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SUMMARY

A new suboptimal control design technique is proposed for a class of cascaded non-linear systems. The
design is based on a forward recursive design rather than a backstepping design, and it utilizes a non-linear
tracker derived using the state-dependent algebraic Riccati equation approach. The proposed design has
two distinct features. First, it provides suboptimal performance with respect to a performance index that is
defined in terms of the original state and control variables and thus can be prescribed. Second, the forward
recursive procedure eliminates differentiation of fictitious controls (or their functions), which makes the
design much simpler in applications. Due to the use of the non-linear tracker, the proposed design has the
potential of producing less conservative results than non-linear servo results. Copyright # 2002 John
Wiley & Sons, Ltd.
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tracking control

1. INTRODUCTION

For non-linear systems, there are several popular and successfully tested control laws such as
adaptive control, robust control and L2-gain optimal control [1–4]. Lyapunov’s direct method is
a method commonly used to design these controls. Recently, several recursive design procedures
have been proposed to facilitate Lyapunov-based control design and stability analysis. Among
them, the most notable is the backstepping design [5–8]; others include forward recursive design
and recursive interlacing design [9]. On the other hand, optimal control is desired due to its
performance guarantee [10, 11]. Since optimal controls have to be found by solving a vector
partial differential equation, closed-form suboptimal controls are sought for the purpose of
on-line implementation [12]. One promising technique to design suboptimal control is the
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state-dependent algebraic Riccati equation (SDARE) method [13–15]. It has been shown therein
that SDARE controls have performance very close to (and, in several cases, identical to) that of
the optimal ones. The advantage of the SDARE method is that, if used appropriately, it can
expand the normal LQ problem beyond the scope of the normal Hardy space (stable A matrices)
and frozen-time controllable (and observable) systems. At the same time, the well-posed LQ
problem can be shown to be a subset of the SDARE method as described in this paper.

Recursive designs have been shown to be effective particularly in (but not limited to) handling
cascaded non-linear systems as the cascaded structure provides a unique avenue for developing
a recursion. Many physical systems, especially such electrical–mechanical systems as robotic
manipulators, satisfy the cascaded structure. And, the cascaded structure also ensures
controllability of these systems. In a typical backstepping design, a sequence of state
transformations involving fictitious controls are formed, their dynamics (or the rates of change
of their corresponding sub-Lyapunov functions) are found by differentiation, and the
differentiation operations generate numerous terms that must be compensated for by the
actual control. This differentiation process makes the control derivation mathematically tedious
and often leads to an overly compensating control as the designer tries to cancel a majority of
the transformed dynamics. In the case that an optimal control is designed by backstepping, the
performance index is inversely found in terms of transformed state, and its physical meaning is
often unclear. To overcome these two shortcomings, a new suboptimal control design is
proposed in this paper for a class of cascaded systems. The new method is based on a forward
recursive design in which the SDARE technique is applied to generate fictitious control for each
subsystem. Instead of using the SDARE regulators reported in Reference [15], an SDARE
tracker is developed. By doing so, optimality is achieved for the individual subsystems, sub-
optimality is achieved for the overall system, and recursive mapping of the fictitious controls
into the actual control is accomplished in terms of algebraic equations rather than state
transformation and differentiation.

The paper is organized as follows. In Section 2, optimality conditions and SDARE method
are briefly reviewed. In Section 3, the new design methodology is proposed and compared to the
existing methods. Second order systems are used to illustrate the new design procedure, and
extension to high-order cascaded systems is guaranteed by its recursive nature. An illustrative
example is presented in Section 4. Conclusions are given in Section 5.

2. NON-LINEAR OPTIMAL AND SUBOPTIMAL CONTROLS

Consider the following non-linear, affine system

’xx ¼ fðxÞ þGðxÞu ð1Þ

where x 2 Rn; u 2 Rm; and functions fð�Þ and Gð�Þ are continuous. To study a more general class
of LQ problems, one can rewrite system (1) as

’xx ¼ AðxÞxþ BðxÞu ð2Þ

where BðxÞ ¼ GðxÞ; and AðxÞ is a state-dependent parameterization of fðxÞ (namely,
fðxÞ ¼ AðxÞx). The matrix AðxÞ is assumed to be well defined for all x 2 Rn:
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The control objective studied in this paper is to devise a non-linear and continuous
control

u ¼ fðxÞ ð3Þ

such that the closed-loop, autonomous system

’xx ¼ fðxÞ þGðxÞfðxÞ ð4Þ

is asymptotically stable. This stabilization problem can be formulated into an optimal control
problem as follows (or into a sub-optimal control problem to be stated later). Let the
performance index be

J ðxðt0Þ; u; t0; tf Þ ¼
1

2
xTðtf ÞSxðtf Þ þ

1

2

Z tf

t0

½xTQðxÞxþ uTRðxÞu� dt ð5Þ

where tf 2 ½t0;1� is the time interval of optimization, and S is a given constant positive definite
matrix. Matrices Q and R are positive definite matrix functions of x: The optimal control
problem is to find the optimal control un that minimizes the performance index, that is, for all
u 2 Rm

Jn ¼4 J ðxðt0Þ; un; t0; tf Þ4J ðxðt0Þ; u; t0; tf Þ and J ðxðt0Þ; un; t0; tf Þ51

2.1. Lagrangian method

The necessary conditions for optimality can be found using the calculus of variations. To this
end, we form the Hamiltonian H as

H ¼ 1
2
xTQðxÞxþ 1

2
uTRðxÞuþ lT½fðxÞ þ BðxÞu� ð6Þ

where l 2 Rn is the Lagrangian multiplier. Then, the necessary conditions for optimality are
[11]:

’xx ¼
@H
@l

;
@H
@u

¼ 0 and ’ll ¼ �
@H
@x

ð7Þ

Condition ’xx ¼ @H=@l is always satisfied. It follows from condition @H=@u ¼ 0 that a optimal
control candidate in (3) should be of the form

u ¼ �R�1BTPx ð8Þ

provided that, for some matrix function PðxÞ; the Lagrangian multiplier is chosen to be

l ¼ Px ð9Þ

Control (8) is optimal if matrix PðxÞ can be selected to satisfy the third and the last necessary
condition ’ll ¼ �@H=@x: By direct differentiation using parameterization (9), the third necessary

Copyright # 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23:303–328

NEW SUBOPTIMAL CONTROL DESIGN 305



condition of optimality can be rewritten (as did in Reference [14]) to be

0 ¼ ’PPxþ ðPAþ ATP� PBR�1BTPþQÞxþ
1

2
vec xT

@Q

@xi
x

� �
þ

1

2
vec uT

@R

@xi
u

� �

þ vec xT
@AT

@xi
Px� xTPBR�1 @B

T

@xi
Px

� �
ð10Þ

Since the first two necessary conditions in (7) have been satisfied, Equation (10) is the optimality
condition. Substituting control (8) into (2) yields the optimal closed-loop system

’xx ¼ ðA� BR�1BTPÞx ð11Þ

2.2. Hamilton–Jacobi theory

In the case that tf ¼ 1; an optimal control can be derived by imbedding (5) into the
performance index

V ðt;xÞ ¼
1

2

Z 1

t
½xTQðxÞxþ uTRðxÞu� dt

which can be optimized using dynamic programming. It can be shown using the principle of
optimality that the necessary condition for optimality is given by the so-called Hamilton–
Jacobi–Bellman equation. That is, if V nðt;xÞ is the optimal solution, it must be a solution to the
partial differential equation

@V nðt;xÞ
@t

¼ �min
u

H ðx; u; lÞ
����
l¼

@V nðt;xÞ
@x

ð12Þ

where H ðx; u; lÞ is the Hamiltonian in (6). Since system dynamics (1) and integrant
Lðx; uÞ ¼ 0:5xTQðxÞxþ 0:5uTRðxÞu do not explicitly depend on t and since the optimal control
problem over the infinite horizon is being studied, V ðt;xðtÞÞ ¼ V ðxðtÞÞ and consequently the left-
hand side of the Hamilton–Jacobi equation (12) is zero. That is, if the closed-loop system is
stable, the necessary and sufficient condition for optimality is

min
u

H ðx; u; lÞ
l¼

@V nðxÞ
@x

¼ 0

���� ð13Þ

which remains a partial differential equation. It is obvious that the minimum of H ðx; u; lÞ with
respect to u is reached at

un ¼ �R�1ðxÞBTðxÞ
@V nðxÞ
@x

which, identical to (8), is the optimal control law provided that the following non-linear
parameterization (also equivalent to (9)) is employed: for a matrix function PðxÞ;

@V nðxÞ
@x

¼ PðxÞx ð14Þ
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Therefore, we can rewrite Hamilton–Jacobi–Bellman equation (13) as the so-called state-
dependent algebraic Riccati equation for unsymmetrical solution (SDARE-US) PðxÞ:

PTðxÞAðxÞ þ ATðxÞPðxÞ þQðxÞ � PTðxÞBðxÞR�1ðxÞBTðxÞPðxÞ ¼ 0;
nðnþ 1Þ

2
ð15Þ

Since V nðxÞ is a scalar function, its Hessian matrix (second-order partial derivatives) must be
symmetrical. In terms of non-linear parameterization (14), this symmetry condition becomes

PijðxÞ þ
Xn
k¼1

@PikðxÞ
@xj

xk ¼ PjiðxÞ þ
Xn
k¼1

@PjkðxÞ
@xi

xk ;
nðn� 1Þ

2
ð16Þ

The combination of Equations (15) and (16) is equivalent to the original Hamilton–Jacobi–
Bellman equation (13).

The boundary condition for the Hamilton–Jacobi–Bellman equation is

V nð1; xð1ÞÞ ¼ 0

which calls for stability of closed-loop system (11). It can be shown further that, if the closed-
loop system is stable, then the Hamilton–Jacobi–Bellman equation is also a sufficient condition
for optimality [16].

2.3. Sufficient conditions for optimality

Two sets of necessary conditions have been derived: optimality condition (10) from the
minimum principle, and Hamilton–Jacobi–Bellman equation (15) in its matrix form and the
corresponding symmetry condition (16). However, satisfying the necessary conditions do not
necessarily ensure optimality and, even in certain cases, stability. Without imposing
controllability, closed-loop stability and optimality can be obtained by requiring sufficient
conditions.

Since @2H ðx; u; lÞ=@u2 > 0; control (8) is the so-called H -minimal control, and hence any
bounded solution to (15) and partial differential equation (16) is optimal.

On the other hand, whether a solution to optimality condition (10) is optimal depends upon
convexity of the performance index. In the general non-linear case, @2H ðx; u; lÞ=@x2 is too
complicated to make general conclusions on convexity. Nonetheless, performance index (5) is
locally convex around the origin, and the stationary point of x ¼ 0 is at least a local optimum.
Thus, the positive definiteness of matrices Q; R and S locally ensure the second-order conditions
associated with the Hamiltonian.

A practical question is whether the optimal control, if exists, can be found and implemented
on-line. If the answer is not (as will be shown in the subsequent section), we need then to
investigate the options of devising suboptimal controls and how to make an appropriate choice
among them. For the suboptimal controls to be introduced, stability is achieved by studying
cascaded systems whose controllability is structurally guaranteed.

2.4. Optimal control versus suboptimal control

The optimal control problem is to find matrix Pðxðt0Þ; t0; tf Þ; the solution to non-linear partial
differential equation (10) or, if tp ¼ 1; to algebraic and partial differential equations (15) and
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(16). The solution to (10) is typically found numerically by backward and forward sweeps as it is
a two-point boundary-value problem satisfying

xðt0Þ given; Pðxðt0Þ; t0; tf Þ;¼ S and 05 lim
tf!1

Pðxðt0Þ; t0; tf Þ51

Thus, the optimal solution can only be found off-line.
To make real-time implementation possible, one has to avoid solving any two-point

boundary-value problem (or partial differential equation) and hence resorts to sub-optimal
control strategies. A promising method to achieve this goal is the sub-optimal design
technique called SDARE method [13, 14]. The essential idea of the technique is to
design a suboptimal control of form (8) by finding a symmetrical solution to the following
SDARE:

PAþ ATP� PBR�1BTPþQ ¼ 0 ð17Þ

Such a solution avoids solving optimality condition (10) or partial differential equation (16)
needed for unsymmetrical solution in SDARE-US (15). The resulting control can be
implemented very efficiently through on-line numerical computation. Under additional
conditions, the control (SDARE regulator) has been shown in Reference [17] to be globally
asymptotically stable. Furthermore, it will be shown in this paper that SDARE control has
many characteristics of the optimal control. In what follows, we shall study how to develop a
recursive, SDARE-based design for a class of cascaded non-linear systems by first investigating
SDARE control design for first-order systems.

2.5. SDARE control of scalar systems

Consider the scalar system:

’xx ¼ aðxÞxþ bðxÞu ð18Þ

where bðxÞ= 0: Its associated SDARE is, for any qðxÞ5
%
q > 0 and rðxÞ5

%
r > 0;

2aðxÞpðxÞ � b2ðxÞr�1ðxÞp2ðxÞ þ qðxÞ ¼ 0 ð19Þ

and the SDARE control is

u ¼ �bðxÞr�1ðxÞpðxÞx

It follows that positive solution to (19) is

pðxÞ ¼ rðxÞb�2ðxÞ½aðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ qðxÞb2ðxÞr�1ðxÞ

p
�
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and that, by direct computation,

’pp ¼
r
b2

1þ
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ qb2r�1
p

" #
’aa þ

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ qb2r�1

p ’qq þ
1

b2
aþ

2a2r þ qb2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ qb2r

p
 !

’rr

þ
r
b3

�2a� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ qb2r�1

p
þ

qb2r�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ qb2r�1

p
 !

’bb

¼ �
r
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ qb2r�1

p
þ a

h i
x
@a
@x

þ
r
b3

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ qb2r�1

ph i2
x
@b
@x

�
1

2
x
@q
@x

�
1

2b2
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ qb2r�1

ph i2
x
@r
@x

¼ � px
@a
@x

þ
1

r
p2bx

@b
@x

�
1

2
x
@q
@x

�
p2b2

2r2
x
@r
@x

which, together with SDARE (19), is the scalar version of optimality condition (10).
Substituting solution pðxÞ and the resulting control into system (18) yields the closed-loop

optimal system

’xx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ qðxÞb2ðxÞr�1ðxÞ

p
x

It follows from the Lyapunov function}

V ðxÞ ¼
Z x

0

pðtÞt dt

that

’VV ¼ xpðxÞ ’xx ¼ �rðxÞb�2ðxÞ aðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ qðxÞb2ðxÞr�1ðxÞ

ph i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ qðxÞb2ðxÞr�1ðxÞ

p
x2

is strictly negative and therefore the system is globally asymptotically stable. Hence, the
following lemma can be concluded.

Lemma 1

For scalar systems, the SDARE method always yields the optimal control (or, if tf =1;
inversely optimal with respect to some scalar value of S in performance index (5)) and the
optimal control is globally stabilizing.

It should be mentioned that the solution pðxÞ is not an explicit function of time. Thus, while
the SDARE control is always optimal for regulating scalar systems over the infinite horizon,k it
is only suboptimal with respect to performance index (5) if the weighting S is given. This is

}A simpler Lyapunov function is V ðxÞ ¼ x2:
kThis result of optimality is also obvious from HJB equation (15) as symmetry property is not needed for scalar systems.
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because, while solution pðxÞ satisfies optimality condition (10), it may not satisfy the boundary
condition pðxðtf ÞÞ ¼ S: The optimal solution pðxðt0Þ; t0; tf Þ is generally a function of both x and t:

3. SDARE CONTROL FOR CASCADED SYSTEMS

In this section, we shall study the ways to design suboptimal control for cascaded non-linear
systems. It has been shown that various controls such as adaptive control and robust control
can be easily designed for cascaded systems using the backstepping method [7], a backward
recursive design. In an application of the method, a fictitious control is designed first for each
first-order (vector and square) subsystem, and the collection of the fictitious controls form a
recursive mapping from which the actual control can be determined. In principle, SDARE
method could be combined straightforwardly into the backstepping design so that fictitious
controls are made to be suboptimal or even optimal. In what follows, we shall study this
combination and motivate the alternative of using SDARE and a forward design.

3.1. Combinations of SDARE design and recursive designs

In terms of such features as optimality, stability and real-time implementability, Lemma 1 on
SDARE control of scalar systems is the best result that one can hope for. While its extension to
high-order systems is possible as shown by previous work [13, 14, 17], optimality (or sub-
optimality) and global stability can only be guaranteed under several conditions. Incidentally,
recursive designs (including backstepping, or forward recursive or interlacing design) are also
based on design and stability results for scalar systems. For cascaded systems, the system
structure makes it possible for the designer to choose a fictitious control and to study its impact
on stability and performance, subsystem by subsystem. Combining a recursive design and the
SDARE design would allow the designer to design a control for higher-order systems with
guaranteed stability and performance (measured by certain optimality criteria).

It is straightforward to combine the SDARE method and the backstepping design. For
example, consider the second-order system

’xx1 ¼ a1ðx1Þx1 þ b1ðx1Þx2; ’xx2 ¼ a2ðx2Þx2 þ b2ðx2Þu ð20Þ

where bið�Þ do not assume the value of zero. To design a control recursively, one rewrites the first
subsystem as

’xx1 ¼ a1ðx1Þx1 þ b1ðx1Þv1 þ b1ðx1Þðx2 � v1Þ ¼
4 a1ðx1Þx1 þ b1ðx1Þv1 þ b1ðx1Þz2

Now, design v1 for the fictitious system

’xx1 ¼ a1ðx1Þx1 þ b1ðx1Þv1 ð21Þ

in which case the SDARE method can readily be applied to optimize the performance index

I1 ¼
1

2
s1x21ðtf Þ þ

1

2

Z tf

t0

½q1ðx1Þx21 þ r1ðx1Þv21� dt ð22Þ
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It follows from the result in Section 2.5 that the SDARE control is

v1 ¼ �b1ðx1Þr�1
1 ðx1Þp1ðx1Þx1 ð23Þ

where

p1ðx1Þ ¼ r1ðx1Þb�2
1 ðx1Þ a1ðx1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1ðx1Þb21ðx1Þr

�1
1 ðx1Þ

q� �

Based on fictitious control v1; one can derive a dynamic equation for z2; i.e.

’zz2 ¼ a2ðx2Þx2 �
@v1
@x1

a1ðx1Þx1 �
@v1
@x1

b1ðx1Þx2 þ b2ðx2Þu

Now, letting

u ¼
b2ðz2Þ
b2ðx2Þ

v2 þ
1

b2ðx2Þ
a2ðz2Þz2 � a2ðx2Þx2 þ

@v1
@x1

a1ðx1Þx1 þ
@v1
@x1

b1ðx1Þx2

� �
�

b1ðx1Þp1ðx1Þ
b2ðx2Þp2ðz2Þ

x1 ð24Þ

where p2ðz2Þ will be defined shortly, we can rewrite the dynamics of the second subsystem as

’zz2 ¼ a2ðz2Þz2 þ b2ðz2Þv2 � b1ðx1Þp1ðx1Þp�1
2 ðz2Þx1

Again, v2 can be designed to optimize performance index

I2 ¼
1

2
s2z22ðtf Þ þ

1

2

Z tf

t0

½q2ðz2Þz22 þ r2ðz2Þv22� dt ð25Þ

for the fictitious system

’zz2 ¼ a2ðz2Þz2 þ b2ðz2Þv2 ð26Þ

That is, the SDARE control that optimizes I2 is

v2 ¼ �b2ðz2Þr�1
2 ðz2Þp2ðz2Þz2 ð27Þ

where

p2ðz2Þ ¼ r2ðz2Þb�2
2 ðz2Þ a2ðz1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðz2Þ þ q2ðz2Þb22ðz2Þr

�1
2 ðz2Þ

q� �

By combining the SDARE design into the backstepping method in the above manner, we have
the following result on stability and performance.

Lemma 2

Consider system (20) under control (24). Then, the closed-loop system has the following stability
properties:

(i) Measured by performance indices (22) and (25), fictitious controls v1 and v2 in (23) and
(27) are individually optimal (inversely with respect to some values of s1 and s2) for
fictitious systems (21) and (26), respectively.
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(ii) The actual control u defined by (23), (27), and (24) is globally stabilizing.
(iii) The control u is also optimal with respect to performance index I1 þ I2 with tf ¼ 1:

Proof

Statement (i) follows from Lemma 1. To verify statement (ii), consider Lyapunov function

V ðx1; z2Þ ¼
Z x1

0

t1p1ðt1Þ dt1 þ
Z z2

0

t2p2ðt2Þ dt2 ð28Þ

It follows that V ð�Þ is a positive definite function of x1 and z2 and that, by the dynamics of x1
and z2;

’VV ¼ x1p1ðx1Þ½a1ðx1Þx1 þ b1ðx1Þv1� þ z2p2ðz2Þ½a2ðz2Þz2 þ b2ðz2Þv2�

¼ � r1ðx1Þb�2
1 ðx1Þ a1ðx1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1ðx1Þb21ðx1Þr

�1
1 ðx1Þ

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1ðxÞb21ðx1Þr

�1
1 ðx1Þ

q
x21

� r1ðz2Þb�2
2 ðz2Þ a2ðz2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðz2Þ þ q2ðz2Þb22ðz2Þr

�1
2 ðz2Þ

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðz2Þ þ q2ðz2Þb22ðz2Þr

�1
2 ðz2Þ

q
z22

which is negative definite.
To verify statement (iii), consider again the value function (28). It follows that symmetry

condition holds for V ðx1; z2Þ as

@2V ðx1; z2Þ
@x1@z2

¼
@2V ðx1; z2Þ
@z2@x1

¼ 0

With respect to performance index I ¼ I1 þ I2 with tf ¼ 1; HJB equation (13) reduces to

0 ¼
@V
@x1

@V
@z2

� � a1ðx1Þx1 þ b1ðx1Þv1 þ b1ðx1Þz2

a2ðz2Þz2 � b1ðx1Þp1ðx1Þp�1
2 ðz2Þx1

" #

�
1

r2ðz2Þ
@V
@x1

@V
@z2

� �
0

b2ðz2Þ

" #
½0 b2ðz2Þ�

@V
@x1
@V
@z2

2
664

3
775þ

1

2
q1x21 þ

1

2
r1v21 þ

1

2
q2z22 þ

1

2
r2v22

Performing vector products in the above equation yields

p1x1ða1x1 þ b1v1Þ þ p2z22a2 �
b22
r2

p2
2z

2
2 þ

1

2
q1x21 þ

1

2
r1v21 þ

1

2
q2z22 þ

1

2
r2v22 ¼ 0
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Substituting the expressions of v1 and v2 into the above equation yields

p1x21a1 �
b21
2r1

p2
1x

2
1 þ

1

2
q1x21

� �
þ p2z22a2 �

b22
2r2

p2
2z

2
2 þ

1

2
q2z22

� �
¼ 0

which is obviously valid as the two brackets are the SDAREs for p1 and p2; respectively. &

Although Lemma 2 is stated and proven for second-order systems, its extension to high-order
cascaded systems is obvious. It is also worth mentioning that feedback linearization is applicable
to cascaded systems and, if applied, the system can be mapped into a linear one of the form

’zz1 ¼ z2 ’zz2 ¼ v0

Then, one can easily design a linear optimal control for the above system to optimize quadratic
performance index

zTðtf ÞSzðtf Þ þ
Z tf

t0

½zTQzþ v0Rv0� dt

in which case Lemma 2 reduces to a linear result.
In the above backstepping design, differentiation of fictitious control v1 is performed in

the backstepping step. Equivalently, differentiation of a sub-Lyapunov function of form
V2ðx1; x2; v1Þ can be done in the design, which is beneficial for the case that the fictitious control
itself is not differentiable [18]. Such operations produces many additional terms in the
transformed dynamics. In fact, the higher the order of the system, the more terms one must
consider in control design, which makes the design more involved and less accessible to
application engineers.

The main feature of Lemma 2 is that performance index I is inversely determined through a
backstepping design rather than prescribed, and most available results are along this line. One
worth mentioning is the result reported in Reference [19]. It was shown in that paper that, for a
special class of cascade systems, backstepping design can produce a control that is optimal with
respect to a non-linear, inversely determined performance index and is also locally optimal with
respect to a prescribed linear quadratic performance index.

There are three unresolved issues in the above non-linear optimal (or suboptimal) control
design. First, in an optimal or suboptimal control design, can the designer use a quadratic-type
non-linear performance index that is in terms of the original state and original control variables?
Second, is there a recursive design that works for cascaded systems but does not require any
differentiation operation? Finally, can tracking performance be considered in the design? The
new recursive suboptimal design procedure proposed in the paper provide positive answers to
these questions. Specifically, the new design method has the following distinct features:

* The performance index is defined to be quadratic-like and in terms of original state and
control variables.

* The tracking formulation is used to define the control problem.
* The mapping of the fictitious controls into the actual control consists of a sequence of

successive algebraic substitutions so that differentiation of fictitious controls (or their
functions) is completely avoided.
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The proposed technique is based on a forward recursive design and on the so-called SDARE
tracker. To this end, the optimal tracker and the SDARE tracker will be developed first in the
next section.

3.2. Non-linear optimal tracker and SDARE tracker

Consider the following non-linear, affine system:

’xx ¼ AðxÞxþ BðxÞu; y ¼ CðxÞx ð29Þ

where x 2 Rn; u 2 Rm; y 2 Rp and functions Að�Þ; Bð�Þ and Cð�Þ are continuous. The objective is
to devise a non-linear, continuous control so that the output of the system tracks its desired
output ydðtÞ; where yd is a smooth time function. This tracking problem can again be recast as
an optimal control problem by introducing the performance index

J ðxðt0Þ; u; yd; t0; tf Þ ¼
1

2
½yðtf Þ � yd�TS½yðtf Þ � yd� þ

1

2

Z tf

t0

f½y� yd�TQ½y� yd� þ uTRug dt ð30Þ

where tf 2 ½t0;1� is the time interval of optimization, and matrices S; Q and R are defined as
before. Formulating the Hamiltonian H as

H ¼ 1
2
½CðxÞx� yd�TQ½CðxÞx� yd� þ 1

2
uTRuþ lT½AðxÞxþ BðxÞu� ð31Þ

we have

@H
@x

¼CTðxÞQ½CðxÞx� yd� þ vec ½CðxÞx� yd�TQ
@C

@xi
x

� �

þ
1

2
vec ½CðxÞx� yd�T

@QðxÞ
@xi

½CðxÞx� yd�
� �

þ
1

2
vec uT

@RðxÞ
@xi

u

� �
þ

@½AðxÞx�
@x

� �T

lþ vec uT
@BT

@xi
l

� �

Since the tracking problem reduces to the regulation problem discussed in Section 2 if yd ¼ 0;
the tracking control structure should contain the same feedback mechanism as before but also
have an additive feedforward/feedback part. That is, we can parameterize the Lagrangian
multiplier as

l ¼ Pxþ wðtÞ

where wðtÞ is the feedforward/feedback control part. If the system is linear and the performance
index is quadratic, wðtÞ does not depend on x and hence becomes feedforward only, and wðtÞ ¼ 0
if ydðtÞ ¼ 0 in addition. Then, by applying the necessary conditions for optimality in (7), we can
conclude that the optimal tracker is

u ¼ �R�1BT½Pxþ wðtÞ� ð32Þ
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where the auxiliary signal wðtÞ and the matrix P are the solution to the optimality condition
’ll ¼ �@H=@x; i.e.

0 ¼
	
’PPxþ ðPAþ ATP� PBR�1BTPþ CTQCÞx

þ vec xTCTQ
@C

@xi
x

� �
þ

1

2
vec xTCT @Q

@xi
Cx

� �

þ
1

2
vec xTPBR�1 @R

@xi
R�1BTPx

� �
þ vec xT

@AT

@xi
Px� xTPBR�1 @B

T

@xi
Px

� �


þ ’wwðtÞ þ ½AT � PBR�1BT�wðtÞ þ vec xT
@AT

@xi
wðtÞ

� �
� CTQyd þ vec ½yd�TQ

@CT

@xi
x

� �	

� vec xTCT @Q

@xi
yd

� �
þ

1

2
vec ½yd�T

@Q

@xi
yd

� �
þ vec xTPBR�1 @R

@xi
R�1BTwðtÞ

� �

þ
1

2
vec wTðtÞBR�1 @R

@xi
R�1BTwðtÞ

� �
� vec xTPBR�1 @B

T

@xi
wðtÞ

� �

�vec wTðtÞBR�1 @B
T

@xi
Px

� �
� vec wTBR�1 @B

T

@xi
wðtÞ

� �

ð33Þ

and where the boundary conditions for wðtÞ and PðtÞ are

xðt0Þ given; Pðxðt0Þ; t0; tf Þ ¼ CTSC; wðtf Þ ¼ CTSydðtf Þ and 05 lim
tf!1

Pðxðt0Þ; t0; tf Þ51

The optimal tracker has to be solved as a two-point boundary value problem as the optimality
condition (33) should be integrated backwards. The optimality condition (33) is the sum of two
parts (as grouped by h�i): the first part contains terms that are associated with the matrix P and
the state x; and the second part includes the terms associated with the command yd and the
auxiliary signal wðtÞ:

To avoid the two-point boundary value problem, an SDARE tracker can be formulated in a
similar fashion as the SDARE regulator. The proposed SDARE tracker of form (32) is
generated in three steps. First, matrix P is the symmetrical solution to the output state-
dependent Riccati equation (OSDARE):

PAþ ATP� PBR�1BTPþ CTQC ¼ 0 ð34Þ

From (34), we know that the matrix P is a function of A; B; C; Q and R: Second,
separate the auxiliary signal from the optimality condition (33) by setting its dynamics
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to be

’wwðtÞ ¼ ½�AT þ PBR�1BT�wðtÞ � vec xT
@AT

@xi
wðtÞ

� �
þ CTQyd þ vec ½yd�TQ

@CT

@xi
x

� �

þ vec xTCT @Q

@xi
yd

� �
�

1

2
vec ½yd�T

@Q

@xi
yd

� �
� vec xTPBR�1 @R

@xi
R�1BTwðtÞ

� �

�
1

2
vec wTðtÞBR�1 @R

@xi
R�1BTwðtÞ

� �
þ vec xTPBR�1 @B

T

@xi
wðtÞ

� �

þ vec wTðtÞBR�1 @B
T

@xi
Px

� �
þ vec wTBR�1 @B

T

@xi
wðtÞ

� �

þ vec
Xn
j¼1

Xn
k¼1

xT
@P

@Ajk

@Ajk

@xi
BR�1BTwðtÞ

( )
þ vec

Xn
j¼1

Xm
k¼1

xT
@P

@Bjk

@Bjk

@xi
BR�1BTwðtÞ

( )

þ vec
Xp
j¼1

Xn
k¼1

xT
@P

@Cjk

@Cjk

@xi
BR�1BTwðtÞ

( )
þ vec

Xp
j¼1

Xp
k¼1

xT
@P

@Qjk

@Qjk

@xi
BR�1BTwðtÞ

( )

þ vec
Xm
j¼1

Xm
k¼1

xT
@P

@Rjk

@Rjk

@xi
BR�1BTwðtÞ

( )
ð35Þ

Therefore, under (17) and (35), the optimality condition (33) reduces to

0 ¼ ’PPxþ vec xTCTQ
@C

@xi
x

� �
þ

1

2
vec xTCT @Q

@xi
Cx

� �
þ

1

2
vec xTPBR�1 @R

@xi
R�1BTPx

� �

þ vec xT
@AT

@xi
Px� xTPBR�1 @B

T

@xi
Px

� �
þ vec

Xn
j¼1

Xn
k¼1

xT
@P

@Ajk

@Ajk

@xi
BR�1BTwðtÞ

( )

þ vec
Xn
j¼1

Xm
k¼1

xT
@P

@Bjk

@Bjk

@xi
BR�1BTwðtÞ

( )
þ vec

Xp
j¼1

Xn
k¼1

xT
@P

@Cjk

@Cjk

@xi
BR�1BTwðtÞ

( )

þ vec
Xp
j¼1

Xp
k¼1

xT
@P

@Qjk

@Qjk

@xi
BR�1BTwðtÞ

( )
þ vec

Xm
j¼1

Xm
k¼1

xT
@P

@Rjk

@Rjk

@xi
BR�1BTwðtÞ

( )
ð36Þ
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Third, to overcome the two-point boundary value problem, we will reverse the time in (35) so
that the auxiliary signal is generated forward in time by

’wwðtÞ ¼ ½AT � PBR�1BT�wðtÞ þ vec xT
@AT

@xi
wðtÞ

� �
� CTQyd � vec ½yd�TQ

@CT

@xi
x

� �

� vec xTCT @Q

@xi
yd

� �
þ

1

2
vec ½yd�T

@Q

@xi
yd

� �
þ vec xTPBR�1 @R

@xi
R�1BTwðtÞ

� �

þ
1

2
vec wTðtÞBR�1 @R

@xi
R�1BTwðtÞ

� �
� vec xTPBR�1 @B

T

@xi
wðtÞ

� �

� vec wTðtÞBR�1 @B
T

@xi
Px

� �
� vec wTBR�1 @B

T

@xi
wðtÞ

� �

� vec
Xn
j¼1

Xn
k¼1

xT
@P

@Ajk

@Ajk

@xi
BR�1BTwðtÞ

( )
� vec

Xn
j¼1

Xm
k¼1

xT
@P

@Bjk

@Bjk

@xi
BR�1BTwðtÞ

( )

� vec
Xp
j¼1

Xn
k¼1

xT
@P

@Cjk

@Cjk

@xi
BR�1BTwðtÞ

( )
� vec

Xp
j¼1

Xp
k¼1

xT
@P

@Qjk

@Qjk

@xi
BR�1BTwðtÞ

( )

� vec
Xm
j¼1

Xm
k¼1

xT
@P

@Rjk

@Rjk

@xi
BR�1BTwðtÞ

( )
ð37Þ

with initial condition wðt0Þ properly chosen (and wðt0Þ ¼ 0 if ydðtÞ ¼ 0). The above derivation
leads naturally to the following lemma.

Lemma 3

The non-linear tracker defined by (32) together with (34) and (37) yields the optimal control
(provided that the initial condition wðt0Þ is properly generated from the boundary conditions
and that the value of S is inversely determined).

The SDARE tracker is only suboptimal since the optimality condition (36) is not guaranteed
in general. Stability analysis of the closed-loop system under the non-linear tracker or SDARE
tracker can be pursued in the similar fashion as that in Reference [17]. It is worth noting that,
for internal stability, some multiple-input and multiple-output systems may not be able to track
an arbitrary continuous function ydðtÞ asymptotically.

3.3. SDARE tracker for scalar systems

To implement the new SDARE design for cascaded systems, let us reconsider scalar system (18)
with y ¼ cðxÞx; where cðxÞ5

%
c > 0: Its associated OSDARE is, for qðxÞ5

%
q > 0 and rðxÞ5

%
r > 0;

2aðxÞpðxÞ � b2ðxÞr�1ðxÞp2ðxÞ þ c2ðxÞqðxÞ ¼ 0 ð38Þ

Copyright # 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23:303–328

NEW SUBOPTIMAL CONTROL DESIGN 317



and the resulting SDARE control is

u ¼ �bðxÞr�1ðxÞpðxÞx� bðxÞr�1ðxÞw ð39Þ

where wðtÞ is generated by (37), i.e.

’ww ¼ ½a� pb2r�1�wþ x
@a
@x

w� cqyd � ydq
@c
@x

x� xc
@q
@x
yd þ

1

2

@q
@x

½yd�2

þ xpb2r�2 @r
@x

wþ
1

2
b2r�2 @r

@x
w2 � 2xpbr�1 @b

@x
w� br�1 @b

@x
w2

� x
@p
@a

@a
@x

þ
@p
@b

@b
@x

þ
@p
@c

@c
@x

þ
@p
@q

@q
@x

þ
@p
@r

@r
@x

� �
r�1b2w ð40Þ

with initial condition wðt0Þ given. The positive solution to OSDARE (38) is

pðxÞ ¼ rðxÞb�2ðxÞ aðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ c2ðxÞqðxÞb2ðxÞr�1ðxÞ

ph i
under which the closed-loop system becomes

’xx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðxÞ þ c2ðxÞqðxÞb2ðxÞr�1ðxÞ

p
x� b2ðxÞr�1ðxÞw ð41Þ

Stability and performance of the closed-loop system is summarized in the following lemma.

Lemma 4
The scalar system (18) under the SDARE control (39) has the following properties:

(i) The closed-loop system (41) is input-to-state stable with respect to wðtÞ if

b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ c2qb2r

p ð42Þ

is radially bounded.
(ii) The SDARE tracker, defined by (39) and (40), yields the optimal control (provided that

the initial condition wðt0Þ is properly generated from the boundary conditions and that
the value of S is inversely determined).

(iii) The closed-loop system under the SDARE tracker is globally uniformly bounded if
b2ðxÞ=rðxÞ and qðxÞ are constant and that

a2 þ c2qb2r�1 þ 2a
@a
@x

þ 2cqb2r�1 @c
@x

� �
x50 ð43Þ

If in addition cðxÞ is a constant and yd is uniformly continuous, jy � ydj can be made
arbitrarily small by increasing q:nn

nnIt follows from the proof that the requirement of qðxÞ being constant can be relaxed and that, if b2ðxÞ=rðxÞ is not
constant but its partial derivative has a small magnitude, local stability can be concluded.
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Proof

To show input-to-state stability for system (41), consider the Lyapunov function V ðxÞ ¼ 0:5x2:
Then,

’VV ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
x2 � b2r�1wx

which is negative definite outside an interval around the origin for any bounded wðtÞ if condition
(42) holds.

It follows from solution pðxÞ that

@p
@a

@a
@x

þ
@p
@b

@b
@x

þ
@p
@c

@c
@x

þ
@p
@q

@q
@x

þ
@p
@r

@r
@x

¼
r
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2qb2r�1
p @a

@x
�

r
b3

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

ph i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p @b
@x

þ
cqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2qb2r�1
p @c

@x
þ

1

2

c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p @q
@x

þ
1

2b2

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

ph i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p @r
@x

Therefore,

’pp ¼
@p
@a

@a
@x

þ
@p
@b

@b
@x

þ
@p
@c

@c
@x

þ
@p
@q

@q
@x

þ
@p
@r

@r
@x

� �
’xx

¼ � px
@a
@x

þ
1

r
p2bx

@b
@x

� cqx
@c
@x

�
1

2
x
@q
@x

�
p2b2

2r2
x
@r
@x

�
@p
@a

@a
@x

þ
@p
@b

@b
@x

þ
@p
@c

@c
@x

þ
@p
@q

@q
@x

þ
@p
@r

@r
@x

� �
b2

r
w

which, together with OSDARE (38), is the scalar version of optimality condition (36).
Therefore, statement (ii) can be concluded based on Lemma 3.

To show stability of global uniform boundedness, consider the Lyapunov function

V 0ðx;wÞ ¼
1

2
x2 þ

4

q
%
c4

w2

and note that the dynamic equation (40) can be rewritten as

’ww ¼
@ %ff ðxÞ
@x

w�
1

2

@½b2ðxÞ=rðxÞ�
@x

w2 �
@½cðxÞqðxÞx�

@x
yd �

1

2

@qðxÞ
@x

½yd�2 ð44Þ
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where

%ff ðxÞ ¼4 aðxÞx� pðxÞb2ðxÞx=rðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
x

By making b2ðxÞ=rðxÞ be a constant, the term w2 will be removed from dynamic equation of ’ww;
which makes global stability possible. It follows that, if inequality (43) holds

@ %ff ðxÞ
@x

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
�

x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p 2a
@a
@x

þ 2cqb2r�1 @c
@x

þ c2b2r�1 @q
@x

� �

4 �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
Therefore, along every trajectory of system (41) under the control (39) and (40), the time
derivative of the Lyapunov function is

’VV 0ðx;wÞ4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
x2 �

ffiffiffi
q

p
b2r�1x

wffiffiffi
q

p
�

2

%
c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p w2

q
�

4
ffiffiffi
q

p
%
c4

@½cðxÞx�
@x

wffiffiffi
q

p yd

4�
ffiffiffi
q

p 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
ffiffiffi
q

p x2 þ
1

2
%
c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
ffiffiffi
q

p w2

q

2
4

�
8

%
c4

ffiffiffi
q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p @½cðxÞx�
@x

� �2

½yd�2

3
5

which is negative definite outside a ball around the origin of the plane fx;w=
ffiffiffi
q

p
g: In addition,

the radius of the ball does not increase as q increases. Therefore, by Theorem 2.14 in Reference
[9], the state variables x and w=

ffiffiffi
q

p
are uniformly bounded (with respect to both t and q) and

uniformly continuous. It follows from (41) that

y þ

ffiffiffiffiffiffiffiffiffiffi
b2ðxÞ
rðxÞ

s
wffiffiffi
q

p ¼ �
1ffiffiffi
q

p
ffiffiffiffiffiffiffiffiffiffi
rðxÞ
b2ðxÞ

s
’xx þ

a2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2qb2r�1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2qb2r�1

p
" #

By uniform boundedness of x and w=
ffiffiffi
q

p
; we know that, for any ½t1; t2� � ½t0; tf �;

lim
q!1

Z t2

t1

y þ

ffiffiffiffiffiffiffiffiffiffi
b2ðxÞ
rðxÞ

s
wffiffiffi
q

p
2
4

3
5 dt ¼ 0

Similarly, we can show using Equation (44) that, if cðxÞ is a constant,

lim
q!1

Z t2

t1

ffiffiffiffiffiffiffiffiffiffi
b2ðxÞ
rðxÞ

s
wffiffiffi
q

p þ yd

2
4

3
5 dt ¼ 0
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Subtracting the above two equations yields

lim
q!1

Z t2

t1

½y � yd� dt ¼ 0

Since both y and yd are uniformly continuous, the above equation implies that jy � ydj can be
made arbitrarily small by increasing q: &

Conditions in Lemma 4 can be satisfied through choices of qðxÞ and rðxÞ: In some cases (as
cascaded design in the next section), cðxÞ can also be selected. It is worth noting that inequality
(43) implies that the function

½a2ðxÞ þ c2ðxÞqb2ðxÞ=rðxÞ�x

is non-decreasing with respect to x:

3.4. Forward recursive control design using SDARE tracker

The development of SDARE tracker makes it possible to design recursively a new control for
cascaded systems while optimizing a performance index defined in terms of the original state
variables and the original control. The recursive design will be based on a forward recursion
rather than backstepping. To illustrate the basic idea, reconsider the second-order system in (20)
with y ¼ c1x1: The design begins with the second subsystem

’xx2 ¼ a2ðx2Þx2 þ b2ðx2Þu

and its output equation can be chosen to be y2 ¼ x2: No matter how yd
2 is chosen for y2 to track,

the SDARE tracker can be applied to the above system and to optimize performance index

I2 ¼
1

2
s2½x2ðtf Þ � yd

2 ðtf Þ�
2 þ

1

2

Z tf

t0

½q2ðx2 � yd
2 Þ

2 þ r2ðx2Þu2� dt

By the discussions in the previous section, such an SDARE tracker is given by

u ¼ �b2ðx2Þr�1
2 ðx2Þp2ðx2Þx2 � b2ðx2Þr�1

2 ðx2Þw2 ð45Þ

where

p2ðx2Þ ¼ r2ðx2Þb�2
2 ðx2Þ a2ðx2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðx2Þ þ q2b22ðx2Þr

�1
2 ðx2Þ

q� �

’ww2 ¼ �
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðx2Þ þ q2b22ðx2Þr

�1
2 ðx2Þ

q
x2

h i
@x2

w2 � q2yd
2 ð46Þ

and q2 and r2ðx2Þ are chosen such that the ratio b22ðx2Þ=r2ðx2Þ is a constant and that the quantity
½a22ðx2Þ þ q2b22ðx2Þ=r2ðx2Þ�x2 is a non-decreasing function of x2:
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Obviously, the choice of yd
2 ðtÞ determines the trajectory of state variable x2: By the virtue of

recursive design, it is natural to choose yd
2 to be the fictitious control for the following fictitious

system that corresponds to the first subsystem, i.e.

’xx1 ¼ a1ðx1Þx1 þ b1ðx1Þyd
2

It follows that, for any uniformly continuous function yd
1 ðtÞ and for any c1 > 0; fictitious control

yd
2 that optimizes performance index

I1 ¼
1

2
s1½c1x1ðtf Þ � yd

1 ðtf Þ�
2 þ

1

2

Z tf

t0

½q1ðc1x1 � yd
1 Þ

2 þ r1ðx1Þðyd
2 Þ

2� dt

is

yd
2 ¼ �b1ðx1Þr�1

1 ðx1Þp1ðx1Þx1 � b1ðx1Þr�1
1 ðx1Þw1 ð47Þ

where q1 and r1ðxÞ are chosen such that b21ðx1Þ=r1ðx1Þ is a constant and that ½a21ðx1Þþ
c21q1b

2
1ðx1Þ=r1ðx1Þ�x1 is a non-decreasing function of x1; with

p1ðx1Þ ¼ r1ðx1Þb�2
1 ðx1Þ a1ðx1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ c21q1b

2
1ðx1Þr

�1
1 ðx1Þ

q� �

and

’ww1 ¼ �
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ c21q1b

2
1ðx1Þr

�1
1 ðx1Þ

q
x1

h i
@x1

w1 � c1q1yd
1 ð48Þ

The two controls, yd
2 and u; are two successive algebraic equations from which u is defined, their

designs do not involve any operation of differentiation, and the overall control u can easily be
calculated for real-time implementation by integrating differential equations of ’wwi and by
algebraic substitution of yd

2 : The performance index intended to be optimized by u is

I ¼ I1 þ I2 ¼ 0:5

Z 1

t0

½q1ðc1x1 � yd
1 Þ

2 þ r1ðyd
2 Þ

2 þ q2ðx2 � yd
2 Þ

2 þ r2u2� dt ð49Þ

and the following result on stability and performance can be concluded.

Theorem

For second-order systems of form (20), the SDARE tracker defined by (48), (47), (46) and (45) is
suboptimal with respect to performance index (49). Furthermore, there exist (sufficiently large)
values of q1 and q2 such that the closed-loop system is semi-globally stable in the sense of
uniform boundedness and that tracking errors jxi � yd

i j are made (sufficiently) small.

Proof

The SDARE tracker is designed based on the SDARE method and on a forward recursion.
According to statement (ii) of Lemma 4, the choice of u optimizes I2: On the other hand,
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dynamics of the first subsystem can be rewritten as

’xx1 ¼ a1ðx1Þx1 þ b1ðx1Þyd
2 þ b1ðx1Þ½x2 � yd

2 �

The choice of yd
2 optimizes I1 under the condition that the term b1ðx1Þ½x2 � yd

2 � is ignored, thus
the overall control is merely suboptimal with respect to I :

Note that yd
2 is locally uniformly continuous, therefore by statement (iii) of Lemma 4, there exists q2

such that x2 is locally uniformly bounded and that jx2 � yd
2 j is small. On the other hand, according to

statements (i) and (iii) of Lemma 4, the first subsystem is input-to-state stable with respect to the bias
term b1ðx1Þ½x2 � yd

2 � and, without the bias term, yd
2 is globally stabilizing and a large value of q1

makes c1x1 track yd
1 : Hence, semi-global stability and tracking performance can be concluded. &

As in the case of Lemma 2, extension of the theorem to higher-order cascaded systems is
obvious. Unlike the optimal control obtained via the backstepping design and stated in Lemma
2, the forward recursive design always yields a suboptimal control as the coupling term such as
biðxiÞ½xiþ1 � yd

iþ1� is considered not in optimization but only in the analysis of stability and
tracking accuracy.

In case that yd
1 ¼ 0 and tf ¼ 1; choosing wðt0Þ ¼ 0 implies w1ðtÞ ¼ 0; the ratio yd

2=x1 is always
well defined, and the overall performance index (49) can then be rewritten as

I ¼ 0:5

Z 1

t0

xT
c21q1 þ ðr1 þ q2Þ

yd
2

x1

� �2

�q2
yd
2

x1

�q2
yd
2

x1
q2

2
66664

3
77775xþ r2u2

8>>>><
>>>>:

9>>>>=
>>>>;

dt

which is in the standard form and in terms of the original state and control variables. As a
result, one can prescribe the performance index and see how it affects stability and tracking
performance.

4. ILLUSTRATIVE EXAMPLE

Consider the second-order system

’xx1 ¼ x1 � x31 þ x2; ’xx2 ¼ x42 þ x2 þ u

Its non-linear parameterization is

’xx ¼ AðxÞxþ Bu

where

AðxÞ ¼
1� x21 1

0 x32 þ 1

" #
¼4

a1ðx1Þ b1

0 a2ðx2Þ

" #
and B ¼

0

1

" #
¼4

0

b2

" #

It is obvious that the pair fA; Bg is controllable.
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To optimize performance index

J ¼
1

2
xTðtf ÞSxðtf Þ þ

1

2

Z tf

0

½xTQðxÞxþ uRðxÞu� dt

the optimal control is

u ¼ �R�1BTl

where

’ll ¼ �
@H
@x

; H ¼
1

2
xTQxþ

1

2
uRuþ lT½fðxÞ þ BðxÞu�

and boundary conditions are xð0Þ and lðtf Þ ¼ Sxðtf Þ: When tf is chosen to be sufficiently large,
the optimal control with S ¼ P reduces to the SDARE control given by

u ¼ �R�1BTPx

where PAþ ATP� PBR�1BTPþQ ¼ 0:
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Figure 1. System response under the optimal control.
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On the other hand, an SDARE tracker can be designed as proposed for subsystem 2 and then
for subsystem 1. It follows that SDARE tracking control for subsystem 2 is

u ¼ �
1

r2
ðp2x2 þ w2Þ ’ww2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðx2Þ þ q2=r2

q
þ

a2ðx2Þx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðx2Þ þ q2=r2

q @a2ðx2Þ
@x2

2
64

3
75w2 � q2yd

2

and that SDARE tracking control for subsystem 1 is

yd
2 ¼ �

1

r1
ðp1x1 þ w1Þ ’ww1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1=r1

q
þ

a1ðx1Þx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1=r1

q @a1ðx1Þ
@x1

2
64

3
75w1 � q1yd

1

where

p2ðx2Þ ¼ r2 a2ðx2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22ðx2Þ þ q2=r2

q� �
and p1ðx1Þ ¼ r1 a1ðx1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1=r1

q� �
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Figure 2. Phase portrait of the closed-loop, optimal system.

Copyright # 2002 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2002; 23:303–328

NEW SUBOPTIMAL CONTROL DESIGN 325



If yd
1 ¼ 0; one can choose w1ðtÞ ¼ 0: Therefore, the overall performance index is

I ¼
1

2

Z 1

t0

½xTQxþ uRu� dt

where R ¼ r2; and

Q ¼
q1 þ ðr1 þ q2Þ a1ðx1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1=r1

qh i2
�q2 a1ðx1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1=r1

qh i
�q2 a1ðx1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðx1Þ þ q1=r1

qh i
q2

2
664

3
775

The optimal control and the newly proposed SDARE-tracker-based suboptimal control are
simulated with the following choices:

tf ¼ 15; r1 ¼ r2 ¼ 5:0; q1 ¼ 200; q2 ¼ 500; and xð0Þ ¼ ½1 2�T

Results of the simulation are shown in Figures 1–4. Figures 1 and 2 shows that the second-order
system is very well stabilized. Figures 3 and 4 illustrate how much performance is lost due to
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Figure 3. System response under the proposed suboptimal control.
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sub-optimality. In particular, the sub-optimal system takes longer to settle, and its damping is
not sufficient to avoid oscillation. This conclusion can be observed by comparing either time
responses in Figures 2 and 4 or phase portraits in Figures 1 and 3.

5. CONCLUSION

A non-linear (sub)optimal tracker is developed using the SDARE method. This SDARE tracker
is then used as the seed controller to generate fictitious controls and the actual control in a new
forward recursive design procedure for cascaded non-linear systems. State transformation and
differentiation of fictitious controls are no longer needed; analysis and control design are done
in terms of the original state and control variables; each fictitious control is designed to be
optimal with respect to the dynamics of the associated subsystem; and the controls generated for
each subsystem form a set of successive algebraic equations that are readily implementable as
they are.

Semi-global stability and tracking performance are established for the overall, closed-loop
system. The current analytical proof calls for large values of some of the control gains. Further
research is needed to explicitly consider the coupling terms in the suboptimal design and hence
to eliminate the need of using any large gain.
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Figure 4. Phase portrait of the closed-loop, suboptimal system.
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