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Abstract

In this paper, the problem of devising a fault-tolerant robust control for a class of nonlinear uncertain systems is investigated. Possible
failures of the sensor measuring the state variables are considered, and a robust measure is developed to identify the stability- and
performance-vulnerable failures. Based on evaluation of the robust measure, a fault-tolerant robust control will switch itself between one
robust control strategy designed under normal operation and another under the faulty condition. It is shown that, under two input-to-state
stability conditions, the proposed scheme guarantees not only the desired performance under normal operations but also robust stability
and best achievable performance when there is a sensor failure of any kind.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last several years, robust control of nonlinear
uncertain systems has became a very active area of research.
Classes of stabilizable uncertain systems and the correspond-
ing robust controls have been found (Gutman, 1979; Corless
& Leitmann, 1981; Qu, 1992; Qu, 1993; Krstic, Kanellak-
ppoulos, & Kokotovic, 1995; Freeman & Kokotovic, 1996;
Sepulchre, Jankovic, & Kokotovic, 1997; Qu, 1998), and
most of these results are based on Lyapunov direct method.
The objective of robust control is to stabilize dynamic sys-
tems in the presence of signi?cant, bounded uncertainties
(which include parametric uncertainty, unknown dynamics,
time variant disturbances, etc.) In this paper, the problem
of designing fault-tolerant robust control is studied so that
the resulting control is also robust against sensor failures. It
is shown that, under input-to-state stability conditions, ro-
bust fault-tolerant control exists for systems with matched
uncertainties. The basic idea and the proposed design
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process can also be applied to the class of systems consist-
ing of two (or more) cascaded subsystems, for example,
systems composed of an actuator and a plant under control,
the subsystems are nonlinear and uncertain, and the sensors
measuring their state variables could become faulty.
Fault diagnosis and fault-tolerant control (or recon?g-

urable control) have been studied primarily for linear and/or
parameterizable systems, see Bodson and Groszkiewicz
(1997), Noura et al. (2000), and Patton (1997) and the
references therein. For nonlinear systems, fault-tolerant
control is needed as in the linear case but its design is more
complicated. Furthermore, the presence of uncertainties in
uncertain systems makes fault diagnosis more diGcult. To
overcome these diGculties, we propose in this paper to
derive a robust fault-detection measure and to design ro-
bust control strategies using the Lyapunov direct method.
Because of the uncertainties, minor faults that do not jeop-
ardize stability or performance may not be diagnosed, and
the proposed robust measure is to detect those faults that
hinder system performance or potentially de-stabilize the
system. When a sensor is judged to have major failure, a
state observer can be employed to estimate the state and
to determine its subsequent recovery. Fault-tolerant robust
control is designed to combine the features of fault detec-
tion, robustness against uncertainty, and self recovery.

0005-1098/03/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0005-1098(03)00181-X

mailto:qu@pegasus.cc.ucf.edu


1764 Z. Qu et al. / Automatica 39 (2003) 1763–1771

Conceptually, the proposed method is diKerent from
both the nonlinear observer design in (Ahmed-Ali &
Lamnabhi-Lagarrigue 1999; Aloliwi and Khalil, 1997a,b;
Khalil, 1996a; Khalil and Esfandiari, 1993) and the re-
cent result on fault detection and isolation using an
observer/?lter (Persis & Isidori, 2001). It is shown in
Persis and Isidori (2001) that a single-channel fault can
be detected and isolated if there exists an observer whose
dynamics are known and, no matter what is the control
input, are driven by the fault signal but decoupled from
all other faults/uncertainties/disturbances. In the proposed
approach, an observer is used to determine fault clearance
and may be used to reconstruct intermediate state variables
(for the cascaded systems), while fault detection is done
using stability/performance measure(s). As such, using the
proposed approach, only those faults that alter stability or
performance can be detected, and input-to-state stability
conditions are required. Note that input-to-state stability
with respect to measurement noises has been studied in
Jiang, Mareels, and Hill (1999).
The paper is organized into the following sections. Sys-

tem description, necessary assumptions, and the problem of
designing fault-tolerant robust control are described in Sec-
tion 2. Robust measures for identifying sensor failure, non-
linear observer, robust control design, and fault-tolerant
robust control are organized sequentially as the subsections of
Section 3. A simulation example is presented in Section 4.

2. Problem formulation

The class of nonlinear uncertain systems considered in the
paper and the proposed robust control structure are shown in
Fig. 1. To present the main idea without undue complication,
system dynamics are given mathematically by the following
diKerential equation:

ẋ = f(x; t) + B(x; t)[Of(x; v; t) + u]; (1)

where x(t)∈Rn is the state, u(t)∈Rm is the control to be
designed, 
 ⊂ Rp is any bounded set, v(t)∈
 denotes
the vector of signi?cant uncertainties/unknowns, f(x; t) and
B(x; t) are known parts of system dynamics, and Of(x; v; t)
is the lumped vector of uncertainties. Due to the presence of
uncertainties/unknowns, a successful control must be robust.
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Fig. 1. A class of nonlinear uncertain systems and the proposed
fault-tolerant robust control structure.

For the purpose of designing a fault-tolerant control, po-
tential failure of the sensor measuring state x is considered.
To this end, denote the measurement of x by xm. Without
loss of any generality, we can model xm by the following
algebraic equation:

xm = x +Oh(x; t); (2)

where Oh(x; t) is the unknown function representing both
occurrence and magnitude of possible faults by the sensor.
In the normal mode of operation, Oh(x; t)=0. While sensor
failures can be diKerent in each channel of measurement
equation (2), three cases of sensor failure will be considered:

• Inaccurate measurement;
• Intermittent failure;
• Major failure.

The main diKerence among the three cases is the magnitude
and duration of sensor failures. Magnitude of a fault could
range from a small oKset, to an unknown scaling factor (for
example, Oh(x; t) = xx with |x|¡ 1), and even to a total
failure (for instance, |Oh(x; t)|¿ |x|). In terms of severity,
the worst fault(s) will be that with |Oh(x; t)| being larger
than or equal to |x|, in which case the measurement feedback
is of no advantage or use and, upon detecting its occurrence,
the control structure has to become physically open-loop.
The fault-tolerant robust control problem is to design a

control u(xm; t) such that the resulting closed loop system,
as seen in Fig. 1, has the following properties:

• In the presence of signi?cant (but bounded) uncertain-
ties/unknowns v(t)∈
, stability and performance (in the
sense of either asymptotic stability or stability of uniform
ultimate boundedness (Corless & Leitmann, 1981; Qu,
1998)) are guaranteed whenever the sensor is in good
condition.

• When there is a sensor failure, stability is always
maintained while performance may be degraded.
The proposed fault detector is capable of detecting
performance-degrading or potentially destabilizing faults
so that the controller can recon?gure itself.

• After a fault is cleared and the corresponding transient
settles, the fault detector can identify the recovery and
enable the controller to switch back to its normal law.

2.1. Technical conditions

Fault-tolerant robust control design requires several tech-
nical assumptions, and most of them are in line with the
standard ones in Khalil (1996b). Typically, robust control
design is based upon stability or stabilizability of known
dynamics. Speci?cally, the system consisting of known
dynamics

ẋ = f(x; t) + B(x; t)u; (3)

is referred to as the nominal system of system (1). The ?rst
condition is to ensure existence of a classical and unique
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solution for system (3) if the control u to be designed has
the same property (Khalil, 1996b).

Assumption 1. The functions in system (3), f(x; t) and
B(x; t) are Caratheodory, locally Lipschitzian with respect
to x, uniformly bounded with respect to t, and locally uni-
formly bounded with respect to x.

The second assumption, given below, is on stability of
the nominal system. If the nominal system is not stable, it
is equivalent to require that the known system be asymptot-
ically stabilized under a known nominal control.

Assumption 2. The origin, x=0, is globally asymptotically
stable for the uncontrolled nominal system of (3).

The third assumption is regarding the nature and property
of the uncertainties/unknowns.

Assumption 3. The uncertainties are bounded in Euclidean
norm as follows: for all (x; v; t)∈Rn × 
 × R+,
Of(x; v; t) = W1(x; t)�1 + rf(x; t); (4)

where vector �1 contains unknown constant parameters
bounded by a known constant c1 ¿ 0 as ‖�1‖6 c1, W1(·)
is a known matrix function, rf(·) is the un-parameterizable
part of unknown dynamics bounded by a known constant
as, for all (x; t),

‖rf(x; t)‖6 cr;

and W1(·) and rf(·) are Caratheodory, uniformly bounded
with respect to t, and locally uniformly bounded with re-
spect to x.

The above three assumptions are typical for robust con-
trol design. Two additional assumptions are needed for de-
signing the proposed fault-tolerant control in order for the
system to sustain major sensor faults. Speci?cally, Assump-
tion 4 is introduced to meet the minimum requirement of all
signals being bounded during the worst faults, and Assump-
tion 5 is made to achieve control recovery and performance
improvement after relieving the fault. Both of them are in
terms of known dynamics and thus can be veri?ed.

Assumption 4. The nominal system ẋ = f(x; t) + B(x; t)u
is input-to-state stable (Krstic et al., 1995; Sontag, 1990).
In addition, the uncontrolled uncertain system ẋ=f(x; t)+
B(x; t)W1(x; t)�1 is also input-to-state stable with respect
to “uncertainty input” �1.

Mathematically, Assumption 4 implies that, as the
converse-Lyapunov-like theorem (Khalil, 1996b), there
exists a C1 function V (x; t) : Rn × R → R+ such that

�1(‖x‖)6V (x; t)6 �2(‖x‖);
@V (x; t)

@t
+	T

x V (x; t)[f(x; t) + B(x; t)u]

6− �3(‖x‖) + ‖ 	T
x V (x; t)B(x; t)u‖; (5)

where �i : R+ → R+ are classK∞ functions. Since V (x; t)
must be bounded for all bounded controls including the
?ctitious choice of

u =
BT(x; t)	x V (x; t)

‖BT (x; t)	x V (x; t)‖ ;

one must be able to ?nd constants 0¡�¡ 1 and b1 ¿ 0
such that

‖ 	T
x V (x; t)B(x; t)‖6 b1��

3(‖x‖): (6)

Similarly, function W1(·) in (4) is bounded from above
as, for all (x; t) and for known constants b2 ¿ 0 and
�∈ (0; 1− �),

‖W1(x; t)‖6 b2�
1−�−�
3 (‖x‖): (7)

Assumption 4 is made to ensure input-to-state stability
with respect to both the control input and unknown vector
�1, and it includes Assumption 2 as a special case. By con-
tradiction, one can show that Assumption 4 is necessary dur-
ing the presence of major sensor failure as feedback infor-
mation would be too corrupted to be useful and the overall
system would have to be made open-loop. Technically, the
assumption is also important as it provides the Lyapunov
function that will be used to analyze stability and synthe-
size robust control. To proceed with robust control design,
Lyapunov function V (x; t) in (5) should have been found.
Note that this assumption ensures little performance other
than boundedness, and the performance guarantee will be
achieved by the proposed fault-tolerant control design.

Assumption 5. Function f(x; t) has the property that, for
some C1 function L(x; t) : Rn × R → R+ and for all
x; z ∈Rn,

�4(‖x‖)6L(x; t)6 �5(‖x‖);
@L(x − z; t)

@t
+	T

(x−z)L(x − z; t)[f(x; t)− f(z; t)]

6− �6(‖x − z‖);
‖ 	T

x L(x; t)‖6 b0�
�0
6 (‖x‖); (8)

where b0 ¿ 0 and 0¡�0 ¡ 1 are constants, and �j :
R+ → R+ are class K∞ functions.

Physically, Assumption 5 says that, given any bounded
perturbation d(t), ?ctitious system ż = f(z; t) + d has the
so-called perturbation stability. That is, ?ctitious system
ż = f(z; t) + d approximately follows the nominal system
ẋ = f(x; t) and, with z(t0) = x(t0), the tracking error is uni-
formly and uniformly ultimate bounded by the perturbation
magnitude. In other words, the error system ė = f(x; t) −
f(z; t)−d with state e=x−z is input-to-state stable (Krstic
et al., 1995; Sontag, 1990). It is straightforward to show
that, if Assumption 2 is strengthened to be exponentially
stable, Assumption 4 holds locally provided that @f(x; t)=@x
is locally uniformly bounded.
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Inequalities (8), (6), and (7) can be relaxed so that they
need to hold only in the region of ‖x‖¿ $x for some constant
$x ¿ 0. With these ?ve assumptions, one can proceed with
stability- and performance-based fault detection and with the
design of a fault-tolerant robust control. The proposed design
will ensure stability and achieve performance enhancements
whenever feasible.

3. Fault-tolerant control design

The proposed fault-tolerant robust control consists of
three parts: a stability- and performance-based measure to
monitor sensor health, a state observer, and robust control
law for recon?guration. It is novel that Lyapunov direct
method is used to develop a robust measure for fault detec-
tion while being used to conduct system stability analysis
and control design.

3.1. A robust measure for identifying sensor failure

In control implementation, state measurement xm(t) is
available, but the state itself. Due to the presence of signi?-
cant uncertainties in the system dynamics, it is not eKective
to identify faulty sensors by open-loop state estimation, i.e.,
by ?rst generating estimate x̂(t) and then comparing them to
the measurement (as the estimate will not be asymptotically
convergent). A closed loop observer should only be used
if the sensor measuring x is known to be accurate. Our ap-
proach is to develop a stability/performance based measure
by which a faulty condition will be diagnosed if it causes ei-
ther stability problem or performance degradation. Speci?-
cally, the following criteria will be used: xm being uniformly
bounded and

Vm(xm; t)6Vc(t); (9)

where V (·) is the Lyapunov function de?ned in Assumption
4; Vm(·) is the measured value of V (·), that is,
Vm(xm; t), V (xm; t);

Vc(·) is a conservatively computed value of V (·), and it is
de?ned by the diKerential equation

V̇ c =−1
3
�3 ◦ �−1

2 (Vc) + 3(1=�)−1�(1− �)(1=�)−1(c1b1b2)1=�

+3�=(1−�)(1− �)��=(1−�)[b1(cr + |u|)]1=(1−�): (10)

The following lemma shows that condition (9) describes
the expected closed-loop and open-loop performance under
normal operation (despite of the presence of uncertainties).
Inequality (9), together with xm being uniformly bounded
(as de?ned by (14) and shown by the subsequent stability
analysis), can be used to diagnose sensor health.

Lemma 1. Consider system (1) satisfying Assumptions 3
and 4. Then, if xm = x, inequality (9) holds along every

trajectory of the system for all t and for any choice of
control u(t).

Proof. It follows from Lyapunov function V (x; t) that

V̇ =
@V (x; t)

@t
+	T

x V (x; t)f(x; t) +	T
x V (x; t)B(x; t)

×[Of(x; v; t) + u]

6−�3(‖x‖) + b1��
3(‖x‖)[b2c1�1−�−�

3 (‖x‖) + cr + |u|]

6−1
3
�3(‖x‖) + 3(1=�)−1�(1− �)(1=�)−1(b1b2c1)1=�

+3�=(1−�)(1− �)��=(1−�)[b1(cr + |u|)]1=(1−�);

where the HSolder inequality is used to derive the last
inequality. Therefore, inequality (9) is concluded by
applying the comparison theorem (Khalil, 1996b) to the
above inequality and diKerential equation (10).

Scalar diKerential equation (10) provides a robust perfor-
mance measure, it can easily be integrated online, and its
initial condition, Vc(t∗) = Vm(xm(t∗); t∗), can be set to be
one of the following three choices: t∗ = t0, t∗ = t − d for a
constant d¿ 0, and t∗ = t −Ot with 0¡Ot � 1. There-
fore, condition (9) can be used to simultaneously diagnose
long-term, intermediate-term, and instantaneous health of
the sensor. If the condition is violated, the feedback sensor
must be faulty.
It should be noted that the proposed measure is stabil-

ity/performance oriented and hence they may not be able
to detect minor faults (for instance, a small oKset). Since
the system itself is uncertain, detecting all possible faults
is not achievable. From a practical point of view, only the
faults that impact stability and performance must be iden-
ti?ed, which is accomplished by employing condition (9).
Also note that, since Lyapunov function is not unique, dif-
ferential equation (10) associated with condition (9) is not
unique either.

3.2. Open-loop state observer

Should a major sensor failure is detected, feedback of
measurement xm must be put aside, and the system will be
operated in an open loop mode until a recovery is detected.
During the period, stability of boundedness has to be main-
tained as the minimum requirement, and the state variables
should be estimated in the presence of uncertainties so that
the system can recover automatically once the faults get
cleared. To this end, consider open-loop observer:

˙̂x = f(x̂; t) + B(x̂; t)u: (11)

Lemma 2. Consider that, under Assumptions 3–5,
open-loop observer (11) is used to estimate the state of
system (1). Then, estimation error between x and x̂ will
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converge to zero globally and asymptotically as bounds c1
and cr as well as control u approach zero.

Proof. It follows from Assumption 4 that, given a bounded
u, system (1) and observer (11) are uniformly bounded. That
is, there are constants Mx, Mx̂ and Mb such that

‖x‖6Mx; ‖x̂‖6Mx̂; ‖B(x̂; t)‖6Mb and

‖B(x; t)‖6Mb:

It follows from (1) and (11) that estimation error dynam-
ics are

˙̃x=f(x; t)− f(x̂; t) + [B(x; t)− B(x̂; t)]u

+B(x; t)Of(x; v; t);

where x̃ = x − x̂. Applying Assumptions 3 and 5 yields

dL(x̃; t)
dt

6−�6(‖x̃‖) + b0�
�0
6 (‖x̃‖)[2Mb‖u‖

+Mbb2�
1−�−�
3 (Mx)c1 + cr];

which, according to the HSolder inequality, shows asymptotic
convergence (with respect to c1, cr , and ‖u‖) of observer
estimation.

As will be described in the next subsection, control u=0
will be set when the open-loop state observer is invoked. As
such, the magnitude of estimation error will be in terms of c1
and cr , which can be used as the indicator whether a severe
sensor fault has been cleared. However, open-loop state es-
timate itself cannot be used to determine sensor failure due
to the presence of uncertainties.
Despite of input-to-state stability of the plant and the ob-

server, stability of the closed loop system in Fig. 1 and its
performance can only be guaranteed by a fault-tolerant ro-
bust control. If u(t) is properly designed, value of V (x; t)
will be forced to decrease eventually, so will be intermedi-
ate and instantaneous values of Vc(t), and so will be values
of Vm(xm; t) if there is no more sensor fault.

3.3. Fault-tolerant robust control

To achieve robustness against sensor failure, a fault-
tolerant robust control is designed to incorporate the robust
fault detection mechanism, a nonlinear observer, and a ro-
bust control law. Depending upon detection outcomes, the
proposed control recon?gures itself. The robust control law,
given below, combines several standard results in Gutman
(1979), Corless and Leitmann (1981), and Qu (1998):

ur(xm; t) =−W1(xm; t)�̂1

− BT(xm; t)	xm V (xm; t)cr

‖BT(xm; t)	xm V (xm; t)‖cr + $r
cr; (12)

˙̂�1 = W T
1 (xm; t)BT(xm; t)	xm V (xm; t)− ka�̂1; (13)

where ka ¿ 0 and $r ¿ 0 are design gain/parameter, �̂1 is
the estimate of �1, and �̂1(t0) = 0.
The objective of robust fault-tolerant control is twofold:

identify and recover from major faults, recon?gure itself
accordingly to ensure stability of uniform ultimate boun-
dedness (with respect to a threshold $) whenever achievable
and to guarantee uniform boundedness in the worst case
(i.e., major faults and signi?cant uncertainties). To this end,
let us de?ne the following set:

‖xm(t)‖6 (�−1
1 ◦ �2)(max{‖xm(t∗)‖; �−1

3 (2kac21 + 2$r)})
, UCxm : (14)

Then, the proposed fault-tolerant robust control is
de?ned by

u is set to be urin (12)
if (9) and (14) are valid for xm

u is switched to u = 0 and open-loop observer (11) is
invoked

if one of the following conditions is violated :
(9)
or (14) when ur is being applied

u switches back to ur

if (9) and (14) become valid and if ‖xm − x̂‖ is
relatively small

Note that the threshold on ‖xm− x̂‖ should be set to be small
as compared to the transient but not too small due to the
presence of uncertainties and noise.
Performance under the proposed control is summarized

in the following theorem which represents the main result
of the paper.

Theorem. Consider system (1) satisfying Assumptions 1,
3, 4, and 5. Then, the proposed fault-tolerant control en-
sures that x is always uniformly bounded and that, when-
ever the sensor measuring x is operating properly, x is ul-
timately bounded with respect to any given small threshold
$¿ 0.

Proof. Consider ?rst the case that u = ur . In this case, the
closed loop dynamics of system (1) are

ẋ=f(x; t) + B(x; t)
[
W1(x; t)�1 + rf(x; t)− W1(xm; t)�̂1

− BT(xm; t)	xm V (xm; t)cr

‖BT(xm; t)	xm V (xm; t)‖cr + $r
cr

]
:

Now, consider the Lyapunov function

L′(x; �̂1) = V (x; t) +
1
2
‖�̃1‖2;

where �̃1=�1−�̂1. Obviously, there exist class-K functions
�7(·) and �8(·) that

�7(‖(‖)6L′(x; �̂1; t)6 �8(‖(‖);
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where ‖(‖2 = ‖x‖2 + ‖�̃1‖2. It follows from robust con-
trollaw ur in (12) and (13) that

L̇′6−�3(‖x‖) + $r + ka�̃T
1 �̂1 + )(x; xm; t)

6−�3(‖x‖)− ka

2
‖�̃1‖2 + kac21 + $r + )(x; xm; t) (15)

6− �9(‖(‖) + kac21 + $r + )(x; xm; t); (16)

where �9(·) is a class-K function, and

)(x; xm; t), [	T
x V (x; t)B(x; t)W1(x; t)

−	T
xm

V (xm; t)B(xm; t)W1(xm; t)]�1

−[	T
x V (x; t)B(x; t)

−	T
xm

V (xm; t)B(xm; t)]W1(xm; t)�1

+[	T
x V (x; t)B(x; t)

−	T
xm

V (xm; t)B(xm; t)]W1(xm; t)�̃1

+[‖ 	T
x V (x; t)B(x; t)W1(x; t)‖

−‖ 	T
xm

V (xm; t)B(xm; t)W1(xm; t)‖]cr

+‖ 	T
x V (x; t)B(x; t)−	T

xm
V (xm; t)B(xm; t)‖cr:

If xm=x (while u=ur), inequality (9) holds, )(x; xm; t)=0
in (16), and hence stability of being both uniformly bounded
and uniformly ultimately bounded can be concluded us-
ing the stability theorems in Corless and Leitmann (1981),
and Qu (1998). Speci?cally, the uniform bound on ( (i.e.,
on both x and �̃1) is

�−1
7 ◦ �8 ◦ �−1

9 (max{‖((t0)‖; kac21 + $r});
and the ultimate bound is

$c , �−1
7 ◦ �8 ◦ �−1

9 (kac21 + $r):

For on-line monitoring on ‖x‖, the uniform bound can be
tightened to be that in (14). Note that the ultimate bound on
‖x‖ is of form

$ , �−1
7 ◦ �8 ◦ �−1

3 (kac21 + $r);

which can be made arbitrarily small by selecting $r and ka.
If ‖xm−x‖ remains bounded while inequality (9) holds, it

follows from Assumption 4 and the expression of )(x; xm; t)
that the bound on ‖)(x; xm; t)‖ would be of ?rst order in
‖�̃1‖ and of lower order in ‖x‖ than that of �3(‖x‖). Hence,
whenever ‖(‖ exceeds certain value, the right hand side
of (15) becomes negative. In other words, if ‖xm − x‖ is
bounded, robustness of x and �̃1 being bounded is ensured.
As ‖xm − x‖ becomes larger, inequality (9) or (14) (or

both) will become invalid, but the proposed control will
also maintain uniform boundedness by its design. This is
because, unless u = 0, conditions (9) and (14) are being
imposed and because, if u = 0, the open-loop system with
uncertainties and the open-loop observer are bounded.

Clearly, the proposed fault-tolerant control is stability-
and performance-based as it is synthesized using the Lya-
punov direct method. It is novel that Lyapunov method is
used not only to analyze stability and design control but also
to detect faults. Recon?guration of the control ensures that,
in the worst case, uniform boundedness is guaranteed as the
minimum performance. The control law of u = 0 is neces-
sary because faulty sensor(s) can make the system physi-
cally open-loop and, due to the presence of signi?cant uncer-
tainties, any open-loop control could be counter-productive.
For the overall system to be more fault tolerant, redun-
dancy needs to be built into so that the system can main-
tain input-to-state stability by itself and that any faulty sen-
sor can be switched oK and replaced by a redundant sensor.
What the proposed fault-tolerant control does is to maintain
the minimum performance during all faulty conditions and
to recover the normal operation after faults are cleared. This
is the motivation of the paper, and many applications such
as space systems are of the nature.

3.4. Extensions

It can be shown that the above fault-tolerant robust con-
trol design can be applied to the class of uncertain systems
consisting of cascaded subsystems, for instance, a system
consisting of actuator dynamics and plant dynamics and be-
ing of form
ẋ = f(x; t) + B(x; t)[Of(x; vx; t) + z];

ż = g(z; t) + Og(z; vz; t) + u;
(17)

where f(x; t), g(z; t) and B(x; t) are known parts of system
dynamics, and Of(x; vx; t) and Og(z; vz; t) are uncertain-
ties in the two subsystems. Using the cascaded structure,
inequalities of form (9) can be developed as robust perfor-
mance measures to identify and isolate faults for individual
subsystems. Robust fault-tolerant control laws can then be
designed accordingly.
Note that, in making the above extension, the system

structure provides additional options in guaranteeing per-
formance when some sensors are faulty. For example, the
system structure of (17) generally ensures observability of z
as long as measurement of x is valid. In other words, when
only the sensor on z is faulty, a closed-loop nonlinear ro-
bust observer can be constructed to generate z with suG-
cient accuracy, and an observer-based robust controller can
be designed for the overall system. According to detection
outcomes, the fault-tolerant control will switch among the
normal state-feedback control law, observer-based control
laws, and an open-loop control law.

4. Simulation example

To illustrate the fault tolerance robust control, a simple
system is simulated, and its dynamics are

f(x; t) =−x3; B(x; t) = 1 + 0:5sin(x);

W1(x; t) = [xsin(x) x2]:
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Fig. 2. Index values of sensor fault and the subsequent control action.

It is easy to verify that all the assumptions are satis?ed with

V (x; t) = 1
2x

2; �1(‖x‖) = �2(‖x‖) = V (x; t);

and �3(‖x‖) = x4:

On the other hand, design parameters and control gain are
chosen to be

b1 = 2; b2 = 2; c1 = 0:2236; cr = 0:1; � = 1
4 ;

� = 1
4 ; $r = 0:1 and ka = 0:4:

In the simulation, the initial conditions are

x(0) = 1:5; x̂(t∗) = 0; �̂1(t0) = 0;

the “uncertainties” are set to be

Of(x; v; t) = W1(x; t)�1 + rf; �T
1 = [0:2 0:1];

and rf = cr sin(2+t);

and the simulated sensor failure is represented by Oh(x; t)
which assumes the following values sequentially and repeat-
edly:

O1h(x) = 1x 1 = 3:0

O2h(x) = 2x 2 = 0:3

O3h(x) = 3 sign(x) 3 = 5

O4h(x) = 3 sign(x) 4 =−5:

(18)

The third case is the most serious as the output of the faulty
sensor jumps from its current value to its maximum value
of its range and stays there.
The simulation results are shown in Figs. 2–5. To make

better connection between fault occurrences and subsequent
actions by the proposed fault-tolerant control, values of the
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Fig. 3. System state x versus measured output xm.
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Fig. 4. Observer output.

following two indices are plotted in Fig. 2:

If(t) =




0 if Oh(x; t) = 0

1 if Oh(x; t) = Oh1(x)

2 if Oh(x; t) = Oh2(x)

3 if Oh(x; t) = Oh3(x)

4 if Oh(x; t) = Oh4(x)

and

Iu(t) =

{
0 if u(t) = ur;

−1 if u(t) = 0:

Simulation shows that the proposed control maintains ro-
bust stability during the faults, is capable to restore the
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Fig. 5. Fault-tolerant robust control.

normal operation once the faults are cleared, and enures
performance after fault clearances. Clearly, faults such as
O2h(x) and, when |x| is small, O1h(x) cannot be detected
as they do not cause much performance degradation. When
a fault is detected, the control becomes open loop, and the
open loop observer is invoked to estimate the state. After
the fault is cleared, the recovery is detected by using the
inequality ‖xm − x̂‖6 0:015, and the control switches back
to the robust control law. The threshold values should not
be chosen to be too small, otherwise no automatic recov-
ery will be initiated. If the initial threshold values are cho-
sen to be too large, the fault-tolerant control may attempt
to switch back to 0 or ur before the fault is relieved. Even
in this case, robustness and stability of boundedness will be
maintained as the robust fault detection measure will always
switch oK any incorrect control action. In short, the thresh-
old value can be set properly oK line or be tuned on line and
automatically.

5. Conclusion

Fault-tolerant robust control of a class of nonlinear uncer-
tain systems is studied. In addition to nonlinear uncertain-
ties, the system may also experience sensor failure, and the
proposed robust control is made fault-tolerant by integrat-
ing a traditional robust control with a robust measure capa-
ble of detecting major faults that are liable in either stability
or performance. The robust measure, robust control strat-
egy and the fault-tolerant control are synthesized using the
Lyapunov’s direct method. Under ISS-stability like condi-
tions, robust boundedness stability is guaranteed for all op-
erating conditions and, as long as the sensor measuring the
system output operates properly, the desired performance
of uniform ultimate boundedness of any accuracy can be
achieved.
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