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Adaptive and Robust Controls of Uncertain Systems With control in order to gain certain robustness property. For example, robust

Nonlinear Parameterization adaptive controls have been proposed for slowly time varying systems
[26], fast time varying systems [18], [22], and systems with internal dy-
Zhihua Qu namics [9], [11], [27]. Adaptive robust control is an adaptive version of

robust control, and the first of such results is [6] in which uncertainties
of the plant is bounded by a function linearly parameterized in terms

Abstract—Two classes of partially known systems are considered in this of unknown constant parameters and robust control is made adaptive

note; both of them have a fractional parameterization of the unknowns. The . h
first class consists of nonlinear systems whose uncertainties are bounded!© €stimate these parameters. . .
by a function of fractional parameterization, and the second class compro-  In this note, we continue to explore the benefits of adaptive and ro-

mises those systems whose unknown dynamics can directly, but nonlinearly, bust controls. The technical problem addressed in the note is how to
?oegfg gmritgéi;teedhgrﬁ :22:’;’” tg?;:q‘é?g::‘z’zéob?jégi‘:]mrf?l'n‘ﬁggg Zﬁtde?r?aetd design a stabilizing control for systems whose uncertainties or their
with the aid of a robust auxili)iagl system, new adaptati(g)n laws and asimplé boundlng func_tlons are parameterlzed not linearly _bUI of a fractlonal
adaptive control can be designed for the unknowns in the fractional pa- €Xpression. Itis shown that, in case that the bounding function on un-

rameterization. Practical stability (in terms of uniform boundedness and certainties has a fractional parameterization, adaptive robust control

ultimate boundedness) is shown; global for adaptive robust control and can be designed and that, if the uncertainties can be parameterized di-
semiglobal for the new adaptive control. rectly, a new class of adaptive control based on robust observer can

Index Terms—Adaptive control, nonlinear parameterization, observer, be designed to estimate all unknown parameters in the nonlinear pa-
robust control, uncertain systems. rameterization. In both cases, the control problem in the presence of
nonlinear parameterization is solved.

The proposed results are related to several topics in systems and con-
trol and are benefited from the recent developments therein. Clearly,

In many applications, dynamics of the plant are partially known, antle idea of designing adaptive robust control can be traced back to [6],
estimation and robustness are the key in designing a successful cgid extensions have been made recently [22], [23] so that the bounding
trol. Adaptive control, robust control, and their combinations repréunction can be parameterized in terms of time varying parameters de-
sent the means of achieving online estimation and robustness. Roudinlgd by exogenous systems. On the other hand, the newly proposed
speaking, a control system is adaptive if unknown parameters (of aitaptive control does not contain any robust control part but utilizes a
ther the plant or its corresponding controller) are estimated online amgbust observer to estimate the nonlinear parameterization as a whole,
the estimates are used to synthesize a stabilizing control; and a cordffd it is this nonlinear observer that keeps the adaptive control be of
system is robust if stability and performance under a fixed controllgtandard form and enables the design of adaptation laws for parameter
is guaranteed for a specific class of uncertainties (which could be wstimation. Some of existing results on nonlinear observer designs can
known functionals, parameter variations, unmodeled dynamics, diste found in [1]-[3], [14], and [15].
bances, etc).

Robust control of honlinear uncertain systems has been a focus of re-
search in the recent years. Conceptually, a control system is made to be
robust if a specific class of uncertainties has been taken into considerThe following class of affine uncertain systems is considered in this
ation in control design and stability analysis. Typically, robust contralote:
design requires that the uncertainties be bounded in some norm and
have a certain structural property in terms of their functional depen- = flx,t)+ gz, t) [Afm(z,v,t) + u) (1)
dence and locations in system dynamics. Classes of stabilizable uncer-
tain systems have been found, and several robust control design Pro@ferex(t) € R" is the state of the systenX, (¢) = {x(7),0 < 7 <
dures have been proposed [4]-{6], [8], [10], [11], [13], [16], [19], [20]¢} (X) c R is an unknown but bounded set provided thatXet
[21], [24], [27]. On the other hand, adaptive control is the techniqyg yniformly boundedy(t) € €(X) is the vector of uncertainties,
of choice if the uncertainties can be expressed linearly in terms of up\4) ¢ %™ (with m < n) is the control vectorf(x,t) andg(x,t)
known constants. Its popularity is due to the fact that standard adapti@ dynamics of the so-called nominal system, Arfgh, (x, v, ) is the
control results [16] are concerned about how to estimate the unknowgstor of matched uncertainties.
and to use the estimates in control design. In order to design adaptive and robust controls to stabilize system (1),

Adaptive and robust controls are often combined as uncertaintig following assumptions are introduced. It is distinct that, in this note,

are unknown by nature and, in a plant, several types of them may Rf:ertain dynamics of the system have a nonlinear parameterization (as
present. It is straightforward to design a control containing both cojescribed by either Assumption 2A or 2B).

ponents to handle different kinds of unknowns, for example, a part of Assumption 1: There is a knowr€" functionV (z,#): R" x R —
the control is adaptive to estimate unknown but constant parametgrs gych that

while the rest of the control is robust to compensate for bounded un-
certainties. In addition, there are so-called robust adaptive control and .
adaptive robust control. Robust adaptive control is a modified adapti?"//b“l”ﬁ”) < Vi t) < v (2l

oV (x,t . .
WD | IV ) < —ulllel) @
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wherep(x, ¢,t) is a nonnegative bounding function and has a fradounds¢;; in adaptation laws, explicit projection of parameter esti-

tional parameterization of form mates is no longer needed.
W (e )¢ The control problem studied in the note is twofold: 1) design a ro-
plz, 0,t) = Wy (601 (4) bustcontrok(x,t) such that the resulting closed-loop system is stable

Wy (@, )02 (in the sense of either asymptotic stability or practical stability, that
W;(x,t) are known functional vectors),;. are compact setg;; € is, stability of uniform ultimate boundedness [5], [21]) for all possible
Qy,, 0 = [6F ¢L]T € R? is a vector of unknown constants, and ther&alues of uncertain vecter(t) in theunknowrset2(.Y') and for all un-
exist a known functior(z) and a known constaat> 0 such that, for certainties whose bounding function is described by fractional param-

all (x,t) and for allo> € Qg, eterization (4), and 2) if the uncertainty itself has a fractional param-
. eterization, design an adaptive control to ensure closed-loop stability
Wy (z,t)02 > c(z) > ¢ (5) (as previously described) and to estimate all the unknown parameters

. . Lo in the nonlinear parameterization.
Assumption 2B:Uncertain dynamics in the system are parameter-t e nonlinear parameterizatio

ized as the matrix fractional expression
Ill. ADAPTIVE ROBUST CONTROL DESIGN

. T ,T . . L .
V=0 = [@1 (,bz] It is known that, if uncertainties in the system are matched and
) 1 i bounded by a known bounding function, robust control can be
Afm(r,v,t) = Wiz, 1)1 designed through size domination in a Lyapunov argument. It is also

Wo (2, 1)
2 (7:1)02 ) ] shown in [6] that, in case that the bounding function is unknown but
whereW, (i, t) andW> (z, t) are known functional matrix and vector, parameterizable linearly in terms of constants, an adaptive robust
respectively, inequality (5) holds, and vecocontains unknown con- control can be designed using the certainty-equivalence principle
stants. o . . as did in a standard adaptive control design. The following lemma

Assumption 3:All functions in system (1) and in the previous asgytends the existing results to the case that the bounding function on
sumptions are Caratheodory, uniformly bounded with respectaiod | ,ncertainties has a nonlinear parameterization.
locally uniformly bounded with respect toandw. - Theorem 1: Suppose that system (1) satisfies Assumptions 1, 2A,
Assumption 4:Matrix g(=,?) has the properties that(x.#) = and 3 as well as condition (7). Then, the closed-loop system is uni-

[91 (2.1) g2 (x,1)]" wheregy'(x,t) € R™*™ is well defined formiy ultimate bounded under the adaptive robust control
everywhere and locally uniformly bounded. Furthermore, partial

derivatives ofg(x,t), Wi (x, t) andWa(z, t) with respect tor andt w(,t) = —pm (2, 1) Az, t) 9)
are well defined and locally uniformly bounded. / Sl )| + €

Remark 2.1: In Assumption 2A, inequality (5) implies that uncer- . T - s ; .

- . m (T, t = W/ (x,t Vs, (x,t)p2], e, t =
tainties to be compensated for are locally uniformly bounded. Know\i\{lhget)p (@ ‘)(r t)WTI(Ll t()fb )(‘I: {sm ; ((JIZSi)génQ]palrlefr::wet)e r given
edge ofc can be assumed without loss of any generality as paramet(%ri- ) Ve ST AT
zation (4) can be kept unchanged through scaling both its denominatgr

and numerator. Assumption 2B can be viewed to be a special case of ¢= —hee (10)
Assumption 2A. Both parameterizations have their roots in matrix-frac-
tion description [12]. o withe(to) > 0, ¢, is the estimate af, and its value can be arbitrarily

Remark 2.2: Existence of a matrix inverse and partial derivativeghosen as long as inequality< Wa(x.#)ds < c(x) is satisfied

is required in Assumption 4 in order to estimalef,.. (x,¢) directly s the estimate of; and is generated by adaptation law
using a robust observer (that is nonlinearrin Differentiability en-

sures thatA .. (z. t) has a locally bounded rate of change in ordes, = wa'l(w,t) HgT(w,t) Ve V(.r.t)H

to be estimated, and invertibility af (x,¢) implies thatA £, (x, t) c(x)

could be solved from dynamic equation of the system if all other terms —kq ((,)1 — (,f)f) . 014(to) > é1; (1)
were known. Thus, both of them can be interpreted as observability

conditions. o and0 < k, < 1andk. > 0 are gains. Furthermore, i > 0 and

It follows from (4) and (5) tha#?{ (x.#)¢1 > 0, which together % = 0, the original state:(¢) converges to zero. X

with (5) requires projection in the design of adaptation law(s). A stan- ~ Proof: Consider the Lyapunov functior(z.7, é1, 1) =
dard assumption of existing projection algorithms [25] is that unknowh (. t) + 0-_-5||<P1||‘ + ki, Where_@l = ¢1 — ¢1 is the param-
parameters stay and all the constraints are satisfied in a known con@8{ estimation error, andy = 0 if k. = 0 andk = 1/(kec)
bounded set. To better handle constraints of form (5), we propose thé)therwseT. It follows ffO'j; (2-(5) and (9)-(11) that, letting
following method: Through studying properties of the known vectors(: ) = V. V (@, t)g(x, )W (2. )1
Wi(=x,t), find ¢; such that .

A i< 0 L G faat)
W (x,t)61 > 0, andd; > 1) ot

o - . . + . V(z,)g(z, ) A frn (2, 1)
for all j impliesW; (x.1) (@1 - (bl) >0 (7) " ot

+ Ve (;I?,t)g(.’b, t) ll(l’, t) + ¢1 (b + Kie

and 1
<= (el + o s Ol + 2

Wi (x,4)63 > (), andos; > ¢3;

1 .
. — L i Ol +oT St ke
for all j impliesW¥y (r.#) (d2 — 03) >0 (8) oy @ Oll+ 01 ok

ka, e 2 ku [ * (12
whereg,; is the jth element ofp,. In essencep; consists of lower < =yl - ?”m” + 7”@1 —oull

bounds on the elements of. Using this approach, the set of admis- 1 ik 12
sibleg; is still known and convex but not compact and, by having lower T g TRk e 12)
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from which the stability claims stated can be concluded using stability Remark 4.1: Obviously, control (13) is an adaptive control of the

theorems in [5] and [21]. Also, note from (11) that simplest form, which makes it possible for the unknown parameter
) vector/matrix¢; in both denominator and numerator to be explicitly

4 b —ot|| = 2 HgT(I’ t) Ve Vi, t)H and properly estimated. What is new is that adaptation laws (14) and

dt c(r) (15) are in terms of not only the system state but also the output of a

2 robust auxiliary system whose dynamics are nonlineat is will be

shown in the proof of Theorem 2, the fractional parameterization as a
whole is also “estimated” (through size domination in a Lyapunov ar-
gument) by the output of the auxiliary system (16). Thus, the proposed

gbl = i )/c(;u).(;l'k;]us,dggkﬁow ffro;n()(n thato: — ¢7| does E’t new design is in essence to combine robust observer into adaptation
ecome zero and, hend@};’ (x,t)¢1 > 0. laws. ¢

Remark 3.1: This theorem shows that nonlinear parameterization Remark 4.2: Nonlinear parameterization can be handled by intro-

can be easily handled ir.] the context of robust contrc_JI. This_ is dye o tH&cing a robust part directly into adaptive control (13). Such a con-
f".iCt that, while an adaptive robust control has an online gstmjatlon alq ol, often called robust adaptive control, has the same shortcomings of
rithm, robust control compensates for the unknowns primarily throu% aptive robust controls (explained in Remark 3.1) as the robust control

§|ze dc_)mlnatlon: As aresult, L_Jnknown parameter,sz'lare not explic- . part tends to be dominating and, thus, makes parameter estimation less
itly estimated (via an adaptation law). In fact, nonlinear parameten%(

T . ! <ely and the overall control conservative. A recent result proposed in
tion in the more general form of (3) (rather than just fractional one) ci?] is along this line of robust adaptive control o

be directly handled by an adaptive robust control of form (9) and wi Remark 4.3: Auxiliary system (16) is a relative-degree-one ob-

”]E'”; (’5’2 as long a$|tp(g’f¢”2 B ﬁ(f';h(b’ t)||b|s ?Oun?e? by ztafwhgltlon sgrver, and the choice of its initial condition [i.g(f0) = 0] makes the
of - and compensated for by another robust control part. e su aking phenomenon absent. In an extension to high-relative-degree

a design is simple, the r(_asultlng cont_rol (ie., the adaptive robust ¢ dbservers (if required by system dynamics), introduction of saturation
trol) may be and usually is conservative. For systems whose dyna omes necessary as in the previous work on high-gain observers.
have a nonlinear fractional parameterization, control design can be pro-

N . Properties of robust-observer-based adaptive control (13) and
ceeded by estimating unknown parameters in both the numeratorg

. . . . . ility of the closed loop system are summarized in the following
denominator, and its development is the subject of the next sectlon%l orem. Its proof will be facilitated by the following lemma. In
the main objective of the note. S ’ '

the lemma,|| - ||- is the truncated functional norm defined by
()l = supgcye. [lw(H]]
Lemma: Consider the first-order, linear, vector differential equation
In the event that unknown dynamics have a nonlinear parameterighform ci4 + cow = v(t), whereci, ¢ > 0 are constants. Then,
tion as defined in Assumption 2B, adaptive robust control can also the input—output relationship from(t) to w(t) satisfies the following
applied. As shown in the previous section, the adaptive robust contiegquality: for allr > to, [|w(t)]|- < [lw(to)|l + (1/c2)[lo ()]l
does not explicitly produce any estimatejef To estimate all parame- Proof: The solution is w(t) = e (2/Vly(ty) +
ters (in particularg2 ) on line, one should proceed with an adaptive con};f e~(e2/e)=2)(1 /¢, )u(s)ds. Taking the norm on both sides
trol design. In the presence of nonlinear parameterization, it remaing/ields [|w(t)|| < [lw(to)|| + [[o(s)|ls f, 2/ =)(1 /¢y )ds, from
be preferred that an adaptive control be designed to achieve both objebich the statement can be concluded. O
tives of ensuring stability and estimatigg while not employing any ~ Theorem 2: Consider system (1) satisfying Assumptions 1, 2B, 3,
size-dominating robust part explicitly in the control expressibhe and 4 as well as (8). Under robust-observer-based adaptive control (13),

W (2.) (61 = 67 ) = 2ka || — o]

which, ask, — 07, approaches||g” (v, ) 7. V (2, t)[|W7 (2,t)

IV. NEw ADAPTIVE CONTROL DESIGN

new adaptive control proposed in this note is given by the following stability properties can be ensured. i) For any initial con-
ditions of z(to), &(to), andn(te) (of y(ts)), the corresponding state
u=—— ! W (e, )b (13) variables will be uniformly bounded in a hyperball (whose radius is
W (2,t)¢2 a classkC function of their initial conditions) for all sufficient large
. values of1/ . ii) The state variables will also be ultimately bounded
whereg; are estimates generated by adaptation laws with respect to a bound whose value is a cl&sfinction of &, and

. iii) Stability of uniform boundedness and ultimate boundedness is

(,;)1 = % vf Viz, t)g(x, )W (x,t) — kan’)l (14) semiglobal.
Wy (2,t)02 Proof: It follows from (1) and (16) that

3 —_;,f. . T Yo PVl .

02 = W (2,t)ds Wole, 1) 72 Viw, gl Dga (@, Dy pi = v(wt) —y (17)
— k, ((52 — (,63) qgg] (to) > &3, (15) wherey(x,t) = go(x,t)Afrm(x,t). Let 1/7)(,7?,_1/,7‘,) = ¢Y(x,t) — y.

Equation (17) shows that, by properly choosjno be small), output
0 < k, < 1is an adaptation gainy; € R™ is the output of the y of auxiliary system (16) can be made to approdch, t), that is,
following auxiliary dynamics: ¥(z,y,t) — 0. Since matrixg2(z,t) is invertible, outputy can be

viewed as a robust estimate 4ff.,.(z, ¢) despite of its nonlinear pa-

= — (224 1) — falw,t) — g, )u rameterlzatlon: Itis th|§ online estimate that n?gkes.adaptlve estimation
M of both¢ and¢- possible. In the sequel, stability will be analyzed for
1 the closed loop system consisting of (1), (17), (14), and (15).
y=—(x2+n) n(te) = —x2(to). 16 ' ! '
Y IT; (w2 +m) nlto) 22(to) (16) Asymptotic stability or uniform ultimate boundedness will be estab-

lished by induction and in four steps. The main idea of the proof is as
p > O'is a design parameter, and, f2(«,t) andgz (. ) are bottom  fo|jows. Given any positive constants, c;, ¢, c; andc;, such that,
mth order blocks oft, f(x,t) andg(x, t), respectively. Thatisy = o somer > ¢, ' ? i’
[f, 21T, w0 € R™, fla,t) = [fL (@, 0) £ (@, DT, fola,t) € R™, - N N
gl t) = g1 (,1) g2 (x,1)]", andgz(w, t) € R™ 7. Il < oy 00l < ez llylls < cys 161l- < ez, 101l < (18)
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and that their initial conditions are within subsets of the above compacfollows from (1), (2), (13)—(15), and (17) that
sets [as described by (26) and (27)], the time derivative of a proper OV (x, 1)
Lyapunov function [given by (22)] is made (by choice0f negative L= o
definite in a hyper annulus of a sufficient width [as described by (31)]. o . ~
By doing so and by noting thatis arbitrary, it can be shown that the + Trace(m o ) + 45;@2 +974
state variables in the Lyapunov function (i:e.¢ and«) will remainin .

the region defined by (18) and they will ultimately convergetoasmaller < = 73 (lzlD) + 72 V(. t)g(x. 1)
subset [described by an ultimate bound which is a ckagsnction of W2, t)é Wi (a, )1 ]

T

+ Ve "/Y(mv f)T

the lower bounds in (30) and (31)], i.e., local stability can be claimed. W (x. )02 ”/'T(l, )0
Sincec,, o andg . are also arbitrary, semi-global stability can then B 2

be concluded. + Trace (f}%l) + oo, +0 P

As the first step of stability analysis, properties stated in Assump- 1 o7
tions 1, 2B, 3, and 4 are used to develop bounds or bounding functions = — 3 ([l=]) — WT4 Vi tyg(r,t)gs " (2,1)
on the dynamics of the closed-loop system. Specifically, values of non- i (2, 1)02 1
negative bound§;(¢ = 1,---,8) and a positive bounfl < 7 < 1 X (ax,y, )Wy (2,)do ||ol|| + i||<b1||
are to be determined. It follows from assumptions 1 and 3 that, given ke ook
lz]l < ¢, inequalities -;wm'+§w@—¢ﬂ

- l||f¢7||2 + 00 s t). (23)

1D < €038 (lall), and |[@E V(0| < €55 (lal)
(19) It follows from inequalities (19)—(21) that, within the compact sets
hold for some constants, £ > 0 and0 < 4 < 1 (whose values j, (1g)
may depend upon.). Given||z|| < ¢, bounds§; (i = 2,---,8)
can also be found according to Assumptions 4 and ZB such that 1
lg2(x, DIl < llg(a, DIl < &2, [l (@0 < &, Wi (@I < &1 | W (a2 )0m
IWa (e, | < &5, 110[g2 (. )] /0] < &6, 1OIA fin (. )]/ 0] < &7, y
and||0[gz (z, ) A frn (2, 1)]/ 02| < &s. < E1€2€zfrr Sl 1l = A8 Al 1]
In the second step, relationships among the compact sets in (18) and o
with respect to time- are explored. To this end, consider the following@nd that, within the compact sets in (18)
sets of initial conditions: letting, = ||4||

Ve Ve, t)g(a, t)g (o, )0 (2, y, )Wy (2, )02

Hu(lz‘)H < {%&Ec% + &6+ é&&fs%‘ + Cu:|

Jtto)l| < e [(t0)

<z y(to)ll < cyo +eots s T (2] 2 X2 + X TP (U2l (24)

1
< ¢yo+ ;52&4%. (20) Combining the three inequalities from (23) up to (24) and applying

é(to)
H the Holder’s inequality yield that, givee||- < ¢

<o tep and H'J)(to)

Applying the lemma to differential equations (14), (15),Aand A7) L < =y (|4 A1rs (|| II)IIU'II+/\z||1/)||+/\m(1_“) 1)
yields that: since|z||- < c., [y(T)]] < cyo + (1/c)€28acs = ¢y,

||<51(T)|| < ey + (Vcka)61626478 () 2 ¢, [ld2(n)] < x ||U||——||¢’|| + Z[ [0l +10: ] ]
by + (k) E1&86875 (er)ey = e, 9N S 0 + 5 = 5, . A
||U'(T)|| < (1/¢)6a8acs + ¢y = ¢y, and, consequently < —573 (||»T||)— ' ool

ku . ku . Lk 2
+ 5 001"+ 5 102 =03 11* 43
lall < Lrcg 2 cu (21) 2 L
~ L [—nwn—usﬁu—ﬂ)/\ﬁﬂmuz/»nﬂ

Iz 4
It is obvious that, once. is chosen, bounds,, c;, ¢z, c;, ande, 1 -
can be selected (as shown before) and that, while some of them are  ——||¢|| [ |4 ||—u3 /”\ﬂ (1- J) ||l+ [ 7 ] (25)
proportional tol / &, , they are all independent of design parameter a

In the third step of analysis, the following Lyapunov function ign which the first three terms are negative definite with respect to the
adopted: variables.

As the fourth (and last) step, consider the initial conditions that are
a , 1 e in the following sets consistent with (20
L(w.6.0.8) = V(. t)+ STrace(616! ) + 211Gl + 210117 22) g (20)
—1
llz(to)ll <75 ©valca)

which is globally positive definite and radially unbounded with respect Hqg(to) <+vito 74(0(;)
to |ts arguments asi(||¥]]) < L(z, 0,9, 1) < v(]|¥]]), where¥ = . )
[F o1 1", andys, 751 RT — R are claskC.. functions defined ||%/(t0)|| <75 0aley) (26)
by: for all ¢s, ¢4, cs € RT H(b(to) <At olcs)
[|[otto)]| <35 0 rutey) (27)

g

2424 (’g)) < mles)+ %cz + %rg
linequalities in (26) can always be satisfied for any initial conditions de-

(2, 2, 2 1o, 1 ibed by (20) as.., 3, ¢,, ¢3, andcy i itive but otherwi
- 2., 2, 2 . T2 4oz scribed by (20) as.., ¢;, ¢,, ¢;, andey, in (18) are positive but otherwise
andys < GFeaTt ('5) 2 72(es) + 2L’4 + 2 Cs- arbitrary constants and therefore can be always be increased.
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1 o8 T T T T T T i ' T

where ™ ando denote the inverse function and the composition of
functions, respectively. Now, given an arbitrary constanthoose de-
sign parameter

0<p<minfp p b (28)
where
1 a1\ T -
A
A x[eg] 177, if05<8<1
i 1 ;r%,fﬁ@—%
4(1-7) 1 s
X [v5 "o yaler)] -5, if0<3<0.5 . ; : : ; : : , :
1-5 _1 -3 o 2 4 6 8 T|m-1:e°°nd. 12 14 16 18 20
2377 AP (1=p)
N x [45 %o 7"4(61)]7%, if05<8<1 Fig. 1. Adaptive robust control (9).
e e T _1=8
L35\ P(1-p)" 5
X[%]Q’ﬁlﬁ if0<3<05 It follows from the aforementioned Lyapunov analysis that, if

VIV(e,t)g(x, t)Af,(x,t) < 0, the convergence of both and

and constants; and e, are defined by0 < ¢, < min{v; " o VIV (e, t)g(a, t)jAf,n(.zc,t) _to zero .is facili.tated; hence, it follows
()75 o (|9t )}, andes = (ku/2)|61]2 + (ka/2)|| 62 — from (32) that||¢. — ¢5|| is both increasing and convergent. On

63 + 3. Note thate, is proportional tok, andy:. the other hand, iV V (2, t)g(x,t)Afu(2,t) > 0, |62 — 03| is
It follows from (25) that decreasing but, according to (32), elementsoktays above those of
¢5. In summary, control and adaptation laws (13) up to (15) are made

nonsingular. O
Remark 4.4:1f 3 = 0.3, choice ofy: in (28) becomes independent

) ) o ] _of ¢ ande . In this case, one can set ande; to be zero, and the
provided that design parametesatisfies inequality (28), that the in- ,timate bound depends upenonly. o

tended stability region [as defined by the sets in (18)] admits the initial gemark 4.5: Given any conservative estimate of initial conditions,
conditions according to (26) and (27), and that the set of semiglobal stability can be calculated using (26) and (27).
Hence, (28) and (31) together with (19)—(21) provide the criteria for

: 1 1+ ko ~ ka | =
L <=3 (el - 4_,,,”1””2 = Sllonll” = Flloal” +e2 (29)

lellr <eo and " < Y] < ey (30) selecting control gai, and design parametgr S
. . Remark 4.6: It is clear from the proof of Theorem 2 thatis a ro-
Thus, we havel < 0 if bust estimate of nonlinearly parameterized functiofy,, (z, ¢,t). As
. N such, the observer-based robust contre: _!]2_1('7?,17)]/ guarantees
73 (Ber) <|lzfl < oo or (dper <0 < ey the same stability properties, and this control is simpler than adaptive
or \/Z}E <1I9ll < e (3D) control (13) only because it does not estimate system parameters.

- . ) . V. SIMULATION EXAMPLE
It is important to note that the regions defined in (26) and (27) and

(30), and (31) are all consistent with the hyperballs in (18). In fact, theseTO illustrate the proposed adaptive and robust controls, consider the

regions can be made subsets of those sets in (18) by increasing siggpnd-order system; = x> andi» = —1 —2x2 +Af (2, v, 1)+

bounds as., and the spans of hyperannulus such as those in (31) arevhere uncertaintA f., (x, v, ) is assumed to be of form

also be increased. Therefore, it follows from [21, Th. 2.15, p. 65] that,

given any initial conditions satisfying (26) and (27), all state variables by + by cos(2t)ala’

(including =, y, ¢, andv’) will be uniformly bounded [with respect Afm(a,v,t) =

to the hyperballs defined by (18)] and uniformly ultimately bounded

(with respect to a hyperball whose radius is a clasnction of e

ande; ). Recall that bounds such as can be increased arbitrarily and

are independent ¢f, therefore, the closed-loop stability is semiglobal >
To have a smaller ultimate bound, bethande, need to be reduced. ValUes are usgdcl =2,a2 = 05,03 =15, a4 = 1.5,01 = 1, and

That is, one has to reduce gain > 0 and design parameter > b2 = —2. Obviously, the bounding function on the uncertainty can be

0. Note that, as, decreases, bounds suchcgsbecome larger and, C10sen to be

consequentlyy becomes much smaller. In the limit that betandk,,

approach zero, statebecomes asymptotically convergent.

a1 + assin(t) + azxd + asxl

anda; andb; are unknown constants satisfying the inequalities>
az +1 > 0,as > 1, andas > 1. In the simulation, the following

r,v,t) = - 5 5
Finally, it follows from (15) and (17) that, ds, — 0 andp — 0 plz,v,1) a1 + as sin(t) + aza? + asal
d - NE 2Wo (2, t) ((,)2 — (,)5) whered; = |b;|. It is straightforward to show that (5) is valid with
s Q2 — 2| — Wi ( t)aﬁ’)‘ c(x) = 1+ 21 + 23 andc = 1 and that assumption 1 is met with

T V(w) = 32t + 2z1w2 + 25, v ([|2]]) = (2 = V2)ll2[|*, v ([l2l) =
X [— Ve Vi, t)g(w,f)Afm(w,t)] - (B2 24 V2|, andys(l2]) = 2|2,
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Fig. 2. Adaptive and robust-observer-based control (13).
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Fig. 7. Estimation errors af ;.
Fig. 4. State trajectory under control (13); (solid) andz, (dash).

As demonstrated by Figs. 1 and 3, robust stability is achieved under

Adaptive robust control (9) together with (10) and (11) is simulatetthe adaptive robust control. The fact that control (9) is conservatively
by settinge(to) = 1, ¢1 (to) = ¢ = 0, Wi (2, t)d2 = (), k. = 1, magnitude dominant and sign-change sensitive makes the controller
andk, = 0.1. Simulation results are shown in Figs. 1, 3, and 5. On theutput prone to chatter extensively and/or intensively and hence in-
other hand, robust-observer-based adaptive control (13) together witites performance degradation in both the control and the system tra-
adaptation laws (14) and nonlinear observer (15) is simulated usijegtory.
Simulink (in which variable-step ode45 solver and maximum step sizelt is clear from comparing Figs. 2 and 1 as well as 4 and 3 that,
of 0.0005 are set) and with the following parametefg; ) = 0, 61 = whilea slightly larger control effort is observed in Fig. 2 during the
[00]7, 62 = &3 =[0.5011]", » = 0.001, andk, = 0.1. Simulation initial six-second transient [due to the fact that control (13) has more
results are shown in Figs. 2, 4, and 6-8. dynamics than those of control (9)], the new adaptive control is much
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(9]
[10]

(11]
[12]
(13]

(14]

[15]

(16]
Fig. 8.

Auxiliary outputy(z).

[17]

smoother and far less conservative overall, and it guarantees better PEfg]
formance (faster convergence and much smaller ultimate boundedness
that is very close to asymptotic stability). [19]

As expected, parameter estimates in either case do not converge to
their true values. For control (9), parameter estimates are not conve'iz-0
gent as the parameters to be estimated are conservative bounds. For
control (13), estimation convergence would require persistent excitg21]

tion, which is the subject of future research.
[22]

VI. CONCLUSION

In this note, two different control schemes are proposed for system@?’]
with nonlinear parameterizations. Nonlinear parameterization used in
the note is consistent with matrix fractional description, either in termg24]
of system dynamics or their bounding functions. It is shown that an
adaptive robust control can achieve global stability but does not est{25]
mate all unknown parameters and in turn may be conservative. To e 56
timate all unknown parameters, system dynamics must be parameteri-
zable directly, and a new and simple adaptive control can be designed
based on robust estimation of nonlinear parameterization as a wholg27]
As a tradeoff, the newly proposed adaptive control renders semiglobal
stability.
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