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Abstract

A series DC motor must be represented by a nonlinear model when nonlinearities such as magnetic

saturation are considered. To provide effective control, nonlinearities and uncertainties in the model must

be taken into account in the control design. In this paper, the recursive design method is applied to generate

nonlinear control, nonlinear PI control, and robust control, and these controls are shown to be efficient and

robust in the simulation study compared to existing results.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of controlling a series DC motor has been studied using different techniques.
Several results are cited here for our synopsis, and more can be found in the references cited
therein. Motor control using traditional control techniques is discussed in detail in Ref. [9]. A
good overview of the application of modern control techniques to motor control can be found in
Ref. [5]. Most recently, the nonlinear differential-geometric technique, feedback linearization
method, has been used to design control for both series and shunt DC motors [13,3,4]. In spite of
this progress, further study is needed to develop a straightforward design and to yield a more
effective control and better robustness.

In this paper, it will be shown that the dynamics of a series DC motor can be easily transformed
into a cascaded structure (which includes feedback linearizable systems as a special case). Analysis
and control design for a system in the cascaded form can be easily handled by the recursive design
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approach. Using this approach, nonlinear speed tracking control and nonlinear PI control (for
better tracking under constant but unknown load) are designed. In the presence of parametric as
well as dynamic uncertainties, the dynamics of the series DC motor satisfy the generalized
matching conditions [14] under which nonlinear robust control can be designed. Specifically,
unknown variations in load torque and armature inductance are considered in the paper. It has
been shown that, compared with feedback linearization methods, the recursive design method is
flexible in handling nonlinearities and uncertainties so that the singularity problem can be avoi-
ded, that conditions on feedback linearization can be relaxed, and that useful (or stabilizing)
dynamics are not cancelled [16]. It is because of these advantages that a recursive design often
yields a smoother and more stabilizing control, especially under uncertainties.

The paper is organized as follows. In Section 2, the model of the series DC motor is reviewed.
In Section 3, the recursive design technique is introduced. In Section 4, nonlinear control is
generated using the recursive design for the case that all dynamics are known. Nonlinear PI
control is designed in Section 5 for the case that the load torque is unknown but constant. Finally,
in Section 6, robust control is designed for the case that the load torque is dynamically perturbed
and that some of the parameters in the system dynamics are not known. Simulation results for the
three cases are presented and compared in Section 7.

2. Model for series DC motors

Series DC motors are often used in applications where high starting torque is required and an
appreciable load torque exists under normal operation. Such applications include traction drives,
locomotives, trolley buses, cranes, and hoists. In such a motor, the field circuit is connected in
series with the armature circuit. Parallel with the field resistance ðRfÞ, there is a by-passing circuit
which contains resistance Rp, which is controlled by a switch. By turning on and off the switch, Rp

is included or removed from the circuit. Resistance Rp provides field-weakening, which is used to
raise the motor speed at reduced loads. Except for saturation, the electromagnetic torque pro-
duced by the motor is proportional to the square of the current. This motor produces more torque
per Ampere of current than any other DC motor.

From Ref. [9] we note that the dynamics of a series DC motor can be represented by two sets of
differential equations depending on the motor’s operating condition. Operating conditions of a
DC motor are defined in terms of motor speed, and they are divided into two cases. In the first
case, the motor operates above base speed with the switch closed, by-passing the field winding to
the armature (that is, Rp < 1), and the system equations are:

Ladia=dt ¼ V � Raia � Rpðia � ifÞ � Km/fðifÞx; ð1Þ

d/f=dt ¼ �Rf if þ Rpðia � ifÞ; ð2Þ

Jdx=dt ¼ Km/fðifÞia � Bx � sL: ð3Þ

In the second case, the motor operates below base speed. The switch in the by-passing circuit is
open (that is, Rp ! 1), and field weakening is not present. Therefore if ¼ ia ¼ i, and the system
equations become:
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Ladi=dt ¼ V � Rai� Km/fðiÞx; ð4Þ

d/=dt ¼ �Rf i; ð5Þ

Jdx=dt ¼ Km/ðiÞi� Bx � sL: ð6Þ
It is obvious that the system equations for a series DC motor are nonlinear. Symbols in the
equations are self-explanatory. For a detailed discussion of electric machines, one may refer to
Refs. [6,8,11].

3. Recursive design and robust control

Stability concepts, analysis tools, and control design methods for nonlinear systems can be
found in standard textbooks such as [7,10,17]. The common nonlinear design methods include
Lyapunov direct method, feedback linearization, singular perturbation, etc. Lyapunov direct
method is the universal technique because of its applicability. However, it is often difficult to find
a proper Lyapunov function, especially for high order systems. One way to find a Lyapunov
function is through the use of the so-called recursive design method.

The method is intuitively simple: find a sub-Lyapunov function for one of the system equations,
relate the equation to the rest of the systems by a state transformation and by a design of so-called
fictitious control, and repeat this process until all equations are considered and a Lyapunov
function, formed from the sum of all sub-Lyapunov functions, is found. Control design using the
recursive method for systems which do and do not meet the generalized matching conditions can
be found in Refs. [14,15], respectively. Other work based on the recursive design can be found in
Refs. [1,2,19] and the references cited therein.

It is easy to see that the system described by Eqs. (1)–(6) satisfies the generalized matching
conditions or, equivalently, has the cascaded structure. In this case, the recursive design takes a
simpler form, that is, it consists of a sequence of nonlinear mappings. Specifically, the recursive
design starts with the first subsystem and works through all subsystems one-by-one until the last
one. In each step, the subsystem of state xi, excluding dynamics associatedwith xiþ1, is stabilized by a
fictitious control denoted by xdiþ1, and a state transformation ziþ1 ¼ xiþ1 � xdiþ1 is formed to generate
a dynamic equation for the next subsystem. Generation of xdiþ1 is facilitated by picking a Lyapunov
function Li. At the end (when i ¼ n), recursive design is completed by setting the control to be xdnþ1.

It should be noted that control designs developed in the references cited earlier in this section
are for the so-called robust control. The robust control is a fixed control system designed to
guarantee the design requirements in the presence of significant, bounded uncertainties. Its design
usually involves three parts: (i) develop or assume bounding functions on uncertainties; (ii) dif-
ferentiate Lyapunov function, bound the terms associated with uncertainties, and replace their
magnitude by the corresponding bounding functions; and (iii) design a control in terms of
bounding functions. It is obvious that, if everything is known, robust control design reduces to the
conventional nonlinear design in which the operation of bounding the uncertainties and replacing
them by bounding functions is no longer needed. In this paper, we shall use the same recursive
design for both the case in which the system is perfectly known and the case in which the system
contains uncertainties.
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4. Application of recursive design under perfect knowledge

In this section, control design is pursued under the assumption that all variables and quantities
in the model of the series DC motor are known. Load and parameter variations will be considered
in the subsequent sections. In all of the cases, our control problem is to design an effective control
under which motor speed tracks a constant desired speed w0. The design is done by simply se-
lecting state transformations z1 ¼ x1 � w0 and z2 ¼ x2 � xd2 for a properly chosen xd2 and by
choosing Lyapunov function LðzÞ to be a quadratic function of both z1 and z2. The transfor-
mations map the system into the proper cascaded form, and LðzÞ is then used to design first
fictitious control xd2 and then actual control V.

First we consider the case when the motor operates above base speed with the switch closed
(Rp < 1, if < ia), the so-called field-weakening region. Note that the system in Eqs. (1)–(3) may be
written in a cascaded form by simply selecting the state variables x1 ¼ x, x2 ¼ /fðifÞLaia, and
u ¼ V . After taking the derivatives of x1 and x2, with _xx2 ¼ Laiaðd/fðifÞ=dtÞ þ La/fðifÞðdia=dtÞ, the
system equations become:

_xx1 ¼
Km

JLa

x2 �
B
J
x1 �

sL
J

_xx2 ¼ � LaRf iaif þ RpLaði2a � iaifÞ � Km/2
f ðifÞx1 þ Rp/fðifÞif �

Ra þ Rp

La

x2 þ /fðifÞu:

where sL is a constant load torque.
The above system is the cascaded form for which recursive design is readily applicable. Spe-

cifically, we shall design our control equation by equation. For the first equation, let z1 ¼ x1 � w0.
It follows that

_zz1 ¼
Km

JLa

x2 �
B
J
z1 �

B
J
w0 �

sL
J
:

If x2 were a controller, the first subsystem of state z1 could be stabilized by setting xd2 ¼ La
Km

ðsL þ
Bx0Þ. This can be verified by using the Lyapunov function L1 ¼ 0:5z21. The symbol xd2 is used
instead of x2 due to the fact that x2 is not a control variable. The problem that x2 6¼ xd2 can be
resolved by setting z2 ¼ x2 � xd2 and by forcing z2 to converge to zero.

To this end, one must first derive the dynamic equation for z2 through differentiation and then
derive control u by employing Lyapunov function LðzÞ ¼ L1ðz1Þ þ L2ðz2Þ ¼ 1

2
z21 þ 1

2
z22. Through

simple algebraic computation, one can solve the control law u as, in terms of the original vari-
ables,

u ¼ 1

/fðifÞ
Ra þ Rp

Km

ðsL
�

þ Bx0Þ þ LaRf iaif � RpLaði2a � if iaÞ � Rp/fðifÞif

� Km

JLa

ðx � x0Þ þ Km/2
f ðifÞx

�
; ð7Þ

under which _LLðzÞ ¼ �ðB=JÞz21 � ðRa þ Rp=LaÞz22 6 0. It is obvious that the system is globally uni-
formly asymptotically stable.
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For the second case, the switch is open ðRp ! 1; if ¼ ia ¼ iÞ and the system equations are of
the form (4), (5) and (6). In this case, the design process is conceptually identical to that of the first
case. First, define x1, x2, and z1 as before. Second, set L1ðz1Þ ¼ 0:5z21. Third, put x

d
2 in the place of x2

and then choose it to stabilize the first subsystem by studying _LL1ðz1Þ. It follows that the previous
choice for xd2 is also valid for this case. Now, define z2 ¼ x2 � xd2 and derive its dynamics. Finally,
use LðzÞ ¼ ð1=2Þz21 þ ðLa=2Þz22 to derive the actual control law. One can show that, under the
control

u ¼ � Km

FJL2
a

ðx � x0Þ þ Km/fðiÞx þ Rai�
BG1

FJLa

ð/fðiÞLai� xd2Þ; ð8Þ

the stability of the system is guaranteed since _LLðzÞ ¼ �ðB=JÞz21 � G1ðB=JÞz22 6 0. In control Eq. (8),
F ði;/fðiÞ; o/fðiÞ=oiÞ ¼ ðo/fðiÞ=oiÞiþ /fðiÞ, and G1 is a positive control gain for the designer to
choose. Note that La is introduced into LðzÞ so that the Lyapunov function can be used for the
case of partial knowledge as well.

The controls derived under perfect knowledge of the system provide a baseline with which other
controls such as PD/PID and robust control laws can be compared.

5. Nonlinear PI control

We now consider the situation when the load torque for the DC motor is unknown. By
using a nonlinear PI control, we eliminate the need to know the load torque explicitly. In the
case that motor velocity is not measured directly but computed on-line (for example, from
reading an optical encoder), the control can also be viewed as a nonlinear PID control. Since
many steps in the control are similar or identical to those in the previous section, only those
which are different will be discussed in detail. All variables are the same as before unless
defined otherwise.

For the purpose of designing a nonlinear PI control, a new state variable x0 is introduced as
_xx0 ¼ x1. This definition augments both systems above and below the base speed. Consider the
system when the motor operates above base speed. It follows that the differential equation for x1
can be written as

_xx1 ¼ �k0x0 � k1x1 �
sL
J
þ Km

JLa

x2

�
þ JLa

Km

k0x0

�
þ k1x1 �

B
J
x1

��
;

in which the same terms k0x0 (integral part) and k1x1 (proportional part) are added and subtracted,
and their sum serves as the fictitious control for x2.

Define the state transformations z0 ¼ ½x0 þ ð1=k0ÞðsL=JÞ
, z1 ¼ x1, and z2 ¼ x2 þ ðJLa=KmÞ�
ðk0x0 þ k1x1 � ðB=JÞx1Þ. The new state z is used to generate Lyapunov function and control law. It
follows that, if z2 ¼ 0, the subsystem of state ½z0 z1
T is stable by choosing gains k1 and k2 properly.
This can be seen from the fact that

_z0z0
_z1z1

� �
¼ A

z0
z1

� �
þ Bz2;
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where

A ¼ 0 1

�k0 �k1

� �
; B ¼ 0

Km

JLa

� �
:

Stability of the subsystem can be shown using the sub-Lyapunov function L1ðzÞ ¼ 0:5�
½z0; z1
P ½z0; z1
T where P is the positive definite solution to PAþ ATP ¼ �I. In the case that z2 6¼ 0,
it follows that _L1L1 ¼ �z20 � z21 þ ½z0; z1
Pz2.

To ensure that z2 is stable and to design a nonlinear PI control, choose the Lyapunov function
_LL ¼ L1ðz1Þ þ L2ðz2Þ where L2ðz2Þ ¼ ð1=2Þz22. It follows that, under the control

u ¼ 1

/fðifÞ

�
� ðk1 þ k2ÞLaia/fðifÞ þ LaRf iaif � RpLaði2a � if iaÞ � Rp/fðifÞif � k0

J
Km

� ðRa þ RpÞx0 � k0ðk1 þ k2Þ
JLa

Km

x0 þ k2
BLa

Km

�
þ B
Km

ðRa þ RpÞ � k1k2
JLa

Km

� k1
J
Km

ðRa þ RpÞ

� k0
JLa

Km

�
ðx � x0Þ þ

JLa

Km

k1

�
� BLa

Km

�
_xx0 þ Km/2

f ðifÞx þ k1
BLa

Km

�
� B2La

JKm

�
x0

�
; ð9Þ

the time derivative of the Lyapunov function becomes

_L1L1 þ _L2L2 6 � kz0k2 � kz1k2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21

q
kz2krmaxðPBþ RÞ � k2

�
þ Ra þ Rp

La

þ B
J

�
kz2k2;

where

R ¼
1
2

BLa
Km

k0 � JLa
Km

k0k1
� �

0

" #
:

Thus, we know that _L1L1 þ _L2L2 < 0 if the gains are chosen such that k0 > 0, k1 > 0, and k2 > r2
max.

We now turn our attention to the case when the motor is operating below base speed. The
analysis for the case of motor operating above base speed can be duplicated here to yield

u ¼ 1

F

�
� ðk1 þ k2Þ/fðiÞLai� k0ðk1 þ k2Þ

JLa

Km

x0 þ FRaiþ FKm/fðiÞx

þ
�
� k1k2

JLa

Km

þ BLa

Km

k2 þ
JLa

Km

k0

�
ðx � x0Þ þ

JLa

Km

k1

�
� BLa

Km

�
_xx0 þ

BLa

Km

k1

�
� B2La

JKm

�
x0

�
;

ð10Þ

under which the time derivative of Lyapunov function is negative definite as

_L1L1 þ _L2L2 6 � kz0k2 � kz1k2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ z21

q
kz2krmaxðPBþ RÞ � k2

�
þ B

J

�
kz2k2;

provided that the gains are chosen as before.
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6. Robust control

In the third case we address the situation more commonly encountered in practical applica-
tions, that is, the system under study contains significant but bounded uncertainties. Specifically,
we assume that La is uncertain but bounded and that sL is dynamically perturbed. Possible un-
certainties in other parameters or functions can be treated in a similar fashion.

As before, we first consider the situation when the motor is operating above base speed. We
may define x1 and z1 as in the case of perfect knowledge; however, since La is not known exactly,
we must remove La from the definition of x2 and redefine x2 as /fðifÞia.

In the design of robust control, one must define nominal values and ranges for unknown pa-
rameters or dynamics. In the subsequent analysis, the nominal values are chosen to be La 2
½La0 � j1La0 ; La0 þ j1La0 
 and sL 2 ½sL0

� j2sL0
; sL0

þ j2sL0

. Later in the simulation, a 10% varia-

tion in the nominal value of armature inductance and a 10% variation in load-torque are used
(that is j1 ¼ j2 ¼ 0:1).

To design the robust control, we chose the Lyapunov function LðzÞ ¼ ð1=2Þz21 þ ðL2
a=2Þz22 where

z2 ¼ x2 � xd2. x
d
2 is the fictitious control to be designed. By letting xd2 ¼ ð1=KmÞðBx0 þ sL0

Þ þ uR11
,

we can show that

z1 _z1z1 ¼ �B
J
z21 þ

Km

J
1

Km

ðsL0

�
þ Bx0Þ þ uR11

�
z1 �

B
J

x0z1 �
sL
J
z1 þ

Km

J
z1z2;

in which uR11
is to be designed to compensate for all the terms except for ðKm=JÞz1z2 (which will be

considered in the design of u).
Selecting the bounding function q1 to be equal to q1 ¼ ðsL0

=JÞj2, letting uR11
¼ �ð1=KmÞ�

ðð1=�1Þq2
1Þz1, and dropping the ðKm=JÞz1z2 term we have

z1 _zz1 6 � B
J
z21 þ

�1
4J

;

where design parameter �1 determines the accuracy of the control.
Once xd2 is found explicitly, differential equation for z2 can be found. It can be shown that the

terms in _zz2 associated with the uncertainties can be bounded by function q2 where

q2 ¼ La0j1 Rf iaif

�
þ Rpði2a � iaifÞ þ

B
JKm

1

�1

� �
q2
1jx1j þ

1

J�1
q2
1jx2j

�

þ La0ð1þ j1Þ
sL0

ð1þ j2Þ
JKm

1

�1

� �
q2
1 þ

Kmj1

JLa0ð1� j1Þ
jz1j:

The nonlinear control u is used to cancel the known terms and to compensate for the uncertain
terms. Let

u ¼ 1

/fðifÞ
Km/2

f ðifÞx
�

þ Ra þ Rp

Km

ðBx0 þ sL0
Þ � ðRa þ RpÞ

Km

1

�1

� �
q2
1ðx � x0Þ

� Rp/fðifÞif þ RfLa0 iaif �
Km

JLa0

ðx � x0Þ þ
BLa0

JKm

1

�1

� �
q2
1x � La0

J
1

�1

� �
q2
1/fðifÞia

� RpLa0ði2a � iaifÞ þ uR12

�
; ð11Þ
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where l ¼ q2z2, and

uR12
¼ � l2 þ �22

jlj3 þ �32
lq2:

Under the control, we have

_LLðzÞ6 � B
J
z21 � ðRa þ RpÞLaz22 þ La

�2
4

"
þ �22jlj � �2jlj2

jlj3 þ �32

#
�2 þ

�1
4J

:

By Holder’s inequality [12] ðab6 ðap=pÞ þ ðbq=qÞÞ, we can show that

�22jlj � �2jlj2

jlj3 þ �32
�2 6

2

C
�2;

where C ¼ 3 1
2

� �2=3
. Therefore, it follows that

_LLðzÞ6 � B
J
z21 � ðRa þ RpÞLaz22 þ La

�2
4

�
þ 2

C
�2

�
þ 1

4J
�1:

Since ðRa þ RpÞLa � ðB=JÞ, we can rewrite the above inequality as

_LLðzÞ6 � 2ðRa þ RpÞLaLðzÞ þ
1

4

�
þ 2

C

�
La�2 þ

1

4J
�1:

Solving the above inequality, we can easily show that the system is globally, uniformly ultimately
bounded.

The case when the motor operates below base speed can be analyzed in exactly the same
manner. That is, consider first Lyapunov function LðzÞ ¼ ð1=2Þz21 þ ðL3

a=2Þz22; let xd2 ¼ ð1=KmÞ�
ðBx0 þ sL0

Þ þ uR21
where uR21

¼ uR11
¼ �ð1=KmÞðð1=�1Þq2

1Þz1. A bounding function for the uncer-
tainties in _zz2 is

q2 ¼
BLa0j1

FJKm

1

�1

� �
q2
1jx1j þ

La0j1

FJ
1

�1

� �
q2
1jx2j þ

Kmð2j1 þ j2
1Þ

FJL2
a0
ð1� j1Þ2

jz1j

þ La0ð1þ j1Þ
1

FJKm

sL0
ð1þ j2Þ

1

�1

� �
q2
1;

and the robust control is

u ¼ Raiþ Km/fðifÞx þ BLa0

FJKm

1

�1

� �
q2
1x � La0

FJ
1

�1

� �
q2
1ð/fðiÞiÞ �

Km

FJL2
a0

ðx � x0Þ þ uR22
� G

F
z2;

ð12Þ
where

uR22
¼ � l2 þ �22

jlj3 þ �32
lq2:

Stability and its proof are identical to those shown in the first case. Robust controls equivalent to
uR22

can be found in Ref. [16].
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7. Simulation and comparison

The results from the three cases were simulated. Note that the control law changes as the motor
moves from below base speed to above base speed. Base speed was chosen as xbase ¼ 200 rad/s.

The load torque, sL, was simulated as described by Chiasson [4] as

sL ¼
0 Nm 06 t6 5;

1250ðt � 5Þ=5 Nm 56 t6 10;
1250 Nm 106 t:

8<
:

The parameters related to this motor, also from Chiasson [4] are the armature inductance
ðLa ¼ 0:0014 HÞ, the resistance of the field windings ðRf ¼ 0:01485 XÞ, the parallel resistance of
field weakening ðRp ¼ 0:01696 XÞ, the resistance of the armature windings ðRa ¼ 0:00989 XÞ, the
viscous friction ðB ¼ 0:1 Nm=rd=sÞ, the torque/back-emf ðKm ¼ 0:04329 ðNmÞ=ðWbAÞÞ, and the
moment of inertia ðJ ¼ 3:0 Kgm2Þ. For all cases, the reference speed was chosen to start from 0
and go up to 520 rad/s in 20 s and is plotted in Fig. 1. The flux, /fðifÞ, was derived from Fig. 4 of
Chiasson [4].

Several different simulations were attempted by varying the value of the control gain constant,
G1. As G1 was increased, the error during the first few seconds settled down and the control law
became smoother. Past a certain value, however, the error began to increase during the first few
seconds without any improvement in the control law. The results for the best choice of G1 are
presented in Figs. 2 and 3.

The PID control law was simulated under the assumption that all quantities are known except
the load torque. Using the relationships developed previously, values of k0 and k1 were chosen and

Fig. 1. Plot of reference speed for the motor.
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then the appropriate range of values for k2 was calculated. For example, for the choices of k0 ¼ 7
and k1 ¼ 16, we found that k2 must be chosen greater than 44.

Fig. 2. Plot of error for G1 ¼ 20:0.

Fig. 3. Plot of the combined control law for G1 ¼ 20:0.
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Simulations were attempted for several different values of k0, k1, and k2, and simulation results
corresponding to the best choices are shown in Figs. 4 and 5. Generally, the gains should be
chosen in the range of 1–50 for the purposes of actual physical implementation.

Fig. 4. Error plot for k0 ¼ 7:0, k1 ¼ 16:0, k2 ¼ 50:0.

Fig. 5. Plot of the combined PID control law for k0 ¼ 7:0, k1 ¼ 16:0, k2 ¼ 50:0.
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The robust control law contains several gain parameters which must be varied to obtain the
best results. In general, �1 should be chosen greater than �2 and the value of G should be chosen to
be within a reasonable range. The simulation must also be altered to test the robustness of the

Fig. 6. Plot of simulated load torque with dynamic perturbation.

Fig. 7. Plot of error for perfect knowledge case.
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control. After several simulations, the following values for gain were chosen: �11 ¼ 25:0, �12 ¼ 0:1,
�21 ¼ 50:0, �22 ¼ 0:3, G ¼ 20:0.

In order to demonstrate the true power of the robust control law, simulations were per-
formed which included perturbations from the nominal values of two system parameters.

Fig. 8. Plot of error for PID control case.

Fig. 9. Plot of error for robust control case.
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Many nonlinear systems are highly sensitive to changes in system parameters, as discussed in
Ref. [18]. It is through the use of robust control, then, that we hope to compensate for this
sensitivity.

A load torque with dynamic perturbation, shown in Fig. 6, was chosen. In addition to per-
turbing the load torque, the value of the armature inductance ðLaÞ was perturbed by 10% as well.
Figs. 7–10 show the errors under the uncertainties (load change in Fig. 6 and parameter vari-
ation) and under various types of controls. It is apparent that robust control achieved the best
result.

It should be noted that the spikes in the control law for the robust case are artifacts of the
algorithms used to simulate the system and reduce the error in calculations, not an indication of
an error in the equations of the control law.

8. Conclusions

In related work, Chiasson’s use of the nonlinear-geometric technique produced generally good
results, but did not include the possibility of uncertain terms [4]. His design also required a speed
and load-torque observer. Compared to this and other techniques, robust control proves to be
well suited to the task of handling the presence of dynamic perturbations in the system para-
meters. It does not require the use of estimators or observers. Using current and speed mea-
surements along with the assumed function of flux, the input voltage is varied according to the
control law.

Fig. 10. Plot of combined control law for robust control case.
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We have seen that the recursive design approach may be successfully applied to the problem of
designing a robust control for the nonlinear model of a series DC motor. When the only unknown
parameter is the load torque, PI control may be applied to the system with generally good results.
However, when other system parameters are unknown and/or dynamic perturbation is possible,
the robust control approach provides the best results. A control based upon the assumption that
all parameters are perfectly known fails when dynamic perturbation is present.

Although we only considered the cases when load torque and armature inductance were un-
known, the approach as presented could be easily extended to handle additional uncertainties.
Further research could be conducted by including additional nonlinear terms in the system
equations. Or one might choose to consider the possibility of the existence of uncertainties in
other system parameters.

As manufacturing standards continue to demand greater precision and performance from ro-
bots and other computer controlled mechanisms, the need for more precise, robust control laws
becomes greater too. When the model of a system includes nonlinear dynamics and uncertain
terms, the usefulness of robust control is apparent.
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