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Adaptive and Robust Controls of Uncertain Systems With
Nonlinear Parameterization

Zhihua Qu

Abstract—Two classes of partially known systems are considered in this
note; both of them have a fractional parameterization of the unknowns. The
first class consists of nonlinear systems whose uncertainties are bounded
by a function of fractional parameterization, and the second class compro-
mises those systems whose unknown dynamics can directly, but nonlinearly,
be parameterized. It is shown that adaptive robust control can be extended
to accommodate nonlinearly parameterized bounding functions and that,
with the aid of a robust auxiliary system, new adaptation laws and a simple
adaptive control can be designed for the unknowns in the fractional pa-
rameterization. Practical stability (in terms of uniform boundedness and
ultimate boundedness) is shown; global for adaptive robust control and
semiglobal for the new adaptive control.

Index Terms—Adaptive control, nonlinear parameterization, observer,
robust control, uncertain systems.

I. INTRODUCTION

In many applications, dynamics of the plant are partially known, and
estimation and robustness are the key in designing a successful con-
trol. Adaptive control, robust control, and their combinations repre-
sent the means of achieving online estimation and robustness. Roughly
speaking, a control system is adaptive if unknown parameters (of ei-
ther the plant or its corresponding controller) are estimated online and
the estimates are used to synthesize a stabilizing control; and a control
system is robust if stability and performance under a fixed controller
is guaranteed for a specific class of uncertainties (which could be un-
known functionals, parameter variations, unmodeled dynamics, distur-
bances, etc).

Robust control of nonlinear uncertain systems has been a focus of re-
search in the recent years. Conceptually, a control system is made to be
robust if a specific class of uncertainties has been taken into consider-
ation in control design and stability analysis. Typically, robust control
design requires that the uncertainties be bounded in some norm and
have a certain structural property in terms of their functional depen-
dence and locations in system dynamics. Classes of stabilizable uncer-
tain systems have been found, and several robust control design proce-
dures have been proposed [4]–[6], [8], [10], [11], [13], [16], [19], [20],
[21], [24], [27]. On the other hand, adaptive control is the technique
of choice if the uncertainties can be expressed linearly in terms of un-
known constants. Its popularity is due to the fact that standard adaptive
control results [16] are concerned about how to estimate the unknowns
and to use the estimates in control design.

Adaptive and robust controls are often combined as uncertainties
are unknown by nature and, in a plant, several types of them may be
present. It is straightforward to design a control containing both com-
ponents to handle different kinds of unknowns, for example, a part of
the control is adaptive to estimate unknown but constant parameters
while the rest of the control is robust to compensate for bounded un-
certainties. In addition, there are so-called robust adaptive control and
adaptive robust control. Robust adaptive control is a modified adaptive
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control in order to gain certain robustness property. For example, robust
adaptive controls have been proposed for slowly time varying systems
[26], fast time varying systems [18], [22], and systems with internal dy-
namics [9], [11], [27]. Adaptive robust control is an adaptive version of
robust control, and the first of such results is [6] in which uncertainties
of the plant is bounded by a function linearly parameterized in terms
of unknown constant parameters and robust control is made adaptive
to estimate these parameters.

In this note, we continue to explore the benefits of adaptive and ro-
bust controls. The technical problem addressed in the note is how to
design a stabilizing control for systems whose uncertainties or their
bounding functions are parameterized not linearly but of a fractional
expression. It is shown that, in case that the bounding function on un-
certainties has a fractional parameterization, adaptive robust control
can be designed and that, if the uncertainties can be parameterized di-
rectly, a new class of adaptive control based on robust observer can
be designed to estimate all unknown parameters in the nonlinear pa-
rameterization. In both cases, the control problem in the presence of
nonlinear parameterization is solved.

The proposed results are related to several topics in systems and con-
trol and are benefited from the recent developments therein. Clearly,
the idea of designing adaptive robust control can be traced back to [6],
and extensions have been made recently [22], [23] so that the bounding
function can be parameterized in terms of time varying parameters de-
fined by exogenous systems. On the other hand, the newly proposed
adaptive control does not contain any robust control part but utilizes a
robust observer to estimate the nonlinear parameterization as a whole,
and it is this nonlinear observer that keeps the adaptive control be of
standard form and enables the design of adaptation laws for parameter
estimation. Some of existing results on nonlinear observer designs can
be found in [1]–[3], [14], and [15].

II. PROBLEM FORMULATION

The following class of affine uncertain systems is considered in this
note:

_x = f(x; t) + g(x; t) [�fm(x; v; t) + u] (1)

wherex(t) 2 <n is the state of the system,X(t) = fx(� ); 0 � � �
tg, 
(X) � <p is an unknown but bounded set provided that setX

is uniformly bounded,v(t) 2 
(X) is the vector of uncertainties,
u(t) 2 <m (with m � n) is the control vector,f(x; t) andg(x; t)
are dynamics of the so-called nominal system, and�fm(x; v; t) is the
vector of matched uncertainties.

In order to design adaptive and robust controls to stabilize system (1),
the following assumptions are introduced. It is distinct that, in this note,
uncertain dynamics of the system have a nonlinear parameterization (as
described by either Assumption 2A or 2B).

Assumption 1:There is a knownC1 functionV (x; t): <n � < !
<+ such that


1 (kxk) � V (x; t) � 
2 (kxk)

and
@V (x; t)

@t
+5T

x V (x; t)f(x; t) � �
3(kxk) (2)

where
i: <+ ! <+ are classK1 functions.
Assumption 2A:Uncertain dynamics in the system are bounded in

norm as

k�fm(x; v; t)k � �(x; �; t) (3)
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where�(x; �; t) is a nonnegative bounding function and has a frac-
tional parameterization of form

�(x; �; t) =
WT

1 (x; t)�1
WT

2
(x; t)�2

(4)

Wi(x; t) are known functional vectors,
� are compact sets,�i 2

� , � = [�T1 �T2 ]

T 2 <q is a vector of unknown constants, and there
exist a known functionc(x) and a known constantc > 0 such that, for
all (x; t) and for all�2 2 
�

WT
2 (x; t)�2 � c(x) � c: (5)

Assumption 2B:Uncertain dynamics in the system are parameter-
ized as the matrix fractional expression

v =� = �T1 �T2
T

�fm(x; v; t) =
1

WT
2
(x; t)�2

W1(x; t)�1 (6)

whereW1(x; t) andW2(x; t) are known functional matrix and vector,
respectively, inequality (5) holds, and vector� contains unknown con-
stants.

Assumption 3:All functions in system (1) and in the previous as-
sumptions are Caratheodory, uniformly bounded with respect tot, and
locally uniformly bounded with respect tox andv.

Assumption 4:Matrix g(x; t) has the properties thatg(x; t) =
[gT1 (x; t) gT2 (x; t)]

T where g�1

2
(x; t) 2 <m�m is well defined

everywhere and locally uniformly bounded. Furthermore, partial
derivatives ofg(x; t), W1(x; t) andW2(x; t) with respect tox andt
are well defined and locally uniformly bounded.

Remark 2.1: In Assumption 2A, inequality (5) implies that uncer-
tainties to be compensated for are locally uniformly bounded. Knowl-
edge ofc can be assumed without loss of any generality as parameteri-
zation (4) can be kept unchanged through scaling both its denominator
and numerator. Assumption 2B can be viewed to be a special case of
Assumption 2A. Both parameterizations have their roots in matrix-frac-
tion description [12]. �

Remark 2.2: Existence of a matrix inverse and partial derivatives
is required in Assumption 4 in order to estimate�fm(x; t) directly
using a robust observer (that is nonlinear inx). Differentiability en-
sures that�fm(x; t) has a locally bounded rate of change in order
to be estimated, and invertibility ofg2(x; t) implies that�fm(x; t)
could be solved from dynamic equation of the system if all other terms
were known. Thus, both of them can be interpreted as observability
conditions. �

It follows from (4) and (5) thatWT
1 (x; t)�1 � 0, which together

with (5) requires projection in the design of adaptation law(s). A stan-
dard assumption of existing projection algorithms [25] is that unknown
parameters stay and all the constraints are satisfied in a known convex
bounded set. To better handle constraints of form (5), we propose the
following method: Through studying properties of the known vectors
Wi(x; t), find ��i such that

WT
1 (x; t)��1 � 0; and�̂1j � ��1j

for all j impliesWT
1 (x; t) �̂1 � ��1 � 0 (7)

and

WT
2 (x; t)��2 � c(x); and�̂2j � ��2j

for all j impliesWT
2 (x; t) �̂2 � ��2 � 0 (8)

where�̂ij is thejth element of�̂i. In essence,��i consists of lower
bounds on the elements of�i. Using this approach, the set of admis-
sible�i is still known and convex but not compact and, by having lower

bounds��ij in adaptation laws, explicit projection of parameter esti-
mates is no longer needed.

The control problem studied in the note is twofold: 1) design a ro-
bust controlu(x; t) such that the resulting closed-loop system is stable
(in the sense of either asymptotic stability or practical stability, that
is, stability of uniform ultimate boundedness [5], [21]) for all possible
values of uncertain vectorv(t) in theunknownset
(X) and for all un-
certainties whose bounding function is described by fractional param-
eterization (4), and 2) if the uncertainty itself has a fractional param-
eterization, design an adaptive control to ensure closed-loop stability
(as previously described) and to estimate all the unknown parameters
in the nonlinear parameterization.

III. A DAPTIVE ROBUST CONTROL DESIGN

It is known that, if uncertainties in the system are matched and
bounded by a known bounding function, robust control can be
designed through size domination in a Lyapunov argument. It is also
shown in [6] that, in case that the bounding function is unknown but
parameterizable linearly in terms of constants, an adaptive robust
control can be designed using the certainty-equivalence principle
as did in a standard adaptive control design. The following lemma
extends the existing results to the case that the bounding function on
uncertainties has a nonlinear parameterization.

Theorem 1: Suppose that system (1) satisfies Assumptions 1, 2A,
and 3 as well as condition (7). Then, the closed-loop system is uni-
formly ultimate bounded under the adaptive robust control

u(x; t) = ��̂m(x; t)
�̂(x; t)

k�̂(x; t)k+ �
(9)

where �̂m(x; t) = WT
1 (x; t)�̂1=[W

T
2 (x; t)�̂2], �̂(x; t) =

gT (x; t) 5x V (x; t)WT
1 (x; t)�̂1, � is a design parameter given

by

_� = �k�� (10)

with �(t0) > 0, �̂2 is the estimate of�2 and its value can be arbitrarily
chosen as long as inequality0 < W2(x; t)�̂2 � c(x) is satisfied,�̂1

is the estimate of�1 and is generated by adaptation law

_̂
�
1
=

1

c(x)
W1(x; t) gT (x; t)5x V (x; t)

�ka �̂1 � ��1 ; �̂1j(t0) � ��1j (11)

and0 � ka � 1 andk� � 0 are gains. Furthermore, ifk� > 0 and
ka = 0, the original statex(t) converges to zero.

Proof: Consider the Lyapunov functionL(x; t; �1; �̂1) =
V (x; t) + 0:5k~�1k

2 + kl�, where ~�1 = �1 � �̂1 is the param-
eter estimation error, andkl = 0 if k� = 0 and kl = 1=(k�c)
if otherwise. It follows from (2)–(5) and (9)–(11) that, letting
�(x; t) = 5T

xV (x; t)g(x; t)WT
1 (x; t)�1

_L �
@V (x; t)

@t
+5T

x V (x; t)f(x; t)

+5T
x V (x; t)g(x; t)�fm(x; t)

+5T
x (x; t)g(x; t)u(x; t) + ~�T1

_~�+ kl_�

�� 
3 (kxk) +
1

c(x)
k�(x; t)k+

�

c

�
1

c(x)
k�̂(x; t)k+~�T1

_~�+kl_�

� � 
3 (kxk)�
ka
2
k~�1k

2 +
ka
2
k�1 � ��1k

2

+
1

c
� klk� � (12)
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from which the stability claims stated can be concluded using stability
theorems in [5] and [21]. Also, note from (11) that

d

dt
�̂1 � ��1

2

=
2

c(x)
gT (x; t)5x V (x; t)

�WT
1 (x; t) �̂1 � ��1 � 2ka �̂� ��1

2

which, aska ! 0+, approaches2kgT (x; t)5x V (x; t)kWT
1 (x; t)

(�̂1 � ��1)=c(x). Thus, we know from (7) thatk�̂1 � ��1k does not
become zero and, hence,WT

1 (x; t)�̂1 � 0.
Remark 3.1: This theorem shows that nonlinear parameterization

can be easily handled in the context of robust control. This is due to the
fact that, while an adaptive robust control has an online estimation algo-
rithm, robust control compensates for the unknowns primarily through
size domination. As a result, unknown parameters in�2 are not explic-
itly estimated (via an adaptation law). In fact, nonlinear parameteriza-
tion in the more general form of (3) (rather than just fractional one) can
be directly handled by an adaptive robust control of form (9) and with
�̂(x; �̂; t) as long ask�(x; �; t)� �̂(x; �̂; t)k is bounded by a function
of x and compensated for by another robust control part. While such
a design is simple, the resulting control (i.e., the adaptive robust con-
trol) may be and usually is conservative. For systems whose dynamics
have a nonlinear fractional parameterization, control design can be pro-
ceeded by estimating unknown parameters in both the numerator and
denominator, and its development is the subject of the next section and
the main objective of the note. �

IV. NEW ADAPTIVE CONTROL DESIGN

In the event that unknown dynamics have a nonlinear parameteriza-
tion as defined in Assumption 2B, adaptive robust control can also be
applied. As shown in the previous section, the adaptive robust control
does not explicitly produce any estimate of�2. To estimate all parame-
ters (in particular,�2) on line, one should proceed with an adaptive con-
trol design. In the presence of nonlinear parameterization, it remains to
be preferred that an adaptive control be designed to achieve both objec-
tives of ensuring stability and estimating�i while not employing any
size-dominating robust part explicitly in the control expression. The
new adaptive control proposed in this note is given by

u = �
1

WT
2 (x; t)�̂2

WT
1 (x; t)�̂1 (13)

where�̂i are estimates generated by adaptation laws

_̂
�1 =

1

WT
2 (x; t)�̂2

5T
x V (x; t)g(x; t)W1(x; t)� ka�̂1 (14)

_̂
�2 = �

1

WT
2 (x; t)�̂2

W2(x; t)5
T
x V (x; t)g(x; t)g�12 (x; t)y

� ka �̂2 � ��2 �̂2j(t0) � ��2j (15)

0 � ka � 1 is an adaptation gain,y 2 <m is the output of the
following auxiliary dynamics:

_� = �
1

�
(x2 + �)� f2(x; t)� g2(x; t)u

y =
1

�
(x2 + �) �(t0) = �x2(t0): (16)

� > 0 is a design parameter, andx2, f2(x; t) andg2(x; t) are bottom
mth order blocks ofx, f(x; t) andg(x; t), respectively. That is,x =
[xT1 ; x

T
2 ]
T ,x2 2 <m,f(x; t) = [fT1 (x; t) fT2 (x; t)]T ,f2(x; t) 2 <m,

g(x; t) = [gT1 (x; t) g
T
2 (x; t)]

T , andg2(x; t) 2 <m�m.

Remark 4.1: Obviously, control (13) is an adaptive control of the
simplest form, which makes it possible for the unknown parameter
vector/matrix�i in both denominator and numerator to be explicitly
and properly estimated. What is new is that adaptation laws (14) and
(15) are in terms of not only the system state but also the output of a
robust auxiliary system whose dynamics are nonlinear inx. As will be
shown in the proof of Theorem 2, the fractional parameterization as a
whole is also “estimated” (through size domination in a Lyapunov ar-
gument) by the output of the auxiliary system (16). Thus, the proposed
new design is in essence to combine robust observer into adaptation
laws. �

Remark 4.2: Nonlinear parameterization can be handled by intro-
ducing a robust part directly into adaptive control (13). Such a con-
trol, often called robust adaptive control, has the same shortcomings of
adaptive robust controls (explained in Remark 3.1) as the robust control
part tends to be dominating and, thus, makes parameter estimation less
likely and the overall control conservative. A recent result proposed in
[7] is along this line of robust adaptive control. �

Remark 4.3: Auxiliary system (16) is a relative-degree-one ob-
server, and the choice of its initial condition [i.e.,y(t0) = 0] makes the
peaking phenomenon absent. In an extension to high-relative-degree
observers (if required by system dynamics), introduction of saturation
becomes necessary as in the previous work on high-gain observers.�

Properties of robust-observer-based adaptive control (13) and
stability of the closed loop system are summarized in the following
theorem. Its proof will be facilitated by the following lemma. In
the lemma,k � k� is the truncated functional norm defined by
kw(t)k�

�
= sup0�t�� kw(t)k.

Lemma: Consider the first-order, linear, vector differential equation
of form c1 _w + c2w = v(t), wherec1, c2 > 0 are constants. Then,
the input–output relationship fromv(t) tow(t) satisfies the following
inequality: for all� � t0, kw(t)k� � kw(t0)k+ (1=c2)kv(t)k�.

Proof: The solution is w(t) = e�(c =c )tw(t0) +
t

0
e�(c =c )(t�s)(1=c1)v(s)ds. Taking the norm on both sides

yieldskw(t)k � kw(t0)k+ kv(s)kt
t

0
e(c =c )(t�s)(1=c1)ds, from

which the statement can be concluded.
Theorem 2: Consider system (1) satisfying Assumptions 1, 2B, 3,

and 4 as well as (8). Under robust-observer-based adaptive control (13),
the following stability properties can be ensured. i) For any initial con-
ditions ofx(t0), �̂(t0), and�(t0) (or y(t0)), the corresponding state
variables will be uniformly bounded in a hyperball (whose radius is
a class-K function of their initial conditions) for all sufficient large
values of1=�. ii) The state variables will also be ultimately bounded
with respect to a bound whose value is a class-K function ofka and
�. iii) Stability of uniform boundedness and ultimate boundedness is
semiglobal.

Proof: It follows from (1) and (16) that

� _y =  (x; t)� y (17)

where (x; t) = g2(x; t)�fm(x; t). Let ~ (x; y; t) =  (x; t) � y.
Equation (17) shows that, by properly choosing� (to be small), output
y of auxiliary system (16) can be made to approach (x; t), that is,
~ (x; y; t) ! 0. Since matrixg2(x; t) is invertible, outputy can be
viewed as a robust estimate of�fm(x; t) despite of its nonlinear pa-
rameterization. It is this online estimate that makes adaptive estimation
of both�1 and�2 possible. In the sequel, stability will be analyzed for
the closed loop system consisting of (1), (17), (14), and (15).

Asymptotic stability or uniform ultimate boundedness will be estab-
lished by induction and in four steps. The main idea of the proof is as
follows. Given any positive constantscx, c�̂, cy , c~� andc~ such that,
for some� � t0

kxk� < cx; k�̂k� < c�̂; kyk� < cy; k~�k� < c~�; k
~ k� < c~ (18)
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and that their initial conditions are within subsets of the above compact
sets [as described by (26) and (27)], the time derivative of a proper
Lyapunov function [given by (22)] is made (by choice of�) negative
definite in a hyper annulus of a sufficient width [as described by (31)].
By doing so and by noting that� is arbitrary, it can be shown that the
state variables in the Lyapunov function (i.e.,x, ~� and ~ ) will remain in
the region defined by (18) and they will ultimately converge to a smaller
subset [described by an ultimate bound which is a class-K function of
the lower bounds in (30) and (31)], i.e., local stability can be claimed.
Sincecx, c~�, andc~ are also arbitrary, semi-global stability can then
be concluded.

As the first step of stability analysis, properties stated in Assump-
tions 1, 2B, 3, and 4 are used to develop bounds or bounding functions
on the dynamics of the closed-loop system. Specifically, values of non-
negative bounds�i(i = 1; � � � ; 8) and a positive bound0 < � < 1
are to be determined. It follows from assumptions 1 and 3 that, given
kxk < cx, inequalities

kf(x; t)k� �0

(1��)
3 (kxk) ; and 5T

x V (x; t) � �1

�
3 (kxk)

(19)
hold for some constants�0, �1 > 0 and0 < � < 1 (whose values
may depend uponcx). Givenkxk < cx, bounds�i (i = 2; � � � ; 8)
can also be found according to Assumptions 4 and 2B such that
kg2(x; t)k � kg(x; t)k � �2, kg�12 (x; t)k � �3, kW1(x; t)k � �4,
kW2(x; t)k � �5, k@[g2(x; t)]=@tk � �6, k@[�fm(x; t)]=@tk � �7,
andk@[g2(x; t)�fm(x; t)]=@xk � �8.

In the second step, relationships among the compact sets in (18) and
with respect to time� are explored. To this end, consider the following
sets of initial conditions: lettingc�

�
= k�k

kx(t0)k < cx0 �̂(t0) < c�̂0 ky(t0)k < cy0

~�(t0) < c~�0 + c� and ~ (t0) < cy0 +
1

c
�2�4c�: (20)

Applying the lemma to differential equations (14), (15), and (17)
yields that: sincekxk� < cx, ky(�)k � cy + (1=c)�2�4c�

�
= cy ,

k�̂1(�)k � c�̂ + (1=cka)�1�2�4

�
3 (cx)

�
= c�̂ , k�̂2(�)k �

c�̂ + (1=cka)�1�2�3�4�5

�
3 (cx)cy

�
= c�̂ , k~�(�)k � c� + c�̂

�
= c~�,

k ~ (�)k � (1=c)�2�4c� + cy
�
= c~ and, consequently

kuk �
1

c
�4c�̂1

�
= cu: (21)

It is obvious that, oncecx is chosen, boundscy , c�̂, c~�, c~ , andcu
can be selected (as shown before) and that, while some of them are
proportional to1=ka, they are all independent of design parameter�.

In the third step of analysis, the following Lyapunov function is
adopted:

L(x; ~�; ~ ; t) = V (x; t)+
1

2
Trace ~�1 ~�

T
1 +

1

2
k~�2k

2+
1

2
k ~ k2 (22)

which is globally positive definite and radially unbounded with respect
to its arguments as
4(k	k) � L(x; ~�; ~ ; t) � 
5(k	k), where	 =
[xT ~�T ~ T ]T , and
4; 
5: <+ ! <+ are classK1 functions defined
by: for all c3, c4, c5 2 <+


4 c23 + c24 + c25 � 
1(c3) +
1

2
c24 +

1

2
c25

and
5 c23 + c24 + c25 � 
2(c3) +
1

2
c24 +

1

2
c25:

It follows from (1), (2), (13)–(15), and (17) that

_L =
@V (x; t)

@t
+5T

x V (x; t) _x

+ Trace ~�1
_~�
T

1 + ~�T2
_~�2 +

~ T
_~ 

� � 
3 (kxk) +5
T
x V (x; t)g(x; t)

�
W1(x; t)�1
WT

2 (x; t)�2
�
W1(x; t)�̂1

WT
2 (x; t)�̂2

+ Trace ~�T1
_~�1 + ~�T2

_~�2 +
~ T

_~ 

= � 
3 (kxk)�
1

WT
2 (x; t)�̂2

5T
x V (x; t)g(x; t)g

�1
2 (x; t)

� ~ (x; y; t)WT
2 (x; t)~�2 �

ka
2
k~�1k

2 +
ka
2
k�1k

2

�
ka
2
k~�2k

2 +
ka
2
k�2 � ��2k

2

�
1

�
k ~ k2 + ~ T _ (x; t): (23)

It follows from inequalities (19)–(21) that, within the compact sets
in (18)

1

WT
2 (x; t)�̂2

5T
x V (x; t)g(x; t)g

�1
2 (x; t) ~ (x; y; t)WT

2 (x; t)~�2

�
1

c
�1�2�3�5c~�


�
3 (kxk)k ~ k

�
= �1


�
3 (kxk)k ~ k

and that, within the compact sets in (18)

_ (x; t) �
1

c
�4�6c� + �2�7 +

1

c
�2�4�8c� + cu

+�0�8

(1��)
3 (kxk)

�
= �2 + �3


(1��)
3 (kxk) : (24)

Combining the three inequalities from (23) up to (24) and applying
the Holder’s inequality yield that, givenkxk� < cx

_L � � 
3 (kxk)+�1

�
3 (kxk)k ~ k+�2k ~ k+�3


(1��)
3 (kxk)

� k ~ k�
1

�
k ~ k2+

ka
2

2

i=1

�k~�ik
2+k�ik

2

��
1

3

3 (kxk)�

1

4�
k ~ k2�

ka
2
k~�1k

2�
ka
2
k~�2k

2

+
ka
2
k�1k

2+
ka
2
k�2��

�

2k
2
+��22

�
1

�
k ~ k

1

4
k ~ k��3 (1��)�1 � k ~ k

�
1

�
k ~ k

1

4
k ~ k��3 ��3 (1��) k ~ k (25)

in which the first three terms are negative definite with respect to the
variables.

As the fourth (and last) step, consider the initial conditions that are
in the following sets consistent with (20)1 :

kx(t0)k � 

�1
5 � 
4(cx)

�̂(t0) � 
�15 � 
4(c�̂)

ky(t0)k � 

�1
5 � 
4(cy) (26)

~�(t0) � 
�15 � 
4(c~�)

~ (t0) � 
�15 � 
4(c~ ) (27)

1Inequalities in (26) can always be satisfied for any initial conditions de-
scribed by (20) asc , c , c , c , andc in (18) are positive but otherwise
arbitrary constants and therefore can be always be increased.
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where�1 and� denote the inverse function and the composition of
functions, respectively. Now, given an arbitrary constant��, choose de-
sign parameter

0 < � < minf�
1
; �

2
g (28)

where

�
1

�
=

1
4(1��)

3
�

�
�

1 �
�

�[c~ ]� ; if 0:5 � � < 1

1
4(1��)

3
�

�
�

1 �
�

� 
�15 � 
4(�1) ; if 0 � � < 0:5

�
2

�
=

1
4�

3
�

�
�

3 (1� �)
�

� 
�15 � 
4(�1) �

; if 0:5 � � < 1

1
4�

3
�

�
�

3 (1� �)
�

�[c~ ] ; if 0 � � < 0:5

and constants�1 and �2 are defined by0 < �1 < minf
�15 �

4(�

�); 
�15 � 
4(k ~ (t0)k)g, and�2 = (ka=2)k�1k2 + (ka=2)k�2�
��2k2 + ��22. Note that�2 is proportional toka and�.

It follows from (25) that

_L � �1

3

3 (kxk)� 1

4�
k ~ k2 � ka

2
k~�1k2 � ka

2
k~�2k2 + �2 (29)

provided that design parameter� satisfies inequality (28), that the in-
tended stability region [as defined by the sets in (18)] admits the initial
conditions according to (26) and (27), and that

kxk� < cx and �� � k ~ k < c~ : (30)

Thus, we have_L < 0 if


�13 (3�2) < kxk < cx or 4��2 < k ~ k < c~ 

or
2�2
ka

< k~�k < c~�: (31)

It is important to note that the regions defined in (26) and (27) and
(30), and (31) are all consistent with the hyperballs in (18). In fact, these
regions can be made subsets of those sets in (18) by increasing such
bounds ascx, and the spans of hyperannulus such as those in (31) are
also be increased. Therefore, it follows from [21, Th. 2.15, p. 65] that,
given any initial conditions satisfying (26) and (27), all state variables
(including x, y, ~�, and ~ ) will be uniformly bounded [with respect
to the hyperballs defined by (18)] and uniformly ultimately bounded
(with respect to a hyperball whose radius is a class-K function of ��

and�2). Recall that bounds such ascx can be increased arbitrarily and
are independent of�, therefore, the closed-loop stability is semiglobal.

To have a smaller ultimate bound, both�� and�2 need to be reduced.
That is, one has to reduce gainka > 0 and design parameter� >
0. Note that, aska decreases, bounds such asc�̂ become larger and,
consequently,� becomes much smaller. In the limit that both� andka
approach zero, statex becomes asymptotically convergent.

Finally, it follows from (15) and (17) that, aska ! 0 and�! 0

d

dt
�̂2 � ��2

2

!
2W2(x; t) �̂2 � ��2

WT
2 (x; t)�̂2

� �5T
x V (x; t)g(x; t)�fm(x; t) : (32)

Fig. 1. Adaptive robust control (9).

It follows from the aforementioned Lyapunov analysis that, if
rTx V (x; t)g(x; t)�fm(x; t) � 0, the convergence of bothx and
rTx V (x; t)g(x; t)�fm(x; t) to zero is facilitated; hence, it follows
from (32) thatk�̂2 � ��2k is both increasing and convergent. On
the other hand, ifrTx V (x; t)g(x; t)�fm(x; t) � 0, k�̂2 � ��2k is
decreasing but, according to (32), elements of�̂2 stays above those of
��2 . In summary, control and adaptation laws (13) up to (15) are made
nonsingular.

Remark 4.4: If � = 0:5, choice of� in (28) becomes independent
of �� and�1. In this case, one can set�� and�1 to be zero, and the
ultimate bound depends upon�2 only. �

Remark 4.5: Given any conservative estimate of initial conditions,
the set of semiglobal stability can be calculated using (26) and (27).
Hence, (28) and (31) together with (19)–(21) provide the criteria for
selecting control gainka and design parameter�. �

Remark 4.6: It is clear from the proof of Theorem 2 thaty is a ro-
bust estimate of nonlinearly parameterized function�fm(x; �; t). As
such, the observer-based robust controlu = �g�12 (x; t)y guarantees
the same stability properties, and this control is simpler than adaptive
control (13) only because it does not estimate system parameters.�

V. SIMULATION EXAMPLE

To illustrate the proposed adaptive and robust controls, consider the
second-order system:_x1 = x2 and _x2 = �x1�2x2+�fm(x; v; t)+

u, where uncertainty�fm(x; v; t) is assumed to be of form

�fm(x; v; t) =
b1 + b2 cos(2t)x

2
1x

2
2

a1 + a2 sin(t) + a3x21 + a4x22

andai andbi are unknown constants satisfying the inequalities:a1 �
a2 + 1 > 0, a3 � 1, anda4 � 1. In the simulation, the following
values are used:a1 = 2, a2 = 0:5, a3 = 1:5, a4 = 1:5, b1 = 1, and
b2 = �2. Obviously, the bounding function on the uncertainty can be
chosen to be

�(x; v; t) =
d1 + d2x

2
1x

2
2

a1 + a2 sin(t) + a3x21 + a4x22

wheredi = jbij. It is straightforward to show that (5) is valid with
c(x) = 1 + x21 + x22 andc = 1 and that assumption 1 is met with
V (x) = 3x21 + 2x1x2 + x22, 
1(kxk) = (2�p2)kxk2, 
2(kxk) =
(2 +

p
2)kxk2, and
3(kxk) = 2kxk2.
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Fig. 2. Adaptive and robust-observer-based control (13).

Fig. 3. State trajectory under control (9):x (solid) andx (dash).

Fig. 4. State trajectory under control (13):x (solid) andx (dash).

Adaptive robust control (9) together with (10) and (11) is simulated
by settinge(t0) = 1, �̂1(t0) = ��1 = 0,W T

2 (x; t)�̂2 = c(x), k� = 1,
andka = 0:1. Simulation results are shown in Figs. 1, 3, and 5. On the
other hand, robust-observer-based adaptive control (13) together with
adaptation laws (14) and nonlinear observer (15) is simulated using
Simulink (in which variable-step ode45 solver and maximum step size
of 0.0005 are set) and with the following parameters:�(t0) = 0, �̂1 =

[0 0]T , �̂2 = ��2 = [0:5 0 1 1]T ,� = 0:001, andka = 0:1. Simulation
results are shown in Figs. 2, 4, and 6–8.

Fig. 5. Estimation errors of~d .

Fig. 6. Estimation errors of~b .

Fig. 7. Estimation errors of~a .

As demonstrated by Figs. 1 and 3, robust stability is achieved under
the adaptive robust control. The fact that control (9) is conservatively
magnitude dominant and sign-change sensitive makes the controller
output prone to chatter extensively and/or intensively and hence in-
duces performance degradation in both the control and the system tra-
jectory.

It is clear from comparing Figs. 2 and 1 as well as 4 and 3 that,
while a slightly larger control effort is observed in Fig. 2 during the
initial six-second transient [due to the fact that control (13) has more
dynamics than those of control (9)], the new adaptive control is much
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Fig. 8. Auxiliary outputy(t).

smoother and far less conservative overall, and it guarantees better per-
formance (faster convergence and much smaller ultimate boundedness
that is very close to asymptotic stability).

As expected, parameter estimates in either case do not converge to
their true values. For control (9), parameter estimates are not conver-
gent as the parameters to be estimated are conservative bounds. For
control (13), estimation convergence would require persistent excita-
tion, which is the subject of future research.

VI. CONCLUSION

In this note, two different control schemes are proposed for systems
with nonlinear parameterizations. Nonlinear parameterization used in
the note is consistent with matrix fractional description, either in terms
of system dynamics or their bounding functions. It is shown that an
adaptive robust control can achieve global stability but does not esti-
mate all unknown parameters and in turn may be conservative. To es-
timate all unknown parameters, system dynamics must be parameteri-
zable directly, and a new and simple adaptive control can be designed
based on robust estimation of nonlinear parameterization as a whole.
As a tradeoff, the newly proposed adaptive control renders semiglobal
stability.
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