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VI. CONCLUSION [21] X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P.
. . . . . Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak, B. H. Hahn, M.
In this note, we have studied different concepts of nonlinear iden- g saag, and G. M. Shaw, “Viral dynamics in HIV-1 infectioNature
tifiability in the linear algebraic framework. Constructive procedures vol. 273, pp. 117-112, 1995.
have been worked out for both geometric and algebraic identifiability22] X. Xia, “Estimation of HIV/AIDS parameters,” presented at the 15th
of nonlinear systems. Relationships between different concepts have FAC World Congr., Barcelona, Spain, July 21-26, 2002.
been completely characterized. As an application of the theory devel-
oped, we investigated the identifiability properties of a four dimen-
sional model of HIV/AIDS. The questions answered in this study in-
clude the minimal number of measurement of the variables for a com-

plete determination of all parameters and the best period of time to ) ]
make such measurements. This information will be useful in formu-Robust Control of Nonlinear Systems in the Presence of

lating guidelines for the clinical practice. Unknown Exogenous Dynamics
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if the time varying parameters are outputs of a known or partialyonverse theorem [12], there exis€a functionV (i, t): " x R —
known exogenous system and if certain properties (such as haviRig such that
a known Lyapunov function) are met by the exogenous system, the

bounding function can also be estimated using an adaptation law (llzl]) V(. t) < v (lf])
. .. OV ix. t r
and a stabilizing robust control can be found_. For existing results on (z,t) n VSV (2, )F(z,t) < —v(||2]))
nonlinear output feedback and observer designs, readers are referred ot
to [11-{3], [13], and [14]. (L] BRI ®

In this note, robust control is sought so that stability and performance
can be ensured under less priori information on the size of uncertaintiggere~;: R+ — R™ are classC.. functions and, for some constants
Specifically, the uncertainties in the system are assumed to be bounded> ( and0 < 3, < 1,
(but their bounding function is not known or needed), and they are also
the outputs of an exogenous system. Compared to [22], the proposed w2l < B1a52 (l])). (4)
result in this note does not require any explicit stability property (other ) . o ) .
than boundedness) for the exogenous system. This improvement sig-,[he first two are typlcql (and.m “ne, with the staanrd ones in [12]).
nificantly reduces the knowledge needed for robust control design, angstence oD < 2 < 1in (4) is equivalent to stability of bounded-
it is accomplished by using nonlinear observers (rather than adaptafi§i$s under.a constant-bounded d_|sturbance for the uncontrolled nom-
laws in [22]). It is shown that, depending upon the location of uncef?@! Systemi: = F(a, ). Assumption 2 can be relaxed such that, if
tainties, a reduced-order or full-order nonlinear observer can be de= F(%;t) + B(x, t)u is unstable whem = 0, there is a known
signed to estimate the uncertainties. It is also shown that local stabif§bilizing control. The next two assumptions are regarding the uncer-
of uniform ultimate boundedness can be achieved under the propotiigties, including those on an exogenous system.
robust control. Under additional conditions, the stability result can be Assumption 3:SetQ2(.X ) is bounded itX is bounded, and the un-
enhanced to be either semiglobal, or global, or asymptotic, or asyn§gItainties are generated by an exogenous system as follows:

totic and global. AF (2, 0,t) =W (z, t)o(t)
O =G(v,z,t) + AG(v, 2, t) (5)

Il. PROBLEM FORMULATION , . . . .
whereW (z, t) is a known functional matrix bounded by a nonnegative,

In this note, we consider the class of uncertain systems that are"@ndecreasing function. (-) as, for all(z, t)

f
orm W (O] < cwlllal))- (6)

&= F(x,t) + Bz, t)[AF.(xz,v,t) + u] (1) G(v,z,t) + AG(v,t) represents dynamics of the exogenous sub-
system,G/(v, z,t) has a known functional form, andG (v, x,t) is
wherex(t) € R" is the state of the systenX;(¢) = {z(7),0 < 7 < completely unknown except that
t}, Q(X) C R? is an unknown set that may be dependent upon state
trajectory and is bounded X is uniformly boundedy (¢) € (X ) de-

notes the vector of uncertainties (and it is also the state of the so-ca%p (-) is known,p,(-) andG(v, «, ) are Caratheodory and locally
Il ] TV Ly

exogenous subsystem to be defined shortly)) € R™ (withm < n) | jhqchitzian functions that are uniformly bounded with respe¢ind
is the control to be designed(x, ¢) and B(z, t) are known parts of locally uniformly bounded with respect toandx.

the system dynamics, anNF,, (z, v,t) denotes the matched uncer-

tainties. _ _ for its bounding function and there is no restriction on the magnitude of
The robust control problem is to design a controt, t) such that, yhe hounding function and that all of the exogenous dynamics could be
under the following four assumptions, the resulting closed-loop SYSte[Aknown (i.e.G (v, z.t) = 0). In essence, it is only required that ex-

is stable (in the sense of either asymptotic stability or stability of un{B‘genous dynamics be bounded-input-bounded-statevire viewed
form ultimate boundedness (which also called practical stability) [5;1,s the input.

[21]) for all possible values of uncertain vecigft) in theunknowrset

”AG(‘rﬁvvt)” < []‘(7(.'177'U7t) (7

Note thatAG(v, =, t) in the exogenous system is unknown except

Q(X) The fourth assumption is introduced in order to ensure nonlinear
SN ) . ) . observability and to expose the main idea of the note without undue
Assumption 1: All functions in (1) are Caratheodory, locally Lips- complexity. It is easy to see that< m can be treated by simply aug-

chitzian with respect te andv, uniformly bounded with respect to menting exogenous system (5) using= 0 (j = p + 1...., m). In

and locally uniformly bounded with respectit@rv. Furthermore, ma- : e

trix B(xz,t) has the properties th&(z, t) = [ Bf (x,t) B (x,t)]"
whereB, ' (x,t) € R™*™ exists, and first-order partial derivatives of
Bi(z,t), Bo(x,t) and B, ' («, t) are well defined everywhere and lo-
cally uniformly bounded. Specifically, for alz, v, ¢) and for all:

case thap > m, estimation ofv would impose certain observability
conditions on matriX¥¥ (., ¢) and on dynamic&\G(v, x, t). The ob-
servability condition can be readily developed by noting that, instead
of imposing a bounding function on uncertainky#;,.(-), a bounding
function can be introduced oAG(-) and that a new reduced-order
vectory'(t) = W (x, t)v(¢) can be defined and its dynamics can be de-
¢, <[ B2 )|l (| Ba, )] < es((l]]) rived. Hence, the process of combining these two facts should be used
JB(x,1) <e, (|l IB(x,t) < () ) to overcome the restriction on the dimension of the exogenous system
Ox; = ot L in the sense that bounding function Atz (+) is not needed iING(-) is
parameterized by outputs of another exogenous subsystem and/or that
wherec,(-) ande,(-) are nonnegative and nondecreasing functionsply a reduced-order exogenous system needs to be estimated in robust
and¢, > 0 is a constant. control design.
Assumption 2: The originz = 0 is globally asymptotically stable  Assumption 4: Exogenous system (5) is of dimensipmvherep =
for nominal system of (1) = F(xz,t). Therefore, by the Lyapunov m, and matrixi¥ (z, ¢) and its inverse are differentiable and well de-
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fined everywhere, that is, for a nondecreasing funatipfi) and a con-  scaling factors of reduced-order observer gainis the output of the

stantc, > 0 auxiliary system given by
. I 1 .
OW (z,t / pn=—n+—8 (a,t)CDS[Z, u, 1+ 6
o < Wl and |20 < e, @ S (RSl ]
o 1 —1/., ~ aSil(w,f)w
I—IS (J/’t)w T~
I1l. N ONLINEAR OBSERVERBASED ROBUST CONTROLS _ —~ 98" (x, D pin (. , Ve )0
- Z prs z{fi(z, t) + bi(x, t)[u + W(z, t)0]}
The proposed robust controls are capable of compensating for un- Z:_l1
certainties generated by an unknown exogenous system because they ~— + 5 (#,#)[F2(#,1) — Fa(x,1)]
are based on a robust observer estimating gncertalntles. While not . 215—1 (z.8)% + 1 (11)
necessary due to the absence of backstepping or high-order obser- M

vation, we choose to introduce functidiDS[-] as, for any given with n(to) = 0 [and, hencey(to) = 0 for (15)] andS(z,t) =
pair of constantg:, 6 > 0 and for any vector argument € R™, By (&, t)W (x,t).
CDS[s, 1,1 4 6]: ™ — R™ and itsith element is defined by the Now, consider the following observer-based robust control:
equation shown at the bottom of the page. CDS stands for continu- Lo
ously differentiable saturation, the function has a continuous deriva- « = —W(x, )0 — — By (2, t)CDS[z — 2,1, 1 + 6] (12)
tive bounded by, and it makes the resulting robust controls con- i a

erez and? are defined by (9) and (10). Then, under robust con-

tinuously differentiable. It becomes the standard saturation functi | c e h . )
SAT[uy. 1] in the limit of 6 — 0, and tends to the standard Signtro (12), equation (9) becomes= F(i, t), and the estimation error

function in the limit of bothé — 0 andp — oc. For the proposed system becomes
observer design, design constants are chosen sucl thag < 1 Z=[Fo(a.t) — Fo(@, )] + Ba(w, )W (., t)0

andé > 0, and the guaranteed stability region will depend.omNote P, ,

that, in both observer designs, statés available for feedback but it - EC/DS[Z* ps1 48] (13)
will be estimated by as an “output” because the output estimation O =[G(v, 2, t) — G(0, 2, 1)] + AG(v, 2, 1)

error (x — ) is required as the feedback by the observers in order Iy )

to estimate uncertainty. - FCDS[y,//,, 14 6] (14)

On the other hand, it follows from auxiliary system (11) that, using
differential operatox = d/dt

1

A. Reduced Order Nonlinear Observer and Robust Control
Letz;, fi(-) andb;(-) denote theth rows ofz, F(-) andB(-), re-

. FOR. -1/ . o
spectively. Also, let y iy 15 (z,t)sz2
D i 1 Lo -
x j[@')l N éT[:m:vz T b prs] .“75 (z,t)CDS[Z, 1, 1 + 8]
Z:[$71—711+17~~-In] 1 —1 -~
’ " + — 15 (2,t) [Fo(3,t) — Fu(x, 1]
F(a,t)= [FlT (w.t)F (:v,f)} ps +
1 =95 Hat) i N
. Z - Zbi(x, )W (x, t)0. (15)
wherez and F»(-) be the bottommnth order vector blocks in- and ps 41— Qi

f(z,t), respectively.

If Bi(z,t) = 0, state variables i@ are independent of uncertain-
ties and need not be estimated. In this case; led the estimate of
and sett = [z 22 - - 2n,_m 27]7 be the estimate of. Then, the fol-
lowing reduced-order observer is proposed to estimate the uncertainties B ] o )
generated by unknown exogenous system (5): Wth) = =(to) and which shows that the auxiliary outputn (11) is a filtered version of

Substituting error dynamics (14) into (15) yields

. N 08 Nt .
py = —’y+v+Z—at(_L/ )zbi(:r,f)w (z,t)0  (16)

=1

O(to) = 0 through a combination of low-pass and high-pass filters, saturation, and
' nonlinear weighting. This property is instrumental in establishing the
E =Fy(&,t) + Bo(, )[u + W(a, t)0] following_theorem on stability of an observer-based robust cc_)n_trol and
I its associated closed loop system. The proof of the theorem is included
+ —CDS[Z, p1, 1 + ] (9) as Appendix A.
. ’ I Theorem 1: Consider (1) satisfying assumptions 1, 2, 3, and 4. If
0 =G(0,z,t) + I—ZZCDS[y, w1+ 6] (10) Bi(x,t) = 0, the following stability properties are ensured by robust
a control (12) with any fixed value of, > 0.
wheret is the estimate of uncertainty vectorz = z—2 ando = v—90  For any initial conditions ofu(to), Z(to), y(to), v(to), and
are estimation errors, = =z — 2 is also the “output error,l; > 0 are 0(to), the corresponding state variables will be uniformly
1Y, if |py:] <1
—(1/8)(py;—1 H .
CDSly, pt, 14 6] = 1+5[1—6(/)("’ )]: if py; > 1

—_1-6 [1 _ 6*(1/5)(*%7‘71)] . if pys < —1.
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bounded in a hyper-ball (whose radius is a cl&s$unction Consider the contrdll = —kjx1 — koxe + u, Whereu is robust
of their initial conditions) for all sufficiently large values &f control (12) in Theorem 1. Assumption 2 holds, where the Lyapunov
and 1/pu. function is
» Given any positive constant” as the ultimate bound, state 5
variablesz, Z, y, and ¢ will be uniformly ultimately bounded V(x) =2' Pz + —g(l — cos x1) with
with respect toe* for all sufficiently large values of; and !

. 572 = 1.
1/p. p_ k1 J;ZOLQ ().ihz
If 32 > 0.5 and ifAG(z, v, t) = 0, state variables, Z, y, 9, and R

¢ will be asymptotically stable for all sufficiently large values ofype corresponding clagé=. functions are

ly andl/p.

« Stability of uniform boundedness and asymptotic stability will )
be global if F(x,t) = A(x,t)x andG(v,z,t) = H(w,t)v Y2 =Amin (P)]] |
for some uniformly bounded matrice$(:,t) and H(x,t), if Yo (l|]]) =Amax(P)]|]|?
By (z,t)W(x,t) = D(t) foramatrixD(¢),if 0 < 32 < 0.3, 290=cosll=l) || < =
and if p,(, v, t) is also uniformly bounded by a constant. + { 4g ! | ; x

; :
g g . sin &1
B. Full Order Nonlinear Observer and Robust Control ky =k =3 51“61;% -
For the general case th& (x,t) # 0, it is necessary to account Ya(||ee])) = min{ka, ki ko Y]]

for the impact of uncertainties am(the top partition ofz) in stability
analysis and control design. To this end, a full-order observer is to be
designed to generate the estimaterof.e., i = [¢7 27]7. The pro-
posed full-order observer is described by (9)—(11), and

1 (lall) =2 [Amax(P) + 7] llal

11 0

- — M . p— — J— 2
o) = min { (P 5. 1 2 L

1 ILb+1 1,42 2
X (12]]) = max { Amax (P), =, . v
5 Fye0) 4 B (o6 o 4 e 00] Se(l1¥]) { (P), 5, 2, 2 }n ||
+ BBy (0. t) By (2. )CDS [, i1+ 9] '
l; where  Amin(P),  Amax(P) = 0.5[1+ k1 + 0.5k3+
+ H—OZCDS[QS,,L, 1+ 6] (A7) V(A + ki +0.5k2)2 — 4(ky + 0.25k2) |, andk} > 0.

Estimation of the uncertainty is done for the worst case that, in (5),

whered = & — 4 is th timation error. and > 0 is an observer G(v,z,t) = 0. It follows from assumption 3 thah Fy, (z, v, t) =
eree = ¢ — ¢ Is the estimation error, an@ > 0 IS an ODSEIVEr vy, . 4y, 4) andi (2, ) = — cos 1 /1. Once the regions of attraction

gain. Then, the corresponding observer-based robust control and ultimate boundedness are given, parameteean be computed

stability propert_ieg are proyided by the fqllowing theorem. The pro%ccordingto (20)—(22), gain and design constantcan be determined

of the theorem is |ng|uded in thg APpe”d'X- . using (37) and (38). In the simulation, initial conditions are set to be
Theorem 2: Consider (1) satisfying assumptions 1, 2, 3, and w1, 29,0) = (0.3,0.5,0.12) and (&1, 42, 8,y) = (0.3,0.5,0,0),

Then, if V(. ) is aC” function and ifi([|=())/ v (l[]) is locally  anq the following choices are made/calculated:

Lipschitzian in any closed and bounded set, the stability properties

in theorem 1 can be restated for the observer-based robust control

(12) together with the full order observer (17), (9) and (10) under the ki =b ke=1 1=./g AG(v,z.t)

following additional conditions. = — ||lzllv 4 0.2||z1]* 4 0.3 cos(2¢)

« Local stability of both uniform and ultimate boundedness or local ¢, =1.0 ¢, =102 ¢, =c =0.02
asymptotic stability can be ensured by letting> 1 andlo > 14 ()\WM(P) + %)
and by choosing to be sufficiently small. B ZQW P2 =0.5

« Local stability results can be made semiglobal or global stability Vomin{kz, kiks} 1
can be achieved i3 (||=|]) /7 (||z]|) andBi (z, ) By ' (x, t) are co =c3 =15,c5 =205 cw = Cry = 7
uniformly bounded by some constants and by settin@: be (15|21 (f0)])
a fixed large number and by choosifgand1/u sufficiently o =008 pgle, v,t)
large.

=llell - [[ol] 4+ 05[> 4+ 0.5

c. =c2 = 2.0 ¢z =2¢.

IV. SIMULATION EXAMPLE ) —cs = (C%» 4 1/2
The proposed robust control is applied to control a simple pendulum. i =2¢, ¢y =cp =10 ¢z =2¢, ¢, =10
As sh_own in [5], pendulum dynamics are described by differential €0 =V2 max{L, ky + ka}ew + g 6 =1
equations l
. €2 =V/2 max {kl n Q,kz} £ =001 & =1.13
T =Xy Ty = —?sinml — 7(‘,08.’1)1 +U §=03 =06 \M=1 =2

i i i i As =10 lp =1 p=0.00214, andl, = 78.6.
wherel is the lengthg = 9.8, v is the uncertainty, antl is the con- i ? " ’ L=

trol. It is different from [22] that uncertainty is generated here by an
unknown exogenous system and it must be estimated by a nonlinS8anulation results are shown in Figs. 1 and 2, and they demonstrate the
observer. effectiveness of the proposed control.
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system dynamic(x‘-solld,xz-disned, v-long dashed)

a known function of the state. Instead, they are generated by an exoge-
nous system and remain bounded if the state of the system under control
is bounded. The exogenous system itself could be completely uncertain
as long as its unknown dynamics are bounded by a known function. It
is shown that, without any additional information about the exogenous
system, a stabilizing robust control can be designed by incorporating
either a full- or reduced-order nonlinear observer. Conditions are found
to guarantee either local practical stability, or local asymptotic stability,
or their counterparts of being global/semiglobal.

APPENDIX A

A. Proof of Theorem 1

To establish local asymptotic stability or local uniform ultimate
boundedness, let us consider closed and bounded sets defined by

e llzll <o flyll <oy (12 < e o)l < o (18)

Fig. 1. System variables:; (solid), z, (dotted), and (dashed). wherec,, ¢y, ¢z, ande; are arbitrary but positive constants. It follows

from Assumption 4 and from the definitions:dfand= that inequalities
Error between uncertainty v and its estimate

' loll < co 2]l < ¢2. and||] < cz (19)

o1 i hold for some constants,, c., ¢; > 0. Stability analysis will be done
in three steps, and it is to show that, if initial conditions are within the
closed and bounded sets in (18) and (19), the state variables will remain
in these sets. If so, semiglobal stability is shown since the sets in (18)
are arbitrary.

The first step of stability analysis is to use the local lipschitzian
property stated in Assumptions 1 and 3. It follows that, in closed and

0.08H

0.06 -1

el ] bounded subsets (18) and (19), the following inequalities hold for some
ook | nonnegative constan{s(-): fori = 1, 2:
1 (e, )] <&o(c)
i I F ()] <& ()21l
P I U 1 Fi,t) = Fi(2, )] <&, ca)le — 2] (20)
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 ||G('U7 l" f) _ G(l/j‘ . t) || §£3 (Cl,’ o (/;,)”1‘:'” (21)
Initial transient and
Error between uncertainty v and its estimate
001 ; T T : . T pylz,v,t) < &a(cw,co). (22)

oeer 1 As the second step, we adopt the following Lyapunov function to

0.008} E study stability analysis of the closed-loop system consisting of (9), (13),
(14) and (16): L(x, 2,v,0,y) = L1(&,t)+ L2(Z)+ Ls(0, y), where
Li(&,t) = V(2,t)isgivenby (3).L> = 1/2||Z||?,andL; = 1/2]|o—

000z} 1 y||? + 1/ |5 4 12/2||y||? . It is apparent that the Lyapunov function

o\/\/\/\/\/ is globally positive definite and radially unbounded with respect to its

arguments ass ([ ¥])) < L(z, 2,0, 0,4) < 76([¥])), wherew =

~o002r 1 [#T276TyT]T, andys, ve: RT — RT are clasC.. functions (that
_oooa} ] can be defined in terms ofi (-) and+2(+)).

The time derivative of Lyapunov function can easily be evaluated
wooosr i using (9), (13), (14) and (16). For example, it follows from robust con-
—o.008} . trol (12), from reduced-order observer (9), frabh (x,t) = 0, and
oon . ‘ ‘ ) ) ) ) from inequalities (3) and (4) that, under robust control (12)

2 4 6 8 10 12 14 . avf(i t) - .
Liy=—p"+ ViV (. t)E
.. . NS T
After the initial transient _ov éj,t) ) [F{T(:v,t) F.ZT(;E',t)]
Fig. 2. Estimation error of uncertainty. < —vs(||&]) + ﬁﬂfQ(HifH)
X || Fi(z,t) — Fi(z,t)|]. (23)

V. CONCLUSION
. . . . INote that stability of (16) and (11) are equivalent, that stability of both (9)
In this note, a robust control is designed for a class of uncertain S\ (13) ensures stability of (1), and that, under Assumption 3, stability of (14)
tems. In the systems, uncertainties aotassumed to be bounded byimplies boundedness of (10).
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As the third step, the positive but otherwise arbitrary constants in which the first two terms are negative definite with respect to both
¢y, cz, @andeg in (18) and (19) can always be increased such that, at theandz. The last term in the aforementioned inequality also assumes a
initial time instantt,, the following inequalities hold: nonpositive value in the region

lettoll <55 0 9a(er) lyteol] <270 35(cy) 0< 5" o m(es) S IEI S s es (31)

1)
2t <75 o vs(ez) o)l < 76 osles)  (24)
for the equation shown at the bottom of the pagey i§ chosen such

d
an . . that (32), shown at the bottom of the next page, holds.
lo(to)ll <76 e yalce)  [l2(to)ll < 76 ™ 0 7s(e:) Analogously, ifu < 1/¢,, it follows from (14), (16), (2), (8), (7),
and||(to)]] <5 " 0 s(cs) (25) (22), and (21) and from Cauchy—Schwarz inequality that, given any
where=" ando denote the inverse function and the composition Olpltlal conditions satisfying (24) and (25) and for all trajectories of the

functions, respectively. It follows from (20) and (23) and from Holder’gtate in the hyper-ball defined by (18) and (19),

inequality that, for initial conditions satisfying (24) and (25) andaslong . I 9 \7
as the state stays in the region defined by (18) and (19) Ly <~ 2 <f’ —y+ Ef’) CDS[y, i1, 1 + ¢]

Ly < =yl + B8 (12D (o ca)l1Z]]

1 T ~
1 3. 3. +*(y—l’+lzy)T(—y-|-v)
< = gus(lIzl) +2%/072 1 - ) "

R 2 N
x B2 g2/ (1=82) g1/ (1=2) o=y + 0| g le. v ) + &llo]l]
Vs /(1 =82)
X (easea)lI2 : (26) oy = o+ byllie e
Similarly, it follows from (13), (2), and (6) that, for initial conditions /'_l , o
satisfying (24) and (25) and as long as the state remains in the region % ey ew () + ¢ e (llID)]
defined by (18) and (19) X [[Z[les ([lz]Dew ([[z[DII2]]
- Loy m o 1, .2 ) 2\ -
b < - 2 DS+ + ol <= 01 Py + [ (1 2 ) 1ot + ot
() ew (e |Z] |10 A i
Felen)ew el x (8l + &) + - [lI8 + (L4 B)llyllVic e
<= DR Lis op - e — g2 "
= 1 v x [en'clulen) + ¢y 'eh(en)]

NPT 27) X (e + eo)es(ex)ew(en)|I2]
4N

1 ~ 12 2 1 ~ 112
L= sy 1. < = =l + 1wl = loll”
< - %IIzIIQ + K||u||2 (28) dp ) 4X, )
‘ 2421, +13)nfe, el (cn) + ey ()]
provided thai: is chosen such that + ( 2) [;fcdcg ) ¥ euchlc:)]
=h=w
1 A 2 : i
0<p< min{ el o )\2 — } ES #,- (29) X (co + co)’eh (co)ch (ca) |12
(/z_ €z 2 1(1,(/‘1“ . 1 - )\1[2 - [,llz - 4#/\1(12 + 2)53 - 2;1‘/\11253
In (28), A1, A2 > 0 are design parameters that could be chosen arbi- - l—l||’U|| N
trarily, and L, has a negative definite term with respectté.e., the Iy 4+ 2
first term) as long aé > A2. Combining (26) and (28) and making N %54}
11 > A2+ A3 (for an arbitrarily chosen design parameter> 0) yield : 2
1 1 — pé&s
. . 1 . Ii— Ay — Az _ = — bl
Lyt By < = () = === ol 5~ e (33)
+ 1 o) = 1”2” If  is chosen to satisfy (34), as shown at the bottom of the next page,
4\ H the last two terms in (33) are negative semidefinite in the hyper-annulus

- B2/ (1—35 P al/(1—3:
x [allzll = n2%/ 00 (1= )}/ 0 27" 0 vs(en) <Nl < v+ o, and
6 5 €0) S|V S Co Oy

2B2/(1—B2) 1/(1=B2) ) =1 B2/ (1—F _
X '/j§2/( ﬁ2)£1/( 2)”2” 2/ /_)] (30) Ve ! ovs(ey) <yl < ey (35)
. 0, if <<l
* =\ any positive number smaller thatin {76 0ovs(e")/ V3,75 o vs(er +ea) ), IFO< B2 <05
0<p < 2
N li%z2—52/(1—/92)’31*1/(1752)ﬂ;%/(lfﬁz)f;l/(lfﬂz)(CJ; + ci)—(z,é’z—l)/(l—ﬁz) if0.5< 3 <1 2
li%z2—/‘72/(1—[-)2)’31—‘/(1—»92)/32—;92/(1—,32)51—1/(1—1-12) [76—1 o 3”5(@)](1_232)/(1_ﬂz) if0< B < 0.5.
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where ¢; and ¢, are positive constants satisfyings < APPENDIX B
min{y; o 5()/V3.5 " o (e + )} and e, <
min{vg " o 5 (") /V3, 75" 0 vs(cy) ). A. Outline of the Proof of Theorem 2

Note that the upper bounds for the regions in (31) and (35) are COMNote that two parts of the full-order observer are given by (9) and

sistent with those of the hyper-balls in (18) and (19). Consequently iIO) as before and that the same robust control (12) is applied. Conse-
follows from (30) and (33) that, given any initial conditions satisfyin%

ently, the proof here can be done by mimicking that of Theorem 1,
(24) and (25) and for all trajectories of the state in the hyper-ball/a i P ¥ mitmicxing

\ nd only the differences are provided here.
nulus defined by (18), (19), (31), and (35) The first difference is that, under control (12), the error dynamics for

. . . 1 . Ii = Ao — Az . estimatings are
Li+Ly+Ls <— 57’3(”-’””) et El [
-~ - ]1 1
1 o . y — T Vie. o — — . T
_ @(”U”Z_{_”y”Z) [0} Bl(l,,t)“(b/f)b MZBl(l/t)BQ (L,f)
5 . N { ~
n (2 + 215 + B3)nfe, s (cx) + cpchles)]? xCDS[z, u, 1 + 8] — %CDS[@, w1468 (39)
1ey e, a
X (o + o) i (ea )i (e |2 (36) Second, choose Lyapunov function to &, &, 2, v, 0, y,1) =

o _ - . . _ Lo(6,#.t) 4+ Ls(3) + Ls(i.y), where V(i.t), L, and
which is negative definite provided that is chosen according to the Ls are the same as beforé, > 0 is a design parameter

inequality Wit) = [Ga, V(@) e, . V(E)]", and Lo(,4,1) =
il T T4 —1 . 2
1 (2 + 20 + B)nleych(c2) + e chlcn)] VkolV(@ )+ o hz. 1) —h (2, 8)Bi(x,H)B; (. )] +1/2[|o]",
Lz +h+As+ e [;4p4 ) b(cs)] Third, together with sets (40), (18), and (19), also consider the set
Lyl
2 2 2 R
X(eoteo) e (ex)eul(es) (37) 16l < e, andll9] < c; (40)

and thatu is chosen according to , . -
wherec, andc; are arbitrary but positive constants. Within these sets,

(38) inequalities (20) up to (22) can be re-established and, Sifice is
aC” function, there are functions,; andcy,» such that|dh/dz|| <

wherey are defined by (29), (32), and (34). It follows from [21, Th.ci(c:) and||0h/0t|| < cua(cs)ya(l|2]). Itis apparent from Assump-

2.15, p. 65] that, given any initial conditions satisfying (24) and (25), diion 3 that, by choosing

state variables (including, y, Z, v, ando) will stay in the hyper-balls ' '

defined by (18), (19), (31), and (35), and that state variables and Fo> max vl {1 ch(ca) }

y will eventually converge into a hyper-ball of radius less or equal to 0<a<es Y1(a) s

€". That is, the first two statements are shown.

If 32 > 0.5, ¢z = 0 can be selected. On the other hand= ¢, = 0 Lyapunov functionL(-) is semiglobally positive definite and ra-
can be set only whefy = 0 as shown in the last equation at the bottorglially unbounded with respect to its arguments a$||®||) <
of the page. It is easy to see that asymptotic stability can be concluded®: ¢, 2, v,2,y) < vs(||®[|), where® = [#"6"z"27y"]", and
provided thae: = e; = ¢, = 0. vr, 72t RT — R are classC.., functions.

If F(x,t) = A(x,t)e andG(v, 2, t) = H(x,t)v for uniformly Fourth, stability analysis is done for initial conditions satisfying
bounded matricesi(x, ¢t) and H(z,t) and and ifp,(x, v, t) is also
uniformly bounded; in (20) up to (22) are constants independent||®(to)]l < vs ' o y7(min{ee, ey + ¢y, + ez, 0 + Coy ey }). (41)
of the sets defined in (18) and (19). B (x, )W (x,t) = D(¢) for
a matrix D(t), the last term in (16) and (36) disappears. These twibis obvious that, ity7 (||=|)/~1(||z||) and By (z, t)B; ' (2, t) are uni-
results together with < 3. < 0.5 make it possible to choode and formly bounded by some constants, Lyapunov functidrbecomes
1 globally in the state—space of y, Z, v, ando. Thus, global stability globally positive definite. Furthermore, by choosing a fixedwhich
can be claimed. O s possible if+3 (||||) /1 (||=||) andBi (=, ) By ' (, ) are uniformly

Remark: Given any conservative estimate of initial conditions, theounded by some constants and jf/; in (43) is bounded), inequality
set of semi global stability can be calculated using (24) and (25). Hen¢£1) can be satisfied for any given initial condition by increasing the
(38) and (37) together with (20) up to (22) provide the criteria for sesize of closed and bounded sets under consideration. Otherwise, con-
lecting control gains and design parameters. o dition (41) may not be satisfied semiglobally.

po<min{p g, g}

Lo (e / e
0 < p < min {i e ©5(ey) A7 @ 3s(€0) (34)

L
ey Esvg osley) + 260 [la + 424 1) Miés 4 2M116]0 o vs(es) +4A (24 12)& } 5

Iim p, =

e’;,,éy—>0—3

{0, if &4 >0

ind L _L I3 if&,=0 -
min { cy? 2837 In+4(2+12) X 1€3+20112€2 } >0, if&s=0
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’ 3}10_(&&)211

343

%(1_32)0&/@32)(8’52)32/(1#?2)&&2,324)/(1432) I 26230 oow | Chk10€1 I

1
le—(lz’g

[1>

k

10 B2 (0/1)(1 /82) [8(1_j32)](1#72)/(,32)(ag)(‘—mz)/ﬂz

Cbgw'i‘;T%"i'%(l_ﬁQ )aé/(l—gz

s 0 77(€") 12\ 175 © y7(€")

) (8 )/32)/(%)a(fﬂ?*)/(%br%/32(%)(1/52) [8(1732)](H92)/ 52 (0 ) (+252) B g Sk 3 2,

5 A .
[13 = 1min

263794 © ’}"7(6*)-1-854'/ [ToA4(2H2) A1 34201 12€2]7a © v (€ )HL6A (242 )éx

b

o !

! !
g = cp + oy, g =y =
— — 1
g = x7 = 178

117_8‘ ovr(e€),ar =c.+cz, F0D< <]
oyr(e"), ag =cy + Cg/),a:; =c,4ecz, If0< 52 <0.5.

The fifth and final difference is the time derivative of Lyapunov func- [2]
tion. It follows that, choosing

[3]
! 2 (42)

max{cy + ¢, o ez 0y} 1
[4]
expressions aof, andLs are the same as those given by (27) and (33),
respectively. It is straightforward to obtain the expressioﬁ’dﬁy de-
riving the expression af, under robust control (12) [together with (9)
and (17)] and under (42) and then combining the outcome with those
of Ly andLs. Then, given any™ < v ' o y7(min{cz, cs + c5.0- +
¢z,¢0 + co, ¢y H), the time derivative of Lyapunov functiah'(-) can
be evaluated in the region defined py|| < ¢z, 1/295" o ()< 7
161l < eoteg1/29 Hor(e) < EI < exbes, 1/295 oyr(€) <
5] <eco + co, and1/2v5 " o 42(e*) < ||yl < cy. This regionis (8]
consistent with those in (40), (18) and (19). One can show that, in the[9]
region, inequality

(5]

i< [10]

1 R L ie oo
s ) = 20917 + )

[11]
holds provided thaky, Iy, I; andy are chosen according to the fol- [12]
lowing conditions:

[13]

l1 >4as lo > 4(a%)’ly
l 14
ko > max {2%1-, 40y, 20 %} , and [14]
Ji < min {ﬁo’ ﬂll , E;, ﬂ;} (43) [15]
[16]

wherey is given in (42); see the first equation shown at the top

of the page.c; and o/ are constants that are independentkef [17]
I, lIp and pp and are given byw; = 31 (& + che + &0/c,), (18]
af = eniy, az = big &6y + cmere, + E2cney, + ¢ (e + ) + [19]
[20]
Ay + )b + Vnescw(co + o)l p/cr, ab = cnibocn/cy, 2
az = cmb(I+e/g), Oféd = /g, o = cne/g, [22]

oy = nescy(e, +en)Bivst(en)/ch, as = emcséi/c,,

as = (242 +1)nlecl, + el ee 4+ co)ichcl /(e
and the second set of equations at the top of the page. O [23]
[24]
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