design is carried out by applying the
A3 = —47.632) are compared. The linear model with uncertaiyapunov direct method and the backward recursive design method.

eigenvalues is a perfect match for the nonllrlear model. The mOde“ngndexTerms—Learning control, Lyapunov design, periodic function, sta-
errors (1%-10%) meet current control requirements. bility, uncertain system.

IV. CONCLUSION |. INTRODUCTION

A new method of multivariable linear model matrix parameter esti- In a typical control design, one often begins with formulating the

mation was developed. The method enables obtaining the boundsdgr. 4 ieq tracking-error system to define the dynamics of the error

real and imaginary parts of uncertain matrix eigenvalues of a m”'“"aﬂétween the plant output and a given output trajectory. There are many

able linear model from an aircraft turbofan engine detailed nonline@6ntro| applications in which the desired trajectory for the system

model respon.se in the time domaln.l This Ilnea.r model only takes 'rBﬁtput is repetitive. If so, the tracking-error system will contain time
account the difference between nonlinear and linear models and no%h‘?ctions of known period. In case that there exist unknown dynamics

uncertainty in the nonlinear model itself. Such linear model and no&'uch as unknown parameters, unknown time functions, etc.) in the

linear model match perfectly. Its modeling errors meet current contrﬂhmy periodic time functions in the resulting tracking-error system

requirements. The method uses nonlinear programming and can COYSRbe mixed with unknown, nonlinear dynamics of the plant. For

9“9”_“3/ consider any consFraints f_or t_he estimated bounds for real %M%h an uncertain system, three different design methodologies can be

imaginary parts of.uncertam matrix elgenvalues. applied. One is the robust control theory which can be viewed as the
Th? results of tk:'s note may be «'ﬂpplled tc;} advancec_;l turbofan engk;]_ Grst-scenario control design method [20]. The second is the adaptive

and aircraft control systems, as well as to other dynamic systems, w J:g?'ntrol which can be used to identify online nonlinear dynamics that

may be described by multivariable linear models considering modeligpe parameterized in terms of a set of unknown constants [12]. The
uncertainty.
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third is the learning control theory using which an iterative learningre can rewrite system (1) and (2) with = 2 as
control is designed to learn the unknown, periodic time functions and,
hence, to establish stability and performance. In this note, new resuits ha (21,5, )1, = 61(t) + g1,5(x1,5,8) + @2, ©)
will be presented to enrich the learning control theory so that it can be
applied to more nonlinear systems and to achieve better performance,

Several model-based approaches have been proposed to design
learning controls: linear learning design framework [2], [3], [4], [10]
using functional norm; linear learning design based on internal model ha (i js w2, t)d2 j = 62(1) + g5 (15, 225, 1) +uj. (4)
principle [21]; an approach parallel to adaptive control design [5],
[9], [13]; generalized inversion of input matrix [7]; linear high-gainlt is obvious that time functions;(t) are periodic with respect tf.
control [14], [17]; robustness analysis under disturbance [8]; removalln a typical application, repeated trials can be implemented in one
of derivative measurement of the state [11], [18], [22]; and nonlineaf the following two ways: either resetting initial conditions (ICs) at
design methods such as passivity design [1] and Lyapunov methbe beginning of each trial or letting the system resume its operation
[6], [18]. For the history of learning control and for other approachdgpossibly after a pause but without resetting). Thus, it can be assumed
of learning control that are not model based, the readers are refenéthout loss of any generality that IC of thi¢h trial is given by either
to [15]. It is noted that these results aforementioned (as well as the;(0) = IC; oraz; ;(0) = x4 ;1 (T) wherelCy, is a constant vector
proposed design in this note) are for systems with determinisfier all j (as, for the same repeated tasks, resetting the ICs at different
models and that there is also probability learning theory [23]. values for different trials would not make much senseJ(fy, # 0,

For nonlinear systems, learning control has to be designed usimge can introduce the transformatign= x; —1C;, and rewrite system
nonlinear techniques in order to achieve global stability. Although t1{8) and (4) as
learning control in [1] achieves asymptotic stability for torque-level,
rigid-body mechanical systems, its extension to high-order system will hij(y1,; 4+ 1C10, )01, = 85 (1) + gl ; (Y1, 1) + y2 5 (5)
call for derivative measurement of the state as it is based on a difference
learning law. The result [6] overcomes this difficulty by employing and
differential-difference learning law and by a judicious choice of Lya-
punov function, but the resulting stability is a uniform bounded prop- .
erty. Convergence of learning error is not established in either of thel%f(yid +1C10, 92,5 +1C20, )42,

two results. In this note, an improvement of the result in [6] is presented =6(t) + g;,j(yl.j: Y2,5,t) +u; (6)
so that both asymptotic stability of the system output and asymptotic
convergence of a composite learning error are obtained. where
[l. PROBLEM STATEMENT §1(t) =861(t) + ¢1,;(IC10, 1) + ICx0
In this note, the class of cascaded nonlinear systems is considered. 1. y1.5.1) =g1,5(y1,; + IC10,t) — g1,;(I1C10,1)
Spemﬁcally, a system consisting of sequentially connected subsys- 85(t) =62(t) + g5 ;(IC10.1C20. 1)
tems is of the form
) and
hi’j(:L'L]” vy g, t)d g
=Fij(wrjserin G +airny ) gh (g1, y1.2:1) = g2, (1 + 1Ch0, yo,; + 1Cop, 1)
—g2,;(IC10,1C20, ).
fori=1,...,m —1, and 92.4(IC10,1C20.1)
Equations (5) and (6) have the same structure as the original equations
hnz J( Ul,jyv+sLm,j t)‘lnz J

(3) and (4) (which will be used in our control design for the case that

=Fp (@14, @ () + 1 (2) IC; = 0). Thus,ICi = 0 will be assumed without loss of any gen-
erality in the subsequent discussion. In fact, in many applications, re-

wheret € [0, 7] is the time during a specific triall is the duration setting of ICs is done by making the system return to its home position

of all trials, z; ; € R" is the state of théth subsystem during thgh  (which can be set as the origin of the state space).

trial, ¢;(¢) are unknown time functions of peridf, andu; € R" is For asymptotic stabilization of the system output and asymptotic

the control function (to be designed) during tfté trial. The design convergence of learning error, dynamics of system (3) and (4) are re-

objective is to find a control law; (which will be a function ofr; ;  quired to satisfy the following assumptions.

(fori =1,...,m)andu;_; inaclosed form) such that the closed-loop Assumption 1: Time functionss;(¢) are periodic with respect t6

system is uniformly bounded, that the system output (givemy) and are bounded in norm as, for all time

is asymptotically convergent (gs— oc), and that combinations of

unknown time functions are asymptotically learned. The design will 16:(0) <Bar 16:(1)]] < Bi

be carried out using the backward recursive method. For the ease of - N

presentation, we shall limit our derivation to the casewf 2 so that

the main idea of how to achieve asymptotic stability of the output and

asymptotic convergence of the learning error can be emphasized.

Letting

!5, (2‘) || §g7’%7 and

(lgéi(i’) —
TH < bia-

Assumption 2:Matrix functions h, ;(-) are known, periodic in
t with respect toT', symmetric, and positive—definite as, for all

NN
8:(t) =F; j(0,...,0,¢ () andg; j(x1,jy ..o, @i g, t) EENIEENRS
=Fi (@15, i, G(t) — Fij(0,....0,G(t)) 0<hI <hij<hil
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for constantg, andh;. In addition, their time derivatives are bounded I1l. L EARNING CONTROL DESIGN

by known functions as Learning control will be designed for system (3) and (4) recursively.

. . To this end, consider the following fictitious system:
Al < oy (wr5) @and|lba il < oy (21,5, w2,5)- _
haj(xyj, )@, = 60(t) + gu (x5, t) + v, (20)

Furthermore, matrbd., () ) is diagonally dominant in the sense thatyhere v, ; is the fictitious control during thgth trial. An iterative
lettingw;,; = h; } andw; ; be the element af:; ; on thekth row and  |earning control ensuring asymptotic stability for the first-order vector

Ith column, inequalities system (10) is provided by the following lemma.
Lemma 1: Consider system (10) under learning control

n

k.k k1 . ,
Wiy — Z ‘wi,f = v, = = [na; + Bipg, (21,5)21,
1=1, Ik 1
toom(r1)715+ A (11)
hold fork = 1,...,n and for constants,, . > c. > 0. L ,
Assumption 3: Vector functionsy; ; (-) are bounded by known func- VAL == A+ (- M)All’f‘l
tions as + o, + Ak jsignfa ] (12)
(D < 1 Il 7 wheren; > 0 is a control gain/3; is another control gain satisfying
”9171( 1,55 )” . Pgl( I,J)” 171” (7) inequality
and "
1 > max {1 ' }
Cwh,

lg2.i (w155 w2 )| < pgoy (1,55 w2,5) |21 5] _ _ _ o _
0 < v < 1is the time constant of the differential-difference learning

A
FPg20 (715 ¥2, )12 i1F0g2 (715, 725)- B) a4y > 0isa learning gain, and; is another learning gain satis-
fying inequality
In essence, the assumptions imply that dynamics of the system are . g _
bounded by nonlinear functions of the state. Many physical systems > pax { (h+ D6+ 511) 3(611 + b12)
meet these assumptions. For example, consider the dynamics of a Brew —nhyt Cw

>

rigid-body robot driven by dc motors [16] 811 4+ 812+ Thi (812 + 813) T (Fia+ 5 )}
5 L1 12 11
Cw
M(q)i =N(g.4) +7 sign[] represents the vector sign function defined element by
T =K:I element, andA, ; defined by (12) should be solved under IC
L,i=—RI—E({) +v 9 A1;(0) = Ay;1(T) with Ay, arbitrarily chosen. Then, under

either a fixed IC (without loss of any generality, ;(0) = 0 is used)

wherey is the generalized coordinatoris the voltage input(-) isthe " IC resetting(1,;(0) = 1,,-1(T')), Lyapunov function

back electromotive force (EMF), andis the torque. Given a desired 1 e 5
periodic trajectory” (¢), we can write dynamics of the tracking system .i = 5(1 - m) /U ll61(7) = Avj(T)["dr

as 1 ! 2
Fomllb(T) = A (DI (A3)

&1 =2 has the property that, for a constant(independent of)
Mz 4 q* ()2 =61(1)
{ [V - N i) W, < Z K / 16— Avildr
0

+ [ﬂl(qd) — M(x1 + qd)] ('jd} + x3

e , 1
L . o “mon [l alFar] = G, D)+ @9
L K, i3 =6:(t) — RK, w3 — [E(¢) — E(¢")] +v 0

Furthermore, the system is asymptotically stable and its learning error

wherex; = ¢ — ¢4, 23 = 7 converges to zero.
Proof: It follows from the choice of IC of learning law (12) and
51(t) = N(q",q") — M(q")i" andéa(t) = — E(4"). from periodicity of functiors, (¢) that the difference of Lyapunov func-

tion between two successive triad¥ ; = Vi ; — Vi ;-1 can be
rewritten as

Due to the unknowns in the system (for example, frictioivity, ¢)), o
(1—’\/1)/ I:”(sl —AIVJ’HZ - ||(81 _Al,jflnz] dr
0

functions §: (¢) and é-(¢) are unknown but periodic. The first SUb'qu —
system has no unknowns or dynamics that need to be compensated for.
It is easy to verify that subsystems 2 and 3 satisfy all the assumptions.

Itis worth mentioning that, under the same assumptions listed above,
robust controls have been proposed in [19] and [20] to ensure stabi
of being uniform and ultimate bounded. By taking advantage of p
riodicity, the proposed learning control can achieve asymptotic co
vergence for system output and for learning error, which is the mainis .., .(0) = 1C,, # 0, a state transformation should be applied as dis-
difference between the proposed result and the existing results.  cussed prior to system (10) before applying this lemma.

N =

- 0 . . T
+/ [61 — Ay j]l [’)"151 - 7"1A1,j] dr.
0

‘It¥ollows from (12) that (15), as shown at the bottom of the next page,
olds true.
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Applying control (11), together with learning term defined by (12)it follows from Assumptions 2 and 3 that the second integral in (18)
to (10) yields is bounded from above as shown in the second equation at the bottom
of the next page. Similarly, it follows that the first integral in (18) is
bounded from above as the third equation shown at the bottom of the
next page, where; ; » denotes théth element of vectoe ;(t). As
in (17), one can see that, sinde > 1 (612 + 611)

. 1
hijir; =6+ g1 —ma; — Bipg ey — FPmTL ~ Ay

which renders

n

=M > k] + [5 + 8] ha g <0

k=1

—[(51 - Al,j] = —hl’]‘ifl,j -

5Ph 1,5~ T

2
=Bipg iy +g1,5. (16)
and, therefore

Then, substituting the previous solution ef6; — A, ;] into the _

second integral term in (15) yields the first equation shown at the ! i T
bottom of the next page. It should be noted that, under either a fixed IC Z —M Z 25510
(x1,7(0) = 0is used here) or IC resetting (i.e.4,;(0) = x1,j—1 (1)),
nat (01 (21,1(0), 0)a1 k(0)=f i (T) 1 i (@1 5—1(T), T) <=\ Z'“ k(D) + [8:(T) + 6:(T)H]"
x1,k—1(T) < 0. Hence

+ [(51 + 51]T hl,kiﬁ,kh?
k=1 k=1

n

; T X b (w1 (T). T (T) + M Y [1,5,1(0)]
- erT hy e k=1
oMLk 1,6T1,k . T
k=1 - [61 (()) + 61 ((])] h171(171’1(0),()).17171(0)
< _ZII J(T)hl,/(lw(T) Tz (T) <=\ - h1(im_+ 511)_1 [l1,;(T)]|
1 + [)\1 v+ hi (612 + 011)] [|z1,1(0)]|
+ 3 Ok 1<0>'°>°'“ 1(0) < Pavin 4+ T (a4 500)] [l (0]
1
< =Shyllz (DI + 5 h ll1.1(0)]] 17) _ - ,
2 which is again independent g¢f

. . . . By noting that, forj > 0
in which the positive term is independentjof

On the other hand, it follows from (16) that the third integral term in

J
(15) is Vij—Vie=> 6Vis
k=1
' y T R . -1 .
/0 [61 = Auj] {[61 +o] - AlhlJSlgn[wl’j]} dr and by combining the results on the last two integral terms in (15), we
-7 . T can conclude inequality (14) and, therefore, convergende: inorm
= / {/\lhﬁsigﬂ[lﬂn] — [0+ 51]} to zero for both the state and the learning error.
0 1 To establish asymptotic stability of the state and asymptotic
X |:—7714L'1‘j — hy i — §p,,lx1,]} dr convergence of the learning error, we note the following facts. First,
" B by applying the argument of induction up to tfi¢ — 1)th trial,
+/ {Alhf}sign[ml,j] — b —|—ﬁ1]}1 one can assume that IQgey,;(0)|] and ||A1,j_(0) - 61(0)||’ are
0 uniformly bounded. Second, one can show using (14)[that (T)||
X [=Bipg er; + g1,5]dr. (18) and||Ay,;(T) — &(T)]| are uniformly bounded. Third, to show that
1 T .
Wiy =g =) [ 110 = Al = v = AvmilPar+ [ A0

X {71[61 +81] = arwr j — i Adh jsignfe ]
—[61 = Ay ]+ (1= y)[b61 — Ay )b dr

]
1 T ) 1 T )
==+ [ o =AllPdr = ST =) | 60— Avj-aldr
2 9] 2 0
T . T .
+ (1 - M ) / [(51 — Aﬁj] [51 — A] _’]'_1](1'7 — V1 / [(51 — Aﬁj] .’L‘],]’dT
T 0 . . 0
" / [61 — Aq ] {[(51 +61] — Allliisign[ilfl,j]} dr
O.T ) T
S—’y’l/ ||51—A17]'||2d1’—(11/ [61 —AL]‘]T"ITLJC[T
0 0

T
Ty / N {[51 +81] — ArhT Lsignlag 7]]} dr. (15)
0
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lz1 ;(t)|] and||Ay;(t) — &1(¢)|| are bounded during thgth trial, with A, ;; in (19) is considered to be constant. Therefdie,; is

consider the continuous-time Lyapunov candidate negative oncd|z: ;|| or ||Ay ;(¥) — & (¢)|| is larger than a threshold
value. Using the uniform bounded theorem in [20], one can easily
/ L7 gt 2 establish by induction thaflx: ;(¢)|| and ||A:;(¢) — 6:(¢)| are
Ly (a1 (), A1 () =21 ;h1 jarj + =——||Ar; — 81|, ; 1,3 La\t) B
pileni (0, A (0) =5015h, 501, 20, 1280, = &l uniformly bounded for alt € [0,77] and for allj. This result in tumn
t €[0,T]. implies uniform boundedness @f ; and A, ;. By Barbalet lemma

[20], asymptotic stability of the state and asymptotic convergence
It follows (19), as shown at the bottom of the next page, holds. In arfi the learning error can be concluded from thé&ir stability and
argument of induction with respect to trial indgxthe term associated convergence. O

L
bl / [51 bl A] 7]’]711‘1 hj(iT

0

T
r . 1
—/ L1 {hl,jivl.,j +gomanytmen; + pgen; = g1y dr

0
1 ooyt -
< —saf jhijan;| - */ @t jlpn I — T jla jdr
2 . 2.4
T 9 T 9
—m / 127 / Bl sl = el 1] dr
0 0
T T
s 2
< =5k e —771/ 1,5 d7.
2 o 0

- . T
/ {Al’lf}Sign[m,j] [+ 51]} [=B1pgy w1+ g14]dT
0
<= [ {x [romsien o sdun s = b ]
9]

=1l 1611 [Brpgs Nl i1l + ||91,j||]} dr

T n "
< —/ {/\1Pg1 |:,31 Z <wf’f - Z ‘wfj ) o1, (k)| — nh11||l’1.j||:|
0

k =1, I#k

=il + 1813 + 1)pg1||$1,j||}d7

T

< —/ Moo (Brew = nbT Yl sl = A8 I+ 180D + Vool a7
0

<0.

-T . T 1
/ {)\lhi;sign[m’rld] —[61 + (51]} |:—7]1;L’1‘j — hy a1, — §p;,1;v17j:| dr
0

T n
:—7}1/ {AlsignT[(l’lvj]hl_j;l:l,j —[§1+51]T;l'1yj}dT—)\lz |;L’1_’]'7]‘-,||0T+[($1+51]T hl,jilflljhf
0 k=1

T T
- / (81 + 60) hy jar s + (51 + 60)" hy jay j]dr — / 3Pm {/\1s1gnl [$17j]1117;'LE17J' —[61 + &) wl,j} dr
0 0
T n T
- e - . o 1
< —”Il/ {Aww = (oxll + (162 l) = ma~ha(llonll + ||51||)} e illdr = A >l l| + [br + 8] b ja .
0 k=1 0

T
1 : )
= [ gon b =300+ 1) } ol
) 2

<=M lwelly B+ 8" byl
k=1
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It should be noted that, for first-order vector systems in the form efhereA; ; is defined by (12)85(¢) andG ; (a1 ;. 22 j, t) are those
(10), constanty; can be set to be zero in which case the learning laghown in the first equation at the bottom of the next page, and
(12) reduces to the standard iterative form, i.e., a difference learning
law. Such a learning can ensure asymptotic stability of the state. How-
ever, for high-order vector systems, a differential-difference learning G j(z1,, arg,j,t)émm,j +n /\1hl_j(’r1 istsign[ay ;]

law (such as the one in (12) with > 0) must be used in order not i i
to require derivative measurement of the state in the implementation of = b2 (15,22 5, 2w 2 h (15, 1)®2,5
the actual control. a“

Comparing system (3) (with = 1) with fictitious system (10), we — ho (21 5,22 5,1) aAlle A, e

can rewrite dynamics of the first subsystem as

ha (@ ) = 61(t) + gr (x5 t) + o1 + 22 (20)  The first two terms in the right-hand side of (22) are to cancel the cor-
responding terms in (21) in a Lyapunov argument. The time function
wherezs ; = x2; — v1,;. The following result can be concluded byé)(#) (to be learned) is chosen such that, if system dynamics are linear,
mimicking the analysis in Lemma 1. v1,; is linear andG- ;(-) contains only uncertainties that vanish at the
Lemma 2: Consider (20) under learning control (11) and (12). Thefrigin. In other wordsg5 (¢) is the periodic time function that needs to
under either a fixed ICa(;,;(0) = 0 is used without loss of any gen- pe |earned. The lumped uncertainty in system (22) can be bounded as

erality) or IC resetting; ;(0) = x1,;-1(T)), the Lyapunov function  shown in the second equation at the bottom of the next page. It is easy
(13) has the property that, for a constan{independent of) to verify that

d¥r e (1)
Cdtk-1

H < Sy, k=1,2,3

J -T T
Sl B O S M
k=1 0 0

+ oy /T I{];2J _— /T ([51 + 6] where (23)—(24), as shown at the bottom of the next page, hold true.
0 0 Applying the same argument in Lemma 1 to system (22), and then
- combining the result with Lemma 2, we can reach the following con-
—\ihijsignlar ;1) 22| +er (21)  clusion.
Theorem: Consider (3) and (4) wittn = 2 under learning control

Fictitious control design of ; = vy ;(x1,;, A1, ;) provides the

avenue by which the actual contrgl can be found recursively. This is u; = — [,,,2 22+ G i+ B2pa,ysignlzy, ;]
done by the partial state transformatiorn, = z2 ; —v1,,. Specifically, 1
we want to find the equation governing dynamics-ebased on which to5Phor2s + B (25)
u; can be found in the same way as that for a first-order vector system
[as did for fictitious system (10)]. It follows that: oA ;== Anj+ (1= 72)Asj 1+ 2o
+ Y2 A2 h;}sign[:g,j] (26)

ha (1,5, 22,5, t) 22,5

= ho (@15, w2 5. )iz, — ha j(1 5, 2,5, )01,

= 57(51& 92,5055 02,50 ) 5 = 2, (21,5, 22,5:8) wherezs,; = ) — v1, v, is defined by (11) and (12), antls ;
S e ) o o] SIS Do beschedndric 1) -, 1w
—hy ](7"1 it );)X J Al other control gain satisfying inequality
= —aizi, 4+ {[51 + 51] W hl.jsign[xw]} + 85(t) .
+ Ga,j(w1,5, 22,5, 1) + Go (w1 4, 22,5, ) + uy (22) Pz > 1113‘X{1’E:|

17 o :
Sl g + Llar, - 8] A, - 41
@y

Ll-,j :.’l’fj]LL]'i'l,j +
1 . 2 0
< = mllzilI* = Brpg el = lgrsIDllzsll - 5 (pny = 1Dl 5117 = i 5[, =&
1 1.
+ G_[Al,j - 51] {—‘;’1[61 + 861+ arxy,j + ’ylx\lh,ljs1gn[a:l,j] +[6 =A== (1 =y)[A =1 — 511}
g

1 22252 1—
— 12(51 +61) — 12 + ( )
~ o a
22,2 1 — ~)2 P

JiAn + ( 1) max [|6; — A 1,j71||z' (19)

mﬁf 51 t€[0,T]

2 2
161 = Avjall”

. 1 )
< =mlla ) - EHALJ —&i° +

; 1 . 1 5 — .
< =l - EHAI,J —&i° + o (O +8) +
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0 < 72 < 1is the time constant of the differential-difference learningvith 61 (¢t) = 8, (¢) has the property that, for a constar(independent
law, as > 0 is a learning gainj: is another learning gain satisfying of j)
inequality 2

(B2+1) (Elu +5;2) 3 (5,21 +5,22) Vis Z |:_%/0 ”é e k” dr

=1 k=1

Ay > max — > o
A _ - Cuw .
nfB2hy nhy _”Iiﬂ’i/ ||zi,k||zcl7':| te (28)
0
(51 47 )ﬁ) wherez, , = . Furthermore, the transformed system (of state
2 22 variablesz; ; andz._ ;) is asymptotically stable and its learning error

(vector of elements ifA; ; — 6i], i = 1, 2) converges asymptotically
andé)k (with & = 1, 2, 3) are defined by (23) up to (24). Then, undeto zero.

either a fixed IC ¢;,;(0) = 0 is used without loss of any generality) It is worth noting again that, if there are only two subsystems, con-

glm + 5;2 + 772_152 (3,22 + 3,2%>

Cw

or IC resetting z; ;(0) = x1,;—1(T")), the Lyapunov function stanty, can be chosen to be zero. In general, as in the case of recur-
2 Ve sively designing a linear control for linear time-invariant systems, de-
V= Z { 7,)/ 16:(r) = Aij(T)||Pdr sign constants; should be chosen such that< v < ~; fori > 1.

Similarly, gainsy;, 3, «;, and\; should be chosen to be positive and
nondecreasing as the index of the subsystems increases. This ensures

+§%”ﬁi(T) — A (D @7 that the subsystems from theth to the first converge sequentially

85 (1)285(1) — 71 [81 () + 61 ()] = ha ;(0,0.1)

whl—l(o )61 (t),
L1

FaN
Go (@1 j, 20 j, t)=g2 j (21 j, T2 5, 1)

vy (a1, A dv1.;(0,0
hz,j(m,,v,m,,-vt)%m,(ll, t) — ha,(0,0, t)%hlj(o )| 8(t)
Tr1
vy (1.5 A1) | _
— ha j(z1,5, ‘T’Q-,]ﬂt)%i/ld)hl,}(aﬁ g Bgn iz . t)
||G2J(J'1,j*4U2=J’vt)|| Sl)gz(ib’l,jewz,j)
+ hz‘j(wl,j,mz,j,t)w Ya1,jyt) = ho (0,0 t)w ,;}(o,t)‘ b1
ovy (w15, 015), _
o P R ) )
épgz(«h,]yélfz,j)-
RN - dv1.,;(0,0) , _ -
B 2821+ 91 Bra o 510) + 2, 0.0, 20D 0, 5o
N - dv1,;(0,0)  _ - Oh2,;(0,0,1) 9v1,;(0.0) :
50250 + 3 (Fra +512) + [ h,,(0,0,1 20022 0) )h117»(0,f,) 1o o || 220000 “,’( ) by 5(0,4)] 811
81’1 > ot 8.’1,1
anTH0,t) || -
+ [ t0.0,0 202100 P D 5 3)
- Ax - dv1.;(0,0)  _ - dhs,;(0,0.t) dv1 ;(0,0) , _ -
B3 =80 + 71 (814 + 813) + ]I’Q-J'(Oﬂovt)%hl,j(oﬂt) 513+QH l“(gf ) 110]( )’1j(0 t)|| 612
X1 1
9v1,;(0,0) Dby ;(0.1) dhs_;(0,0,t) dvy ;(0,0) Ohy ;(0,1)
t 510 +2
+2h2,i(0,0,) =5 5t 2t ot 9 ot i
8?h2,;(0,0,) duy ;(0,0), _4 — du1,;(0,0) O*hi5(0.1) || -
+ H étg 0111 1y ;5(0,t)] 611 + ||h2,;(0,0,t) 0]1’1 022 511. (24)
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according to the physical interaction of cascaded systems so that tfE8] Z. Qu and H. Zhuang, “Nonlinear learning control of robot manipula-
system output will converge smoothly. tors without requiring acceleration measuremeint.”J. Adapt. Control

It is obvious that the proposed design readily applies to system (9
as well as many other electrical-mechanical systems. The structure

Signal Processingvol. 7, no. 2, pp. 77-90, 1993.
Llrf)] Z. Qu, “Robust control of nonlinear uncertain systems under generalized
matching conditions,Automaticavol. 29, no. 4, pp. 985-998, 1993.

cascaded subsystems ensures that unknown but periodic time functiop28] ——, Robust Control of Nonlinear Uncertain System#lew York:
can be compensated for by an iterative control law. Wiley, 1998.

[21] C. Smith and M. Tomizuka, “A cost effective repetitive controller and
its design,” in2000 Amer. Control ConfChicago, IL, June 2000, pp.
1169-1174.

[22] T. Sugie and T. Ono, “An iterative learning control law for dynamical
systems,”Automaticavol. 27, pp. 729-732, 1991.

[23] M. Vidyasagar and S. R. Kulkarni, “Some contributions to fixed-dis-

IV. CONCLUSION

23

In this note, a Lyapunov-based learning control design is presented "~ tibution learning theory,1EEE Trans. Automat. Conirvol. 45, pp.
for cascaded nonlinear systems. Compared with the result of uniform  217-234, Feb. 2000.
bounded stability in [6], the newly designed learning control is capable
of achieving both asymptotic stability of the system output and asymp-
totic convergence of a composite vector of learning errors. The result
is the first to show that periodic functions in a cascaded system can be
learned using an iterative learning law while ensuring output asymp-
totic convergence. Because of the use of a robust control part, nonp&epeatability of Inverse Kinematics Algorithms for Mobile
odic uncertainties are also admissible in the system dynamics. Manipulators
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