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Abstract

In this paper, a parallel AC/DC power system is investigated, and a nonlinear robust controller is
proposed to improve transient stability of the power system and to damp out any prolonged oscillation
after a fault is cleared. Lyapunov’s direct method is used to synthesize the control, and asymptotic stability
of the closed loop system and improved dynamic performance are shown by both theoretical proof and
simulation results.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has been recognized that, through an HVDC transmission line, fast electronic control can be
applied on the DC power flow and that proper use of DC power control enhances the AC system
dynamic performance. In particular, controlling DC line transmission power can improve stability
of the AC system after a major disturbance. The problem of improving stability of AC/DC
parallel power system has been studied, and the results obtained so far are encouraging. In Refs.
[10,11], detailed discussions were given to illustrate the effectiveness of DC control in improving
system stability. Methods based on eigenvalue analysis have been used to design the AC/DC
control in Refs. [2,15]. Control designs using optimal and sub-optimal control strategies have been
reported in Refs. [3,4,8,14]. One common feature of these algorithms dealing with the DC power

Computers and Electrical Engineering 29 (2003) 135–150
www.elsevier.com/locate/compeleceng

*Corresponding author. Tel.: +1-407-823-5976; fax: +1-407-823-5835.

E-mail address: qu@pegasus.cc.ucf.edu (Z. Qu).

0045-7906/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0045-7906(01)00019-2

mail to: qu@pegasus.cc.ucf.edu


control in AC/DC parallel system is that they are based on a linearized system model. The use of
linearization could severely limit dynamic performance of the controllers designed as the oper-
ating condition of the system varies and the system topology often changes.
There are several reports on DC power control designs using a nonlinear model. In Refs. [5,9],

feedback linearization technique is employed. Basically, this method utilizes a nonlinear trans-
formation that maps the nonlinear model of an AC/DC system into a linear one. As long as
system dynamics are known, the transformation can be found, and all system nonlinearities can
be directly compensated for. Since a power system is distributed network, its global information
is not available real time, and system parameters and topology often change.
Robust control is a control that guarantees stability for systems in which there are significant

uncertainties such as parameter variations, unknown functions, and unmodeled dynamics. The
objective of this paper is to design a robust DC power control. It will be designed based on the
nonlinear model of the system and thus can be applied to an arbitrary fault. And, it ensures robust
stability and performance. Lyapunov direct method is used to synthesize the control and to prove
stability for the closed-loop nonlinear system. It has been shown in Refs. [6,12,13] that the
Lyapunov direct method provides a unified framework by which various controls such as con-
tinuous robust control and sliding model control can be devised. Other design methods such as
feedback linearization, recursive design, periodic control, and averaging technique can be used
(whenever applicable) to generate Lyapunov functions and thus can be embedded into the
Lyapunov framework.
This paper is organized as follows. In Section 2, a mathematical formulation of the control

problem is given. In Section 3, a robust control is proposed, and stability is analyzed using the
Lyapunov direct method. Numerical simulation results are presented in Section 4, and effec-
tiveness of the proposed control is demonstrated. Section 5 contains several conclusions.

2. Problem formulation

The parallel AC/DC system under consideration is shown in Fig. 1, and it can be described by
the following model:

_dd ¼ x; _xx ¼ x0
H

Pm

�
� D

x0
x � Pe

�
; ð1Þ

Fig. 1. A parallel AC/DC power system.
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where d is rotor angle, x is the angular speed, x0 is a pre-specified steady-state angular speed, D is
the generator damping coefficient, Pm is the mechanical input of the generator, Pe is the generator
electric power output given by

Pe ¼ PL þ Pdc þ Pac; and Pac ¼
VTVs
xL

sin h: ð2Þ

In Ref. [2], Pdc is the active power on the DC line, Pac is the active power on the AC line, PL is the
total of local loads, VT is the generator terminal voltage magnitude, h is the angle of terminal
voltage, Vs is the voltage of the infinite bus (of angle 0�), and xL is the equivalent reactance of the
AC transmission line. The parallel AC/DC power system is nonlinear, and it contains uncer-
tainties. Specifically, the value of xL may be changed due to a disturbance; for instance, a part of
parallel AC line may becomes isolated as a result of clearing a fault.
Now, let state variables x1 and x2 be defined as x1 ¼ dd � d and x2 ¼ xd � x, where dd and xd

are the desired values of d and x, respectively. Obviously, one should choose xd ¼ 0. It follows
from Eq. (1) that the error system for the parallel AC/DC power system is

_xx1 ¼ x2; _xx2 ¼
1

M
½�D0x2 � Pm þ Pe� ð3Þ

with M ¼ H=2pf0 ¼ H=x0 and D0 ¼ D=x0.
To study transient stability of the AC/DC system, dynamic of the DC transmission line are

usually ignored. That is, the DC power Pdc is considered to be the control variable in the system.
Furthermore, it can be assumed that, during the transient period, Pm and PL in Eq. (2) are con-
stants. Consequently, the steady-state operating point of system (1) or (3) are the solutions xr, Pr

dc,
V r
T and hr to the algebraic equations: given a fixed topology,

xr ¼ 0; Pm � D0xr � PL � P r
dc � P r

ac ¼ 0; Pr
ac ¼

V r
TVs
xL

sin hr: ð4Þ

Therefore, error system (3) can be rewritten as

_xx1 ¼ x2; _xx2 ¼
1

M
½�D0x2 � ðP r

ac � PacÞ � ðP r
dc � PdcÞ�: ð5Þ

It is worth pointing out that, as shown in Eq. (4), the equilibrium point of the system after a
disturbance may not be the pre-fault one or known a priori because of the unpredictable nature of
the fault and the subsequent topology change of the system. Nevertheless, the post-fault steady
state is completely controllable. DC power P r

dc at any steady state can be measured although one
may not be able to pre-calculate it from Eq. (4). Therefore, we can adjust the system steady state
by measuring and then adjusting Pr

dc to a desired preset value, P
d
dc. This kind of adjustment is

routine in operating power systems, therefore P r
dc ¼ P ddc can be assumed. In the next section, we

will focus upon the design of transient (and hence incremental) control. Using the Lyapunov
direct method, we will search for a control that makes error system (5) robustly stable.
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3. Nonlinear robust DC control design

Let the transient control variable be

u ¼ Pr
dc � Pdc ¼ P ddc � Pdc; ð6Þ

where P ddc is the desired steady state DC power. The control law for u is to be described shortly.
Using the definition of u, error system (5) can be expressed as

_xx1 ¼ x2; _xx2 ¼
1

M
½�D0x2 � u� f ðx; uÞ�; ð7Þ

where f ðx; uÞ¼D Pr
ac � Pac is the lumped nonlinearity term given by

f ðx; uÞ ¼ P r
ac � Pac

¼ V r
TVs
xL

ðsin hr � sin hÞ þ V r
TVs
xL

�
� VTVs

xL

�
sin h

¼ V r
TVs
xL
2 cos

hr þ h
2

� �
sin

hr � h
2

� �
þ ðV r

T � VTÞVs
xL

sin h: ð8Þ

It is shown in the Appendix A.2 that VT is bounded as

VT6 c1 þ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 þ c4juj

p
: ð9Þ

Evaluating the magnitude of Eq. (8) and then substituting Eq. (9) yield

jf ðx; uÞj6 2 V
r
TVs
xL

þ V rVs
xL

þ VTVs
xL

6 3
V r
TVs
xL

þ Vs
xL

c1
�

þ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 þ c4juj

p �
6 g1 þ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 þ g4juj

p
; ð10Þ

where gi are constants given by

g1 ¼ 3
V r
TVs
xL

þ c1
Vs
xL

; g2 ¼ c2
Vs
xL

; g3 ¼ c3; and g4 ¼ c4:

Upon having the bounding function in Eq. (10) on nonlinear uncertainty f ðx; uÞ, the following
theorem can be concluded as the main result of this paper.

Theorem. The error system (5) is globally and asymptotically stable under the control:

u ¼ �signðx1 þ k2x2Þv ¼ �signðx1 þ k2x2Þ
w2ðx1Þ � g3

g4
; ð11Þ

where constant k and function wðx1Þ are chosen such that

k2 >
M
D
; and wðx1ÞP

1

2
g2g4

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2g4Þ

2 þ 4 g3 þ g1g4 þ
Mg4
k2

jx1j
� �s #

: ð12Þ
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That is,

lim
t!1

d ¼ dd; and lim
t!1

x ¼ 0:

Proof. Consider the Lyapunov function candidate

V ¼ 1
2

k1x21
h

þ ðx1 þ k2x2Þ2
i
;

where ki > 0 are positive constants to be chosen. Then,

_VV ¼ k1x1 _xx1 þ ðx1 þ k2x2Þð _xx1 þ k2 _xx2Þ
¼ ð1þ k1Þx1 _xx1 þ k2x1 _xx2 þ k2x2 _xx1 þ k22x2 _xx2

¼ ð1þ k1Þx1x2 þ k2x1
1

M
½�Dx2 � u� f ðx; uÞ� þ k2x22 þ k22x2

1

M
½�Dx2 � u� f ðx; uÞ�

¼ 1

�
þ k1 �

k2D
M

�
x1x2 � k2

k2D
M

�
� 1
�
x22 �

k2
M

ðx1 þ k2x2Þu�
k2
M

ðx1 þ k2x2Þf ðx; uÞ:

Choosing

k1 ¼ k2 þ
k2D
M

� 1;

we have

_VV ¼ k2x1x2 � k2
k2D
M

�
� 1
�
x22 �

k2
M

ðx1 þ k2x2Þu�
k2
M

ðx1 þ k2x2Þf ðx; uÞ

¼ � x21 þ x1ðx1 þ k2x2Þ � k2
k2D
M

�
� 1
�
x22 �

k2
M

ðx1 þ k2x2Þu�
k2
M

ðx1 þ k2x2Þf ðx; uÞ:

Substituting control law (11) yields

_VV 6 � x21 � k2
k2D
M

�
� 1
�
x22 þ jx1jjx1 þ k2x2j �

k2
M

jx1 þ k2x2jv

þ k2
M

jx1 þ k2x2j g1
�

þ g2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 þ g4jvj

p �
6 � x21 � k2

k2D
M

�
� 1
�
x22 þ jx1 þ k2x2j jx1j

�
� k2
M

w2 � g3
g4

� �
þ k2
M

ðg1 þ g2wÞ


¼ � x21 � k2
k2D
M

�
� 1
�
x22 �

k2jx1 þ k2x2j
Mg4

w2
�

� g2g4w� g3

�
þ g1g4 þ

Mg4
k2

jx1j
�

:

It becomes obvious that _VV is negative definite if

k2 > 0;
k2D
M

� 1 > 0; w2 � g2g4w� g3

�
þ g1g4 þ

Mg4
k2

jx1j
�

P 0:

The above inequalities hold if k2 and wðx1Þ are chosen according to Eq. (12). Since V is positive
definite and _VV is negative definite, global and asymptotic stability can be concluded [6]. �
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Remark 3.1. Given various scenarios of faults, constant bounds g1, g2, g3, and g4 in Eq. (12) can
be calculated using the ranges of system parameters. Similarly wðx1Þ can be found according to
Eq. (12).

Remark 3.2. Due to the operation of taking norm (or magnitude), application of the Lyapunov
direct method often produces a conservative result. This enhances robust stability, but the actual
control gains for implementation could be made smaller. In other words, less-conservative values
of the gains can be found by simulation or by using an optimization technique.

Remark 3.3. It follows from Eqs. (10) and (12) that control parameters in the proposed control
(11) can be selected provided that, in the presence of perturbations, upper bounds on system pa-
rameters are known. In the case that upper bounds are not unknown, it has been shown in Ref.
[13] that an adaptive control algorithm can be introduced into the proposed control to estimate
the upper bounds. Thus, the proposed control is robust with respect to parameter perturbations.

Remark 3.4. The proposed control (11) happens to be of switching type and hence may be
chattering under some operating conditions. In case that there is a limit of bandwidth on
switching frequency, one can modify the control to be of saturation type by trading off asymptotic
stability. See chapter 4 in Ref. [13] and references therein.

4. Simulations

To carry out quantitative performance evaluation of the proposed control, the AC/DC parallel
system in Fig. 1 is simulated with the following parameters.

In the simulation, two disturbance scenarios are tested:

• Case 1: A three phase short circuit fault occurs on the AC transmission line and near the infi-
nite bus, and it is cleared after five cycles (about 83 ms).

• Case 2: A three phase short circuit fault occurs on the AC transmission line and near the gen-
erator bus. The fault is isolated after five cycles by cutting off one of the parallel AC lines. It is
assumed that the equivalent AC line reactance after the fault is changed from 0.8 to 1.2.

In the first case, the fault only causes a temporary short circuit, and system parameters are not
affected by the fault. Hence, the post-fault steady state of error system (5) will be the pre-fault
stable equilibrium point if the desired values dd and Pdc are kept unchanged. In other words, the

D 2.5 H 10.0
x0 376.99 xT 0.12
xL 0.8 xd 0.2
Eq 1.25 Pm 0.9
PL 0.1 Vs 1\0
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proposed control will stabilize the system and bring it back to its previous steady state. In the
second case, one of the system parameters has been changed after the fault. Therefore, the post-
fault equilibrium point is no longer the pre-fault steady state unless the steady state of post-fault
DC line power Pdc is reset properly.
Open-loop transient responses of the system (without the proposed control) for cases 1 and 2

are depicted in Figs. 2 and 3, respectively. It is clear that there exist sustained oscillations (for the
generator angle) after the faults. As expected, the generator angle in Fig. 2 converges slowly to the
pre-fault steady state angle; and in Fig. 3 the machine angle drifts away from its pre-fault value.
To simulate the proposed control in a practical setting, magnitude and bandwidth saturations

should be considered. In what follows, a saturation function on magnitude is introduced as
juj < umax where umax is a constant size limit on control signal u. Similarly, a rate limit can be
imposed by introducing a saturation function and an integrator, in which case the robust control
should be redesigned using the recursive design (i.e., the backstepping design). The latter is
omitted for briefness, and interested readers are referred to Ref. [13] and the references therein.

Fig. 2. Generator angle under the case 1 fault and without the proposed control.

Fig. 3. Generator angle under the case 2 fault and without the proposed control.
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In getting the second sets of simulation results, size limit umax is set to be 0:1. Figs. 4 and 5
illustrate the generator angle and the DC power Pdc under the case 1 fault; and Figs. 6 and 7 show
the system dynamic response under the case 2 fault. In both simulation runs, the pre-fault DC line
power Po

dc is chosen to be P
d
dc ¼ 0:4 in order to minimize the change of DC line power and to keep

the pre-fault generator angle do at its desired value dd ¼ 30�.
It can be easily observed that the oscillations decay quickly under the proposed control.

Furthermore, the oscillation amplitude during the first half cycle is also decreased, which allows
more real power transmission. In Fig. 4, the generator angle converges back to its pre-fault value,
and in Fig. 5 the DC line power also goes back to its pre-fault value. For the case 2 fault, pa-
rameter variation in the system changes the equilibrium state. It is clear from Fig. 8 that the bus
voltage approaches a new steady state. In the control algorithm, P ddc is chosen to remain its pre-
fault value. Unless P ddc is adjusted, P

r
dc shown in Fig. 7 is different from the pre-fault value. As

shown in Fig. 6, the oscillation has been largely suppressed but there are small ripples in the
machine angle for quite a while, which is due to the fact that the control has reached its magnitude
limit and hence become less effective.

Fig. 4. Generator angle under the case 1 fault and constraint umax ¼ 0:1.

Fig. 5. DC line power Pdc under the case 1 fault and constraint umax ¼ 0:1.

142 H. Cai et al. / Computers and Electrical Engineering 29 (2003) 135–150



Fig. 7. DC line power Pdc under the case 2 fault and constraint umax ¼ 0:1.

Fig. 6. Generator angle under the case 2 fault and constraint umax ¼ 0:1.

Fig. 8. The terminal bus voltage VT under the case 2 fault and constraint umax ¼ 0:1.
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To further illustrate the relationship between magnitude limit and system response, the pro-
posed control is also simulated under the constraint umax ¼ 0:15, and the results are shown in Figs.
9–12. For the case 1 fault, the pre-fault values do and Po

dc are chosen to be the desired values. But,
for the case 2 fault, new values dr ¼ 40� and Pr

dc ¼ 0:35 are selected in order to provide the
operation range for Pdc. In general, the system dynamic responses under umax ¼ 0:15 are better
than those under umax ¼ 0:1. This is also expected as, the more the DC line power can be adjusted
according to the proposed control algorithm, the better the system behavior becomes. With recent
developments of HVDC electronics and with improvements of HVDC control devices, the pro-
posed control can be practically implemented to have a significant impact.
As before, the angle and the DC power in Figs. 9 and 10 converge to their pre-fault values,

respectively. In comparison, the angle and DC line power in Figs. 11 and 12 converge to the new
values. Finally, Fig. 13 shows that the amplitude of the terminal bus also converges to a new
value.

Fig. 9. Generator angle under the case 1 fault and constraint umax ¼ 0:15.

Fig. 10. DC line power Pdc under the case 1 fault and constraint umax ¼ 0:15.
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Fig. 11. Generator angle under the case 2 fault and constraint umax ¼ 0:15.

Fig. 12. DC line power Pdc under the case 2 fault and constraint umax ¼ 0:15.

Fig. 13. The terminal bus voltage VT under the case 2 fault and constraint umax ¼ 0:15.
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5. Conclusion

A nonlinear robust control is proposed for a parallel AC/DC power system. The stability proof
by Lyapunov direct method shows that global and asymptotic stability can be achieved under any
disturbance occurred anywhere in the system. The proposed control is robust against both faults
and parameter variations. Simulation results confirm the analytic conclusions and demonstrate
effectiveness of the control and significant improvement in system dynamic responses. Magnitude
saturation is also considered in simulation.

Appendix A

A.1. Relationships between AC and DC quantities

Symbols used:

ELL – rms line–line voltage of the converter ac bus.
I1 – rms value of the fundamental frequency component of the converter ac current.
a – valve firing delay angle (from the instant that the valve voltage is positive).
l – overlap angle (also called commutation angle).
/ – phase angle between V and I.
cos/ – displacement power factor.
Vd0 – ideal no-load dc voltage (when a ¼ 0 and l ¼ 0).

Voltages and currents on ac and dc sides of the converter are related, and they are functions of
several converter parameters including the converter transformer. Detailed derivations are given
in Ref. [7]. The following expressions on voltages and currents are included here for easy refer-
ence.
When a ¼ 0 and l ¼ 0,

Vd ¼ Vd0 ¼
3
ffiffiffi
2

p

p
ELL  1:35ELL:

When a > 0 and l ¼ 0,

Vd ¼ Vd0 cos a:

In theory, a 2 ½0; 180�� (when l ¼ 0). Hence, Vd can vary from þVd0 to �Vd0. It follows that

I1 ¼
ffiffiffi
6

p

p
Id ¼ 0:78Id; and cos/ ¼ cos a ¼ Vd

Vd0
:

When a ¼ 0 and 0 < l ¼ 60�,

Vd ¼ Vd0
cos a þ cosða þ lÞ

2
¼ 3

ffiffiffi
2

p

p
ELL

cos a þ cosða þ lÞ
2

ðA:1Þ
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and

I1 
ffiffiffi
6

p

p
Id ¼ 0:78Id: ðA:2Þ

The approximation error in Eq. (A.2) is 4.3% at l ¼ 60� (the maximum overlap angle for normal
steady-state operation), and it will be smaller (around 1.1%) for most practical cases when l is 30�
or less. It can be seen from Eqs. (A.1) and (A.2) that the ratio between ac and dc currents is almost
fixed, but the ratio between ac and dc voltages varies as a function of a and l. Hence, the HVDC
converter can be viewed as a variable-ratio voltage transformer, with an almost fixed current
ratio. On the other hand, we have

Pdc ¼ VdId; ðA:3Þ

Pac ¼
ffiffiffi
3

p
ELLI1 cos/: ðA:4Þ

Substituting the expressions of Vd and Id into Eq. (A.3) and comparing the result with Eq. (A.4),
we know

cos/  cos a þ cosða þ lÞ
2

:

It follows from Eq. (A.1) that

cos/  Vd
Vd0

:

Therefore, we obtain

Vd  1:35ELL cos/; and Qac ¼
ffiffiffi
3

p
ELLI1 sin/:

A.2. Derivation of bounding function in Eq. (9)

The complex current on the AC transmission line is given by

Iac ¼
VT\h � Vs
jxL

;

and the current supplied to the DC line can be expressed as [1,7]

Idc ¼
Sdc

VT\h

� ��

¼ jQdc
VT\h

� ��

þ Pdc
VT\h

� ��

¼ j0:78
ffiffiffi
3

p
IdVT sin/

VT\h

 !�

þ Pdc
VT\h

� ��

; ðA:5Þ
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where Qdc is the reactive power consumed by rectifier/inverter, Id is the DC current, and / is the
displacement power angle. Under the constant current control mode, which is usual mode of
operation of the rectifier/inverter and is also the control mode used for the stability control, Id is
fixed to a preset value, say, Iod . Therefore, Eq. (A.5) can be written as

Idc ¼
j0:78

ffiffiffi
3

p
IodVT sin/

VT\h

 !�

þ Pdc
VT\h

� ��

:

Similarly, the current going to the local load is given by

IL ¼ PL
VT\h

� ��

:

Thus, the complex terminal voltage VT can be calculated by

VT ¼ VT\h ¼ E\d � ðIac þ Idc þ ILÞjxT

¼ E\d � xT
xL

ðVT\h � VsÞ � jxT
j0:78

ffiffiffi
3

p
IodVT sin/

VT\h

 !�

� jxT
Pdc

VT\h

� ��

� jxT
PL

VT\h

� ��

:

Solving for VT\h yields

VT\h 1

�
þ xT
xL

�
¼ E\d þ xT

xL
Vs � jxT

j0:78
ffiffiffi
3

p
IodVT sin/

VT\h

 !�

� jxT
Pdc

VT\h

� ��

� jxT
PL

VT\h

� ��

:

Taking magnitude on both sides of the above equation, we have

VT 1

�
þ xT
xL

�

¼ E\d

����� þ xT
xL

Vs � jxT
j0:78

ffiffiffi
3

p
IodVT sin/

VT\h

 !�

� jxT
Pdc

VT\h

� ��

� jxT
PL

VT\h

� ��
�����

6E þ xT
xL

Vs þ 0:78
ffiffiffi
3

p
IodxT þ xT

ðjPdcj þ PLÞ
VT

:

Multiplying VT on both sides and rearranging the inequality yield

V 2T 1

�
þ xT
xL

�
� E
�

þ xT
xL

Vs þ 0:78
ffiffiffi
3

p
IodxT

�
VT � xTðjPdcj þ PLÞ6 0:
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Solving the inequality, we can obtain the bounding condition on VT as

VT6
E þ xT

xL
Vs þ 0:78

ffiffiffi
3

p
IodxT

2 1þ xT
xL

� � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E þ xT

xL
Vs þ 0:78

ffiffiffi
3

p
IodxT

� �2
þ 4 1þ xT

xL

� �
xTðjPdcj þ PLÞ

r

2 1þ xT
xL

� �
¼ c1 þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 þ c4juj

p
;

where ci are positive constants defined by

c1 ¼
E þ xT

xL
Vs þ 0:78

ffiffiffi
3

p
IodxT

2 1þ xT
xL

� � ; c2 ¼
1

2 1þ xT
xL

� � ;

c3 ¼ E
�

þ xT
xL

Vs þ 0:78
ffiffiffi
3

p
IodxT

�2
þ 4 1
�

þ xT
xL

�
xTðjP r

dcj þ PLÞ; and c4 ¼ 4 1
�

þ xT
xL

�
xT:
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