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VI. CONCLUSION

In this note, we have studied different concepts of nonlinear iden-
tifiability in the linear algebraic framework. Constructive procedures
have been worked out for both geometric and algebraic identifiability
of nonlinear systems. Relationships between different concepts have
been completely characterized. As an application of the theory devel-
oped, we investigated the identifiability properties of a four dimen-
sional model of HIV/AIDS. The questions answered in this study in-
clude the minimal number of measurement of the variables for a com-
plete determination of all parameters and the best period of time to
make such measurements. This information will be useful in formu-
lating guidelines for the clinical practice.
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Robust Control of Nonlinear Systems in the Presence of
Unknown Exogenous Dynamics

Zhihua Qu and Yufang Jin

Abstract—A robust control is designed for a class of uncertain systems,
and it is distinct and novel that the proposed control does not require any in-
formation of a bounding function on nonlinear uncertainties in the system.
Instead, the uncertainties to be compensated for are generated by an exoge-
nous system whose dynamics are either completely unknown or partially
unknown. The only requirements on the exogenous system are that its un-
known dynamics are bounded by a known function and that its output is
bounded. The proposed robust control is based on a nonlinear observer that
estimates the uncertainties. It is shown that, under different sets of condi-
tions, local, semiglobal, or global stability of uniform ultimate boundedness
or asymptotic stability can be achieved.

Index Terms—Bounding function, estimation, Lyapunov direct method,
nonlinear uncertainty, observer, robust control.

I. INTRODUCTION

Robustness is one of the essential concepts in control theory.
Roughly speaking, a control system is robust if stability and per-
formance can be maintained under a specific class of uncertainties
which could be unknown functionals, parameter variations, unmod-
eled dynamics, disturbances, etc. Robust control of nonlinear uncer-
tain systems has attracted a lot of attention. Classes of stabilizable
uncertain systems have been found, and several robust control de-
sign procedures have been proposed [4]–[7], [9], [10], [12], [15],
[19]–[21], [24], [26].

In most of the existing results, robust controls are designed to
deal with significant but bounded uncertainties by assuming a known
bounding function on the size of uncertainties. While uncertainties
being bounded ensures that a stabilizing control (if found) will be of
finite magnitude, determining a known bounding function of uncer-
tainties is a nontrivial issue in many applications. Without knowledge
of the bounding function, robust control must be designed to learn
the size of uncertainties while compensating for them. To this end,
progress has been made by combining robust and adaptive control
designs. In [6], the robust control design problem is investigated
under the assumption that the bounding function has a known func-
tional expression and it is parameterized in terms of finite unknown
constants. In this case, an adaptive robust control was proposed to
adaptively estimate the unknown parameters in the bounding func-
tion. In [22], an extension is made so that the bounding function can
be parameterized in terms of time varying parameters. Specifically,
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if the time varying parameters are outputs of a known or partially
known exogenous system and if certain properties (such as having
a known Lyapunov function) are met by the exogenous system, the
bounding function can also be estimated using an adaptation law
and a stabilizing robust control can be found. For existing results on
nonlinear output feedback and observer designs, readers are referred
to [1]–[3], [13], and [14].

In this note, robust control is sought so that stability and performance
can be ensured under less priori information on the size of uncertainties.
Specifically, the uncertainties in the system are assumed to be bounded
(but their bounding function is not known or needed), and they are also
the outputs of an exogenous system. Compared to [22], the proposed
result in this note does not require any explicit stability property (other
than boundedness) for the exogenous system. This improvement sig-
nificantly reduces the knowledge needed for robust control design, and
it is accomplished by using nonlinear observers (rather than adaptation
laws in [22]). It is shown that, depending upon the location of uncer-
tainties, a reduced-order or full-order nonlinear observer can be de-
signed to estimate the uncertainties. It is also shown that local stability
of uniform ultimate boundedness can be achieved under the proposed
robust control. Under additional conditions, the stability result can be
enhanced to be either semiglobal, or global, or asymptotic, or asymp-
totic and global.

II. PROBLEM FORMULATION

In this note, we consider the class of uncertain systems that are of
form

_x = F (x; t) +B(x; t)[�Fm(x; �; t) + u] (1)

wherex(t) 2 <n is the state of the system,X(t) = fx(� ); 0 � � �

tg, 
(X) � <p is an unknown set that may be dependent upon state
trajectory and is bounded ifX is uniformly bounded,�(t) 2 
(X) de-
notes the vector of uncertainties (and it is also the state of the so-called
exogenous subsystem to be defined shortly),u(t) 2 <m (withm � n)
is the control to be designed,F (x; t) andB(x; t) are known parts of
the system dynamics, and�Fm(x; �; t) denotes the matched uncer-
tainties.

The robust control problem is to design a controlu(x; t) such that,
under the following four assumptions, the resulting closed-loop system
is stable (in the sense of either asymptotic stability or stability of uni-
form ultimate boundedness (which also called practical stability) [5],
[21]) for all possible values of uncertain vector�(t) in theunknownset

(X).

Assumption 1:All functions in (1) are Caratheodory, locally Lips-
chitzian with respect tox and�, uniformly bounded with respect tot,
and locally uniformly bounded with respect tox or�. Furthermore, ma-
trix B(x; t) has the properties thatB(x; t) = [BT

1 (x; t) BT
2 (x; t) ]

T

whereB�12 (x; t) 2 <m�m exists, and first-order partial derivatives of
B1(x; t),B2(x; t) andB�12 (x; t) are well defined everywhere and lo-
cally uniformly bounded. Specifically, for all(x; v; t) and for alli

cb �kB2(x; t)k kB(x; t)k � cb(kxk)

@B(x; t)

@xi
�c0b(kxk)

@B(x; t)

@t
� c

00

b (kxk) (2)

wherecb(�) and c0b(�) are nonnegative and nondecreasing functions,
andcb > 0 is a constant.

Assumption 2:The originx = 0 is globally asymptotically stable
for nominal system of (1),_x = F (x; t). Therefore, by the Lyapunov

converse theorem [12], there exist aC1 functionV (x; t):<n � < !

<+ such that

1(kxk) �V (x; t) � 2(kxk)

@V (x; t)

@t
+5T

x V (x; t)F (x; t) �� 3(kxk)

5T
x V (x; t) �4(kxk) (3)

wherei:<+ ! <+ are classK1 functions and, for some constants
�1 > 0 and0 < �2 < 1,

4(kxk) � �1
�
3 (kxk): (4)

The first two are typical (and in line with the standard ones in [12]).
Existence of0 < �2 < 1 in (4) is equivalent to stability of bounded-
ness under a constant-bounded disturbance for the uncontrolled nom-
inal system_x = F (x; t). Assumption 2 can be relaxed such that, if
_x = F (x; t) + B(x; t)u is unstable whenu = 0, there is a known
stabilizing control. The next two assumptions are regarding the uncer-
tainties, including those on an exogenous system.

Assumption 3:Set
(X) is bounded ifX is bounded, and the un-
certainties are generated by an exogenous system as follows:

�Fm(x; �; t) =W (x; t)�(t)

_� =G(�; x; t) + �G(�; x; t) (5)

whereW (x; t) is a known functional matrix bounded by a nonnegative,
nondecreasing functioncw(�) as, for all(x; t)

kW (x; t)k � cw(kxk): (6)

G(�; x; t) + �G(�; t) represents dynamics of the exogenous sub-
system,G(�; x; t) has a known functional form, and�G(�; x; t) is
completely unknown except that

k�G(x; �; t)k � �g(x; �; t) (7)

and�g(�) is known,�g(�) andG(�; x; t) are Caratheodory and locally
Lipschitzian functions that are uniformly bounded with respect tot and
locally uniformly bounded with respect tox and�.

Note that�G(�; x; t) in the exogenous system is unknown except
for its bounding function and there is no restriction on the magnitude of
the bounding function and that all of the exogenous dynamics could be
unknown (i.e.,G(�; x; t) = 0). In essence, it is only required that ex-
ogenous dynamics be bounded-input–bounded-state ifx were viewed
as the input.

The fourth assumption is introduced in order to ensure nonlinear
observability and to expose the main idea of the note without undue
complexity. It is easy to see thatp < m can be treated by simply aug-
menting exogenous system (5) using_vj = 0 (j = p + 1; . . . ; m). In
case thatp > m, estimation of� would impose certain observability
conditions on matrixW (x; t) and on dynamics�G(�; x; t). The ob-
servability condition can be readily developed by noting that, instead
of imposing a bounding function on uncertainty�Fm(�), a bounding
function can be introduced on�G(�) and that a new reduced-order
vectorv0(t) = W (x; t)v(t) can be defined and its dynamics can be de-
rived. Hence, the process of combining these two facts should be used
to overcome the restriction on the dimension of the exogenous system
in the sense that bounding function on�G(�) is not needed if�G(�) is
parameterized by outputs of another exogenous subsystem and/or that
only a reduced-order exogenous system needs to be estimated in robust
control design.

Assumption 4:Exogenous system (5) is of dimensionp wherep =

m, and matrixW (x; t) and its inverse are differentiable and well de-
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fined everywhere, that is, for a nondecreasing functionc0w(�) and a con-
stantcw > 0

cw � kW (x; t)k; and
@W (x; t)

@xi
� c0w(kxk): (8)

III. N ONLINEAR OBSERVER-BASED ROBUSTCONTROLS

The proposed robust controls are capable of compensating for un-
certainties generated by an unknown exogenous system because they
are based on a robust observer estimating uncertainties. While not
necessary due to the absence of backstepping or high-order obser-
vation, we choose to introduce functionCDS[�] as, for any given
pair of constants�, � > 0 and for any vector argumenty 2 <m,
CDS[s; �; 1 + �]:<m ! <m and its ith element is defined by the
equation shown at the bottom of the page. CDS stands for continu-
ously differentiable saturation, the function has a continuous deriva-
tive bounded by�, and it makes the resulting robust controls con-
tinuously differentiable. It becomes the standard saturation function
SAT[�y; 1] in the limit of � ! 0, and tends to the standard sign
function in the limit of both� ! 0 and� ! 1. For the proposed
observer design, design constants are chosen such that0 < � � 1

and� > 0, and the guaranteed stability region will depend on�. Note
that, in both observer designs, statex is available for feedback but it
will be estimated bŷx as an “output” because the output estimation
error (x � x̂) is required as the feedback by the observers in order
to estimate uncertainty�.

A. Reduced Order Nonlinear Observer and Robust Control

Let xi, fi(�) andbi(�) denote theith rows ofx, F (�) andB(�), re-
spectively. Also, let

x =[�T ; zT ]T � [x1x2 . . . xn�m]
T

z [xn�m+1; . . . xn]
T

F (x; t) = F T
1 (x; t)FT

2 (x; t)
T

wherez andF2(�) be the bottommth order vector blocks inx and
f(x; t), respectively.

If B1(x; t) = 0, state variables in� are independent of uncertain-
ties and need not be estimated. In this case, letẑ be the estimate ofz
and set̂x = [x1 x2 � � � xn�m ẑT ]T be the estimate ofx. Then, the fol-
lowing reduced-order observer is proposed to estimate the uncertainties
generated by unknown exogenous system (5): withẑ(t0) = z(t0) and
�̂(t0) = 0

_̂z =F2(x̂; t) +B2(x; t)[u+W (x; t)�̂]

+
l1
�2

CDS[~z; �; 1 + �] (9)

_̂� =G(�̂; x; t) +
l2
�2

CDS[y; �; 1 + �] (10)

where�̂ is the estimate of uncertainty vector�, ~z = z�ẑ and~� = ���̂
are estimation errors,~z = z � ẑ is also the “output error,”li > 0 are

scaling factors of reduced-order observer gains;y is the output of the
auxiliary system given by

� _� =� � +
l1
�2

S�1(x; t)CDS[~z; �; 1 + �]

�
1

�
S�1(x; t)~z �

@S�1(x; t)

@t
~z

�

n

i=1

@S�1(x; t)

@xi
~z ffi(x; t) + bi(x; t)[u+W (x; t)�̂]g

+ S�1(x; t)[F2(x̂; t)� F2(x; t)]

y =
1

�
S�1(x; t)~z + � (11)

with �(t0) = 0 [and, hence,y(t0) = 0 for (15)] andS(x; t) =
B2(x; t)W (x; t).

Now, consider the following observer-based robust control:

u = �W (x; t)�̂ �
l1
�2

B�1
2 (x; t)CDS[z � ẑ; �; 1 + �] (12)

whereẑ and �̂ are defined by (9) and (10). Then, under robust con-
trol (12), equation (9) becomes_̂z = F2(x̂; t), and the estimation error
system becomes

_~z = [F2(x; t)� F2(x̂; t)] +B2(x; t)W (x; t)~�

�
l1
�2

CDS[~z; �; 1 + �] (13)

_~� = [G(�; x; t)�G(�̂; x; t)] + �G(�; x; t)

�
l2
�2

CDS[y; �; 1 + �]: (14)

On the other hand, it follows from auxiliary system (11) that, using
differential operators = d=dt

y =
1

�s+ 1
S�1(x; t)s~z

+
1

�s+ 1

l1
�2

S�1(x; t)CDS[~z; �; 1 + �]

+
1

�s+ 1
S�1(x; t) [F2(x̂; t)� F2(x; t]

+
1

�s+ 1

n

i=1

@S�1(x; t)

@xi
~zbi(x; t)W (x; t)~�: (15)

Substituting error dynamics (14) into (15) yields

� _y = �y + ~� +

n

i=1

@S�1(x; t)

@xi
~zbi(x; t)W (x; t)~� (16)

which shows that the auxiliary outputy in (11) is a filtered version of~z
through a combination of low-pass and high-pass filters, saturation, and
nonlinear weighting. This property is instrumental in establishing the
following theorem on stability of an observer-based robust control and
its associated closed loop system. The proof of the theorem is included
as Appendix A.

Theorem 1: Consider (1) satisfying assumptions 1, 2, 3, and 4. If
B1(x; t) = 0, the following stability properties are ensured by robust
control (12) with any fixed value ofl2 > 0.

• For any initial conditions ofx(t0), ẑ(t0), y(t0), �(t0), and
�̂(t0), the corresponding state variables will be uniformly

CDSi[y; �; 1 + �] =

�yi; if j�yij � 1

1 + � 1� e�(1=�)(�y �1) ; if �yi > 1

�1� � 1� e�(1=�)(��y �1) ; if �yi < �1.
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bounded in a hyper-ball (whose radius is a class-K function
of their initial conditions) for all sufficiently large values ofl1
and 1=�.

• Given any positive constant�� as the ultimate bound, state
variablesx, ~z, y, and ~� will be uniformly ultimately bounded
with respect to�� for all sufficiently large values ofl1 and
1=�.

• If �2 � 0:5 and if�G(x; �; t) = 0, state variablesx, ~z, y, ~�, and
�̂ will be asymptotically stable for all sufficiently large values of
l1 and1=�.

• Stability of uniform boundedness and asymptotic stability will
be global ifF (x; t) = A(x; t)x andG(�; x; t) = H(x; t)�

for some uniformly bounded matricesA(x; t) andH(x; t), if
B2(x; t)W (x; t) = D(t) for a matrixD(t), if 0 < �2 � 0:5,
and if�g(x; �; t) is also uniformly bounded by a constant.

B. Full Order Nonlinear Observer and Robust Control

For the general case thatB1(x; t) 6= 0, it is necessary to account
for the impact of uncertainties on� (the top partition ofx) in stability
analysis and control design. To this end, a full-order observer is to be
designed to generate the estimate ofx, i.e., x̂ = [�̂T ẑT ]T . The pro-
posed full-order observer is described by (9)–(11), and

_̂
� =F1(x; t) +B1(x; t) [u+W (x; t)�̂]

+
l1
�2

B1(x; t)B
�1
2 (x; t)CDS[~z; �; 1 + �]

+
l0
�2

CDS[~�; �; 1 + �] (17)

where ~� = � � �̂ is the estimation error, andl0 > 0 is an observer
gain. Then, the corresponding observer-based robust control and its
stability properties are provided by the following theorem. The proof
of the theorem is included in the Appendix.

Theorem 2: Consider (1) satisfying assumptions 1, 2, 3, and 4.
Then, ifV (x; t) is aC2 function and if24(kxk)=1(kxk) is locally
Lipschitzian in any closed and bounded set, the stability properties
in theorem 1 can be restated for the observer-based robust control
(12) together with the full order observer (17), (9) and (10) under the
following additional conditions.

• Local stability of both uniform and ultimate boundedness or local
asymptotic stability can be ensured by lettingl1 � 1 andl0 � l1
and by choosing� to be sufficiently small.

• Local stability results can be made semiglobal or global stability
can be achieved if24(kxk)=1(kxk) andB1(x; t)B

�1
2 (x; t) are

uniformly bounded by some constants and by settingl0=l1 be
a fixed large number and by choosingl1 and 1=� sufficiently
large.

IV. SIMULATION EXAMPLE

The proposed robust control is applied to control a simple pendulum.
As shown in [5], pendulum dynamics are described by differential
equations

_x1 = x2 _x2 = �g

l
sinx1 � �

l
cosx1 + U

wherel is the length,g = 9:8, � is the uncertainty, andU is the con-
trol. It is different from [22] that uncertainty� is generated here by an
unknown exogenous system and it must be estimated by a nonlinear
observer.

Consider the controlU = �k1x1 � k2x2 + u, whereu is robust
control (12) in Theorem 1. Assumption 2 holds, where the Lyapunov
function is

V (x) =xTPx+
2g

l
(1� cos x1) with

P =
k1 + 0:5k22 0:5k2

0:5k2 1
:

The corresponding class-K1 functions are

1(kxk) =�min(P )kxk2
2(kxk) =�max(P )kxk2

+
2g(1�cos kxk)

l
kxk � �

4g
l

kxk > �

k01 =k1 � g

l
sup
x 2<

sinx1
x1

3(kxk) =minfk2; k01k2gkxk2

4(kxk) =2 �max(P ) +
g

l
kxk

5(k	k) =min �min(P );
1

2
;
1

l2
;
l2
2

k	k2

6(k	k) =max �max(P );
1

2
;
l2 + 1

l2
;
l2 + 2

2
k	k2

where �min(P ), �max(P ) = 0:5 1 + k1 + 0:5k22�
(1 + k1 + 0:5k22)

2 � 4(k1 + 0:25k22) , andk01 > 0.
Estimation of the uncertainty is done for the worst case that, in (5),

G(�; x; t) = 0. It follows from assumption 3 that�Fm(x; �; t) =
W (x; t)�(t)andW (x; t) = � cos x1=l. Once the regions of attraction
and ultimate boundedness are given, parameters�i can be computed
according to (20)–(22), gainl1 and design constant� can be determined
using (37) and (38). In the simulation, initial conditions are set to be
(x1; x2; �) = (0:3; 0:5; 0:12) and (x̂1; x̂2; v̂; y) = (0:3; 0:5; 0; 0),
and the following choices are made/calculated:

k1 =5 k2 = 1 l =
p
g �G(�; x; t)

=� kxk� + 0:2kx1k2 + 0:3 cos(2t)

cb =1:0 cb = 1:02 c0b = c00b = 0:02

�1 �2 �max(P ) +
g
l

minfk2; k01k2g
�2 = 0:5

c� =c�̂ = 1:5; c~� = 2c� cw = c0w =
1

l

c! =cos
(1:5jx1(t0)j)

l
�g(x; �; t)

=kxk � k�k+ 0:5kx1k2 + 0:5

cz =cẑ = 2:0 c~z = 2cz

cx =cx̂ = c2� + c2z
1=2

c~x =2cx cv = cv̂ = 1:0 c~v = 2cv cy = 1:0

�0 =
p
2maxf1; k1 + k2gcx + g

l
�1 = 1

�2 =
p
2max k1 +

g

l
; k2 �3 = 0:01 �4 = 1:13

� =0:3 �� = 0:6 �1 = 1 �2 = 2

�3 =10 l2 = 1 � = 0:00214; andl1 = 78:6:

Simulation results are shown in Figs. 1 and 2, and they demonstrate the
effectiveness of the proposed control.
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Fig. 1. System variables:x (solid),x (dotted), andv (dashed).

Fig. 2. Estimation error of uncertainty�.

V. CONCLUSION

In this note, a robust control is designed for a class of uncertain sys-
tems. In the systems, uncertainties arenot assumed to be bounded by

a known function of the state. Instead, they are generated by an exoge-
nous system and remain bounded if the state of the system under control
is bounded. The exogenous system itself could be completely uncertain
as long as its unknown dynamics are bounded by a known function. It
is shown that, without any additional information about the exogenous
system, a stabilizing robust control can be designed by incorporating
either a full- or reduced-order nonlinear observer. Conditions are found
to guarantee either local practical stability, or local asymptotic stability,
or their counterparts of being global/semiglobal.

APPENDIX A

A. Proof of Theorem 1

To establish local asymptotic stability or local uniform ultimate
boundedness, let us consider closed and bounded sets defined by

kxk � cx kyk � cy kẑk � cẑ k�̂k � c�̂ (18)

wherecx, cy , cẑ , andc�̂ are arbitrary but positive constants. It follows
from Assumption 4 and from the definitions ofx̂ andz that inequalities

k�k � c� kzk � cz ; andkx̂k � cx̂ (19)

hold for some constantsc�; cz ; cx̂ > 0. Stability analysis will be done
in three steps, and it is to show that, if initial conditions are within the
closed and bounded sets in (18) and (19), the state variables will remain
in these sets. If so, semiglobal stability is shown since the sets in (18)
are arbitrary.

The first step of stability analysis is to use the local lipschitzian
property stated in Assumptions 1 and 3. It follows that, in closed and
bounded subsets (18) and (19), the following inequalities hold for some
nonnegative constants�i(�): for i = 1; 2:

kF (x; t)k ��0(cx)

kF (x; t)k ��00(cx)
1��
3 (kxk)

kFi(x; t)� Fi(x̂; t)k ��i(cx; cx̂)kx� x̂k (20)

kG(�; x; t)�G(�̂; x; t)k ��3(cx; c�; c�̂)k~�k (21)

and

�g(x; �; t) � �4(cx; c�): (22)

As the second step, we adopt the following Lyapunov function to
study stability analysis of the closed-loop system consisting of (9), (13),
(14) and (16)1: L(x; ẑ; �; �̂; y) = L1(x̂; t)+L2(~z)+L3(~�; y), where
L1(x̂; t) = V (x̂; t) is given by (3),L2 = 1=2k~zk2, andL3 = 1=2k~��
yk2+1=l2k~�k

2+ l2=2kyk
2. It is apparent that the Lyapunov function

is globally positive definite and radially unbounded with respect to its
arguments as5(k	k) � L(x; ẑ; �; �̂; y) � 6(k	k), where	 =
[x̂T ~zT ~�T yT ]T , and5; 6:<+ ! <+ are classK1 functions (that
can be defined in terms of1(�) and2(�)).

The time derivative of Lyapunov function can easily be evaluated
using (9), (13), (14) and (16). For example, it follows from robust con-
trol (12), from reduced-order observer (9), fromB1(x; t) = 0, and
from inequalities (3) and (4) that, under robust control (12)

_L1 =
@V (x̂; t)

@t
+5T

x̂ V (x̂; t) _̂x

=
@V (x̂; t)

@t
+5T

x̂ V (x̂; t) F T
1 (x; t)F T

2 (x̂; t)
T

�� 3(kx̂k) + �1
�
3 (kx̂k)

� kF1(x; t)� F1(x̂; t)k: (23)

1Note that stability of (16) and (11) are equivalent, that stability of both (9)
and (13) ensures stability of (1), and that, under Assumption 3, stability of (14)
implies boundedness of (10).
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As the third step, the positive but otherwise arbitrary constantscx,
cy, cẑ , andc�̂ in (18) and (19) can always be increased such that, at the
initial time instantt0, the following inequalities hold:

kx(t0)k ��16 � 5(cx) ky(t0)k � �16 � 5(cy)
kẑ(t0)k ��16 � 5(cẑ) k�̂(t0)k � �16 � 5(c�̂) (24)

and

k�(t0)k ��16 � 5(c�) kz(t0)k � �16 � 5(cz)
andkx̂(t0)k ��16 � 5(cx̂) (25)

where�1 and� denote the inverse function and the composition of
functions, respectively. It follows from (20) and (23) and from Holder’s
inequality that, for initial conditions satisfying (24) and (25) and as long
as the state stays in the region defined by (18) and (19)

_L1 �� 3(kx̂k) + �1
�
3 (kx̂k)�1(cx; cx̂)k~zk

� � 1

2
3(kx̂k) + 2� =(1�� )(1� �2)

� �
1=(1�� )
1 �

� =(1�� )
2 �

1=(1�� )
1

� (cx; cx̂)k~zk1=(1�� ): (26)

Similarly, it follows from (13), (2), and (6) that, for initial conditions
satisfying (24) and (25) and as long as the state remains in the region
defined by (18) and (19)

_L2 �� l1
�2

~zTCDS[~z; �; 1 + �] + �2k~zk2

+ cb(cx)cw(cx)k~zkk~�k
� � l1 � �2

�
k~zk2 � 1

�
k~zk2 �2 � ��2 � ��1c

2
bc

2
w

+
1

4�1
k~�k2 (27)

�� l1 � �2
�

k~zk2 + 1

4�1
k~�k2 (28)

provided that� is chosen such that

0 < � < min
1

cz + cẑ
;

�2
�2 + �1c2bc

2
w

�
1
: (29)

In (28),�1; �2 > 0 are design parameters that could be chosen arbi-
trarily, and _L2 has a negative definite term with respect to~z (i.e., the
first term) as long asl1 > �2. Combining (26) and (28) and making
l1 > �2+�3 (for an arbitrarily chosen design parameter�3 > 0) yield

_L1 + _L2 �� 1

2
3(kx̂k)� l1 � �2 � �3

�
k~zk2

+
1

4�1
k~�k2 � 1

�
k~zk

� �3k~zk � �2� =(1�� )(1� �2)�
1=(1�� )
1

� �
� =(1�� )
2 �

1=(1�� )
1 k~zk� =(1�� ) (30)

in which the first two terms are negative definite with respect to both
x̂ and~z. The last term in the aforementioned inequality also assumes a
nonpositive value in the region

0 � �16 � 5(�~z) � k~zk � cx + cx̂ (31)

for the equation shown at the bottom of the page, if� is chosen such
that (32), shown at the bottom of the next page, holds.

Analogously, if� < 1=cy, it follows from (14), (16), (2), (8), (7),
(22), and (21) and from Cauchy–Schwarz inequality that, given any
initial conditions satisfying (24) and (25) and for all trajectories of the
state in the hyper-ball defined by (18) and (19),

_L3 �� l2
�2

~� � y +
2

l2
~�

T

CDS[y; �; 1 + �]

+
1

�
(y � ~� + l2y)

T (�y + ~�)

+ ~� � y +
2

l2
~� [�g(x; v; t) + �3k~�k]

+
1

�
ky � ~� + l2yk

p
nc�1b c�1w

� c�1w c0w(kxk) + c�1
b c0b(kxk)

� k~zkcb(kxk)cw(kxk)k~�k
� � 1

�
(k~�k2 + kyk2) + 1 +

2

l2
k~�k+ kyk

� (�3k~�k+ �4) +
1

�
[k~�k+ (1 + l2)kyk]

p
nc�1

b c�1
w

� c�1
w c0w(cx) + c�1

b c0b(cx)

� (c� + c�̂)cb(cx)cw(cx)k~zk
� � 1

4�
(k~�k2 + kyk2)� 1

4�1
k~�k2

+
(2 + 2l2 + l22)n[cbc

0

w(cx) + cwc
0

b(cx)]
2

�c4bc
4
w

� (c� + c�̂)
2c2b(cx)c

2
w(cx)k~zk2

� 1

�
k~�k �1l2 � �l2 � 4��1(l2 + 2)�3 � 2��1l2�3

4�1l2

�k~�k � �(l2 + 2)

l2
�4

� 1

�
kyk 1� ��3

2
kyk � ��4 : (33)

If � is chosen to satisfy (34), as shown at the bottom of the next page,
the last two terms in (33) are negative semidefinite in the hyper-annulus

�1
6 � 5(�~�) �k~�k � c� + c�̂; and

�1
6 � 5(�y) �kyk � cy (35)

�~z =
0; if � �2 < 1

any positive number smaller thanmin �1
6 � 5(��)=

p
3; �1

6 � 5(cx + cx̂) ; if 0 � �2 < 0:5

0 <� < �
2

�
1��

2�� =(1�� )�
�1=(1�� )
1 �

�� =(1�� )
2 �

�1=(1�� )
1 (cx + cx̂)

�(2� �1)=(1�� ) if 0:5 � �2 < 1
�

1��
2�� =(1�� )�

�1=(1�� )
1 �

�� =(1�� )
2 �

�1=(1�� )
1 �1

6 � 5(�~z) (1�2� )=(1�� )
if 0 � �2 < 0:5.

(32)
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where �~� and �y are positive constants satisfying�~� <
minf�16 � 5(�

�)=
p
3; �16 � 5(c� + c�̂)g and �y <

minf�16 � 5(��)=
p
3; �16 � 5(cy)g.

Note that the upper bounds for the regions in (31) and (35) are con-
sistent with those of the hyper-balls in (18) and (19). Consequently, it
follows from (30) and (33) that, given any initial conditions satisfying
(24) and (25) and for all trajectories of the state in the hyper-ball/an-
nulus defined by (18), (19), (31), and (35)

_L1 + _L2 + _L3 �� 1

2
3(kx̂k)� l1 � �2 � �3

�
k~zk2

� 1

4�
(k~�k2 + kyk2)

+
(2 + 2l2 + l22)n[cbc

0
w(cx) + cwc

0
b(cx)]

2

�c4bc
4
w

� (c� + c�̂)
2c2b(cx)c

2
w(cx)k~zk2 (36)

which is negative definite provided thatl1 is chosen according to the
inequality

l1 � 1

4
+ �2 + �3 +

(2 + 2l2 + l22)n[cbc
0
w(cx) + cwc

0
b(cx)]

2

c4bc
4
w

�(c� + c�̂)
2c2b(cx)c

2
w(cx) (37)

and that� is chosen according to

� < minf�
1
; �

2
; �

3
g (38)

where�
i

are defined by (29), (32), and (34). It follows from [21, Th.
2.15, p. 65] that, given any initial conditions satisfying (24) and (25), all
state variables (includingx, y, ~z, �, and~�) will stay in the hyper-balls
defined by (18), (19), (31), and (35), and that state variablesx̂, ~z, and
y will eventually converge into a hyper-ball of radius less or equal to
��. That is, the first two statements are shown.

If �2 � 0:5, �~z = 0 can be selected. On the other hand,�~� = �y = 0
can be set only when�4 = 0 as shown in the last equation at the bottom
of the page. It is easy to see that asymptotic stability can be concluded
provided that�~z = �~� = �y = 0.

If F (x; t) = A(x; t)x andG(�; x; t) = H(x; t)� for uniformly
bounded matricesA(x; t) andH(x; t) and and if�g(x; �; t) is also
uniformly bounded,�i in (20) up to (22) are constants independent
of the sets defined in (18) and (19). IfB2(x; t)W (x; t) = D(t) for
a matrixD(t), the last term in (16) and (36) disappears. These two
results together with0 < �2 � 0:5 make it possible to choosel1 and
� globally in the state–space ofx, y, ~z, �, and~�. Thus, global stability
can be claimed.

Remark: Given any conservative estimate of initial conditions, the
set of semi global stability can be calculated using (24) and (25). Hence,
(38) and (37) together with (20) up to (22) provide the criteria for se-
lecting control gains and design parameters. �

APPENDIX B

A. Outline of the Proof of Theorem 2

Note that two parts of the full-order observer are given by (9) and
(10) as before and that the same robust control (12) is applied. Conse-
quently, the proof here can be done by mimicking that of Theorem 1,
and only the differences are provided here.

The first difference is that, under control (12), the error dynamics for
estimating� are

_~� = B1(x; t)W (x; t)~� � l1
�2

B1(x; t)B
�1
2 (x; t)

�CDS[~z; �; 1 + �]� l0
�2

CDS[~�; �; 1 + �]: (39)

Second, choose Lyapunov function to beL0(x; �̂; ẑ; �; �̂; y; t) =
L0(~�; x̂; t) + L2(~z) + L3(~�; y), where V (x̂; t), L2 and
L3 are the same as before,k0 > 0 is a design parameter,
h(x̂; t) = 5x̂ V (x̂; t) � � � 5x̂ V (x̂; t)

T
, andL0(~�; x̂; t) =

1=k0[V (x̂; t)+ ~�T h(x̂; t)�hT (x̂; t)B1(x; t)B
�1
2 (x; t)~z]+1=2k~�k2.

Third, together with sets (40), (18), and (19), also consider the set

k�k � c�; andk�̂k � c�̂ (40)

wherec� andc�̂ are arbitrary but positive constants. Within these sets,
inequalities (20) up to (22) can be re-established and, sinceV (�) is
aC2 function, there are functionsch1 andch2 such thatk@h=@x̂k �
ch1(cx̂) andk@h=@tk � ch2(cx̂)4(kx̂k). It is apparent from Assump-
tion 3 that, by choosing

k0 > max
0�a�c

24(a)

1(a)
max 1;

c2b(cx)

c2b
:

Lyapunov functionL(�) is semiglobally positive definite and ra-
dially unbounded with respect to its arguments as7(k�k) �
L0(x; �̂; ẑ; �;�̂; y) � 8(k�k), where� = [x̂T ~�T ~zT ~�T yT ]T , and
7; 8:<+ ! <+ are classK1 functions.

Fourth, stability analysis is done for initial conditions satisfying

k�(t0)k < �18 � 7(minfcx; c� + c�̂; cz + cẑ ; c� + c�̂; cyg): (41)

It is obvious that, if24(kxk)=1(kxk) andB1(x; t)B
�1
2 (x; t) are uni-

formly bounded by some constants, Lyapunov functionL0 becomes
globally positive definite. Furthermore, by choosing a fixedk0 (which
is possible if24(kxk)=1(kxk) andB1(x; t)B

�1
2 (x; t) are uniformly

bounded by some constants and ifl0=l1 in (43) is bounded), inequality
(41) can be satisfied for any given initial condition by increasing the
size of closed and bounded sets under consideration. Otherwise, con-
dition (41) may not be satisfied semiglobally.

0 < � < min
1

cy
;

�16 � 5(�y)
�3

�1
6 � 5(�y) + 2�4

;
l2�1

�1
6 � 5(�~�)

[l2 + 4(2 + l2)�1�3 + 2�1l2�2]
�1
6 � 5(�~�) + 4�1(2 + l2)�4

�
3

(34)

lim
� ;� !0

�
3
=

0; if �4 > 0

min 1
c
; 1
2�

; l �

l +4(2+l )� � +2� l �
> 0; if �4 = 0

:
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�0
1

1

4
l0�(�03)2l1

1
k
(1��2)�1=(1�� )

1 (8�2)� =(1�� )�
(2��1)=(1�� )
6 + �

2k
+c c

2
+c �

k
+ 1
k
�2(�01)

(1=� )[8(1��2)](1�� )=(� )(�06)
(1�2� )=�

�0
2

1
4
l1��5

c c
2

+ �
2k

+ 1
k
(1��2)�1=(1�� )

2 (8�2)� )=(1�� )�
(2��1)=(1�� )
7 + 1

k
�2(�02)

(1=� )[8(1��2)](1�� )=� (�07)
(1�2� )=� +�

k
+�2+�1c2bc

2
w

�0
3

min
�18 � 7(��)

2�3
�1
8 � 7(��)+8�4

;
l2�1

�1
8 � 7(��)

[l2+4(2+l2)�1�3+2�1l2�2]
�1
8 � 7(��)+16�1(2+l2)�4

:

�6 = c� + c~�; �
0

6 = �07 = 1
4
�18 � 7(��); �7 = cz + c~z ; if 0:5 � �2 < 1

�6 = �7 = 1
4
�18 � 7(��); �06 = c� + c~�; �

0

7 = cz + c~z ; if 0 � �2 < 0:5.

The fifth and final difference is the time derivative of Lyapunov func-
tion. It follows that, choosing

� <
1

maxfc� + c�̂; cz + cẑ ; cyg �
0

(42)

expressions of_L2 and _L3 are the same as those given by (27) and (33),
respectively. It is straightforward to obtain the expression of_L0 by de-
riving the expression of_L0 under robust control (12) [together with (9)
and (17)] and under (42) and then combining the outcome with those
of _L2 and _L3. Then, given any�� < �1

8 � 7(minfcx̂; c� + c~�;cz +
c~z ; c� + c~�; cyg), the time derivative of Lyapunov functionL0(�) can
be evaluated in the region defined bykx̂k � cx̂, 1=2�1

8 � 7(��)�
k~�k � c�+c�̂,1=2�1

8 �7(��) � k~zk � cz+cẑ , 1=2�1
8 �7(��) �

k~�k �c� + c�̂ , and1=2�1
8 � 7(��) � kyk � cy . This region is

consistent with those in (40), (18) and (19). One can show that, in the
region, inequality

_L0 � � 1

2k0
3(kx̂k)� 1

4�
(k~�k2 + kyk2)

holds provided thatk0, l0, l1 and� are chosen according to the fol-
lowing conditions:

l1 >4�5 l0 > 4(�03)
2l1

k0 �max 2ch1; 4�
0

4; 2�
00

3

p
l0p
l1

; and

� <min �
0
; �0

1
; �0

2
; �0

3
(43)

where�
0

is given in (42); see the first equation shown at the top
of the page.�i and �0i are constants that are independent ofk0,
l1, l0 and � and are given by�1 = �1 (�1 + ch2 + �2cb=cb),

�01 = ch1�
0

0, �2 = �1 �1c
2
b + ch1cbcb + �2cbcb + c00b (cb + cb) +

c0b(cb + cb)[�0 +
p
ncbcw(cv + c�̂)] =c2b , �02 = ch1�

0

0cb=cb,

�3 = ch1�1 (1 + cb=cb), �03 = cb=cb, �003 = ch1cb=cb,
�04 =

p
ncbc

0

b(cb + cb)�1
�
3 (cx̂)=c

3
b , �4 = ch1cb�1=cb,

�5 = (2 + 2l2 + l22)n[cbc
0

w + cwc
0

b]
2(c� + c�̂)

2c2bc
2
w=(c

4
bc

4
w);

and the second set of equations at the top of the page.

REFERENCES

[1] T. Ahmed-Ali and F. Lamnabhi-Lagarrigue, “Sliding observer-con-
troller design for uncertain triangular nonlinear systems,”IEEE Trans.
Automat. Contr., vol. 44, pp. 1244–1249, June 1999.

[2] B. Aloliwi and H. K. Khalil, “Adaptive output feedback regulation of a
class of nonlinear systems: Convergence and robustness,”IEEE Trans.
Automat. Contr., vol. 42, pp. 1714–1716, Dec. 1997.

[3] , “Robust adaptive output feedback control of nonlinear systems
without persistence of excitation,”Automatica, vol. 33, pp. 2025–2032,
1997.

[4] B. R. Barmish, M. J. Corless, and G. Leitmann, “A new class of sta-
bilizing controllers for uncertain dynamical systems,”SIAM J. Control
Optim., vol. 21, pp. 246–255, 1983.

[5] M. J. Corless and G. Leitmann, “Continuous state feedback guaranteeing
uniform ultimate boundedness for uncertain dynamic systems,”IEEE
Trans. Automat. Contr., vol. AC-26, pp. 1139–1144, Oct. 1981.

[6] , “Adaptive control for systems containing uncertain functions and
uncertain functions with uncertain bounds,”J. Optim. Theory Appl., vol.
41, pp. 155–168, 1983.

[7] R. A. Freeman and P. V. Kokotovic,Robust Nonlinear Control Design:
State Space and Lyapunov Techniques. Boston, MA: Birkhauser, 1996.

[8] , “Tracking controllers for systems linear in the unmeasured states,”
Automatica, vol. 32, pp. 735–746, 1996.

[9] S. Gutman, “Uncertain dynamical systems—A Lyapunov min–max ap-
proach,”IEEE Trans. Automat. Contr., vol. AC-24, pp. 437–443, June
1979.

[10] A. Isidori, Nonlinear Control Systems, 3rd ed. New York: Springer-
Verlag, 1995.

[11] , Nonlinear Control Systems II. New York: Springer-Verlag,
1999.

[12] H. Khalil, Nonlinear Systems, 2nd ed. Upper Saddle River, NJ: Pren-
tice-Hall, 1996.

[13] H. K. Khalil, “Adaptive output feedback control of nonlinear systems
represented by input–output models,”IEEE Trans. Automat. Contr., vol.
41, pp. 177–188, Feb. 1996.

[14] K. H. Khalil and F. Esfandiari, “Semiglobal stabilization of a class of
nonlinear systems using output feedback,”IEEE Trans. Automat. Contr.,
vol. 38, pp. 1412–1415, Sept. 1993.

[15] M. Krstic, I. Kanellakppoulos, and P. V. Kokotovic,Nonlinear and
Adaptive Control Design. New York: Wiley, 1995.

[16] Y. D. Landau, Adaptive Control—The Model Reference Ap-
proach. New York: Marcel Dekker, 1979.

[17] R. Marino and P. Tomei,Nonlinear Control Design. Upper Saddle
River, NJ: Prentice-Hall, 1995.

[18] K. S. Narendra and A. M. Annaswamy,Stable Adaptive Sys-
tems. Upper Saddle River, NJ: Prentice-Hall, 1989.

[19] Z. Qu, “Global stabilization of nonlinear systems with a class of un-
matched uncertainties,”Syst. Control Lett., vol. 18, pp. 301–307, 1992.

[20] , “Robust control of nonlinear uncertain systems under generalized
matching conditions,”Automatica, vol. 29, pp. 985–998, 1993.

[21] , Robust Control of Nonlinear Uncertain Systems. New York:
Wiley, 1998.

[22] , “Robust control of nonlinear systems by estimating time variant
uncertainties,” inProc. 2000 IEEE Conf. Decision Control, Sydney,
Australia, Dec. 2000, pp. 3019–3024.

[23] S. Sastry and M. Bodson,Adaptive Control: Stability, Convergence, and
Robustness. Upper Saddle River, NJ: Prentice-Hall, 1989.

[24] R. Sepulchre, M. Jankovic, and P. V. Kokotovic,Constructive Nonlinear
Control. New York: Springer-Verlag, 1997.

[25] J. J. Slotine and W. Li,Applied Nonlinear Control. Upper Saddle
River, NJ: Prentice-Hall, 1991.

[26] A. J. van der Schaft,L -Gain and Passivity Techniques in Nonlinear
Control. London, U.K.: Springer-Verlag, 1996.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


