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In this paper, vibration control of a nonlinear string system is considered. The sy
consists of a nonlinear string, two boundary supporting mechanisms, and a moving t
porter at the base. To suppress the vibration, boundary control designs are carried o
new robust and adaptive boundary controller is designed using the Lyapunov d
method. The proposed control is implemented at the two ends supporting the str
compensate for vibration induced by the base motion. It is shown that the adaptive/r
boundary control can asymptotically stabilize the nonlinear string. Numerical simula
of the closed loop system demonstrates the effectiveness of the proposed control.
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1 Introduction

A string-based system can be extracted from many phys
systems, such as magnetic tapes, cables, belts, wires, chains
and other kinds of flexible systems will have induced vibratio
especially in the presence of system uncertainties and/or di
bances. Vibrations are harmful in many applications. There
extensive research results on various aspects of vibration sup
sion. Recent developments on control of nonlinear string syst
can be found in@1–6#, and@7#.

In this paper, a transported nonlinear string system is introdu
to represent potential applications in the area of material hand
and manufacturing automation, and the corresponding boun
control problem is studied. The string system was first introdu
in @3#. The main differences between this paper~as well as@1#!
and other results~in @2–6#, and@7#! are twofold: nonlinear uncer
tainties in string dynamics, and moving transport. As in@1#,
robust/adaptive control is designed to suppress the vibration
duced by the variations in base motion. Adaptive control al
rithm is used to estimate online the unknown parameters des
ing the base motion. At the same time, the control is also mad
be robust in order to compensate for uncertain dynamics in st
dynamics. Control design and stability analysis are done using
Lyapunov direct method. Compared to@1#, two major progresses
have been achieved in this paper. First, the boundary controlle
@1# is improved to be a robust adaptive version for the ove
system. That is, all system dynamics~known or unknown! are
considered in the design. Second, performance of the robust
troller in @1# and the newly proposed robust adaptive controller
studied using numerical simulation. In the simulation, varia
separation, modal analysis and their extension to handle nonli
functional dependence are developed. And, the simulation re
demonstrate the effectiveness of the proposed control in dam
out vibrations in the presence of disturbance and uncertain s
dynamics.

1Preliminary version of this paper was presented at DAS Symposium, the 2
International Mechanical Engineering Congress and Exposition, DEL-Vol.108/D
Vol.68, pp. 193–200, Orlando, Florida, November 2000.

Contributed by the Technical Committee on Vibration and Sound for publica
in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received June 2001
Revised March 2003. Associate Editor: B. Yang.
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2 Problem Statement
The string system considered in the paper is shown in Fig. 1

consists of three parts: a stretched nonlinear string, two suppo
mechanisms that are driven independently by actuators along
parallel tracks, and a transporter at the base. The two suppo
mechanisms provide the boundary control forces/translation
the string. Vibrations of the string could be induced either by
non-zero initial condition or by speed variation of the transpor
This setup has many applications in material handling and pro
automation.

2.1 System Dynamics. The motion of the transporteryb(t)
is characterized by a constant cruising speed (cb) plus a variation
db(t), that is,dyb(t)/dt5cb1db(t). Although dynamics ofyb(t)
satisfy the Newton’s law, their explicit expressions are uncert
~for example, friction! and are not needed for the proposed cont
design. It is the speed variation of the transporter and/or chang
the cruising speed will cause the string to have transverse vi
tion.

It follows from the derivations in@1# that the equation of mo-
tion for a stretched nonlinear string is

m~x!
]2y~x,t !

]t2
5

]

]x FT~x,t !
]y~x,t !

]x G .
Since the string is supported on a moving transporter, the mo
equation of the string should be that withy(x,t) replaced by
y(x,t)1yb(t). That is, the equation of motion becomes

m~x!
]2Y~x,t !

]t2
5

]

]x H T~x,t !
]Y~x,t !

]x J , (1)

whereY(x,t)5y(x,t)1yb(t), or equivalently,

m~x!
]2y~x,t !

]t2
5

]

]x FT~x,t !
]y~x,t !

]x G2m~x!
ddb~ t !

dt
. (2)

It is assumed that tension of string is of the following form: for a
xP@0,l #

T~x,t !5T0~x!1w~x!F]y~x,t !

]x G2

(3)
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whereT0(x).0 is the initial tension, andw(x)>0 is the nonlin-
ear elastic modulus.

To find a solution to the string equation, initial conditions
displacement and velocity and boundary conditions of the st
are needed. It can be assumed without loss of any generality
initial conditions are given by

y~x,0!5c1~x! and
]y~x,t !

]t U
t50

5c2~x!. (4)

Boundary conditions in terms of displacements are provided

y~0,t !5p0~ t ! and y~ l ,t !5pl~ t !, (5)

wherep0(t) andpl(t) are the solutions to the following dynami
equations for control mechanisms:

M0Fd2p0~ t !

dt2
1

ddb~ t !

dt G5 f 0~ t !2T~0,t !
]y~x,t !

]x U
x50

2b0

dp0~ t !

dt
,

(6)

and

MlFd2pl~ t !

dt2
1

ddb~ t !

dt G5 f l~ t !1T~ l ,t !
]y~x,t !

]x U
x5 l

2bl

dpl~ t !

dt
,

(7)

M0 , Ml are the masses of supporting mechanisms, andb0 andbl
are dynamic friction coefficients between the control mechan
and the transporter. Variablesf 0(t) and f l(t) are the boundary
controls to be designed in the next section so that robust stab
and performance can be achieved.

2.2 Vibration Suppression. The control problem studied in
the paper is characterized by the following assumptions and
trol objective.

Assumption 1: Functions m(x), T0(x) and w(x) in the string
dynamics may be uncertain to the control designer, but they
bounded by known, constant lower and upper bounds as follo.

• Bounded in size: for all xP@0,l #, mI <m(x)<m̄, cI T0
<T0(x)

< c̄T0
, and wI <w(x)<w̄.

• Bounded in the rate of spatial change: for all xP@0,l #, values
of ]m(x)/]x, ]T0(x)/]x, and]w(x)/]x are known to be within a
certain range.

Assumption 2: Speed variation in the motion of the transport
can be parameterized as

db~ t !5h1 sin~vbt1h2!,

wherevb is a known oscillation frequency, h1 and h2 represent
unknown magnitude and phase angle, respectively. Furtherm
friction coefficients b0 and bl in (6) and (7) are unknown bu
constant.

Fig. 1 A stretched string on a moving transporter
Journal of Vibration and Acoustics
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Design Objective. Given the string system described by~6!,
~7! and ~1! with nonlinear tension~3!, find boundary controls
f 0(t) and f l(t) and the corresponding adaptation laws so th
under assumptions 1 and 2, the nonlinear string will asympt
cally converge to the equilibrium.

3 Robust and Adaptive Control
In this section, robust control and robust/adaptive control

designed forf 0(t) and f l(t) using the Lyapunov direct method. T
this end, consider the following Lyapunov function candidate
the string system:

Vs~ t !5E
0

l

m~x!H F]y~x,t !

]t
1db~ t !G2

1
T0~x!

m~x! F]y~x,t !

]x G2

1
w~x!

2m~x! F]y~x,t !

]x G4

1
a~x!x

l F]y~x,t !

]t

1db~ t !G ]y~x,t !

]x J dx (8)

where its initial condition can be computed using the initial co
ditions in ~4!, anda(x) is a positive scalar function satisfying th
following inequalities: for allxP@0,l # and for some constante.0,

x2a2~x!m̄,cI T0
l 2, (9)

9a2~ l !m̄,16cI T0
, (10)

11a2~ l !m̄<@4A2cI T0
1A32cI T0

211a2~ l !m̄#2, (11)

]@a~x!m~x!x#

]x
.e, (12)

]@a~x!x#

]x
T0~x!.a~x!x

]T0~x!

]x
1e, (13)

and

3
]@a~x!x#

]x
w~x!.a~x!x

]w~x!

]x
12e. (14)

It is straightforward to show the following result.
Lemma 1 Under assumption 1, inequalities (9) up to (14) ca

all be satisfied by simply choosinga(x)5b1ex/b2 (with b1 , b2
.0) whose value can be made sufficiently small and whose
tial derivative can be made arbitrarily large. In addition
Lyapunov functional in (8) is positive definite with respect
@]y(x,t)/]t1db(t)# and ]y(x,t)/]x.

Under assumption 1 and under the condition thatdb(t) is
known, a successful robust control design is available in@1# and is
now restated as Theorem 1.

Theorem 1Consider the string system described by (6), (7) a
(1) with the boundary condition (5). Under assumption 1, t
following boundary controls together are robust and globally e
ponentially stabilizing with respect to the equilibrium of the strin
provided that scalar functiona(x) is chosen to satisfy inequalitie
(9) up to (14) and that parameters b0 , bl , h1 andh2 are known:

f 0~ t !52k0

]Y~0,t !

]t
13cf~0,t !1b0F]Y~0,t !

]t
2db~ t !G , (15)

and

f l~ t !52klF3

8
a~ l !

]y~x,t !

]x U
x5 l

1
]Y~ l ,t !

]t G23cf~ l ,t !1blF]Y~ l ,t !

]t

2db~ t !G2
3

8
Mla~ l !

]2y~x,t !

]x]t U
x5 l

, (16)
JANUARY 2004, Vol. 126 Õ 55
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where k0>0 and kl>a( l )m̄ are positive control gains, cf(0,t)
5T(0,t)@]y(x,t)/]x#x50 and cf( l ,t)5T( l ,t)@]y(x,t)/]x#x5 l are
boundary contacting forces.

The control defined by~15! and~16! is calledrobustas, by the
choice of gainsa( l ) and kl , these two fixed control laws ca
maintain stability under admissible uncertainties in system
namics~and as defined by assumption 1!. While the string system
is structurally symmetric, the choice of Lyapunov functional~8!
yields different expressions for the two boundary control laws

The above control requires the perfect knowledge of such
rameters asb0 , bl , h1 andh2 . Sincedb(t) is an unknown per-
turbation and sinceb0 and bl may be unknown, we propose th
following new robust adaptive controller to compensate for th
uncertainties. The proof is included as Appendix A.

Theorem 2Consider the string system described by (6), (7) a
(1) with the boundary condition (5). Under assumption 1, t
following boundary controls are robust and globally asympto
cally stabilizing with respect to the equilibrium of the string pr
vided that scalar functiona(x) is chosen to satisfy inequalities (9
up to (14):

f 0~ t !52k0

]Y~0,t !

]t
13cf~0,t !1b̂0

]Y~0,t !

]t
2 ĵ1 sin~vbt !

2 ĵ2 cos~vbt !, (17)

and

f l~ t !52klF3

8
a~ l !

]y~x,t !

]x U
x5 l

1
]Y~ l ,t !

]t G23cf~ l ,t !1b̂l

]Y~ l ,t !

]t

2 ĵ3 sin~vbt !2 ĵ4 cos~vbt !2
3

8
Mla~ l !

]2y~x,t !

]x]t U
x5 l

,

(18)

with adaptation laws

db̂0

dt
522kaF]Y~0,t !

]t G2

,

db̂l

dt
522kaF ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G ]Y~ l ,t !

]t
,

dĵ1

dt
52ka

]Y~0,t !

]t
sin~vbt !,

(19)
dĵ2

dt
52ka

]Y~0,t !

]t
cos~vbt !,

dĵ3

dt
52kaF ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

Gsin~vbt !,

dĵ4

dt
52kaF ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

Gcos~vbt !

where k0>0 and kl>2a( l )m̄ are positive control gains, and ka
.0 is adaptation gain.

4 Performance Verification
In this section, effectiveness of robust and robust/adaptive c

trollers presented in the previous section will be evaluated us
simulation. Mathematically, the resulting closed loop system
der the proposed control is a problem consisting of homogene
partial differential equation with non-homogeneous boundary c
ditions. To the best of our knowledge, there is no commercia
available software package that is capable of simulating the
tem under the proposed control. Thus, we shall first develop n
essary equations for us to simulate the proposed control u
Matlab. In what follows, the method of modal analysis@8# will be
56 Õ Vol. 126, JANUARY 2004
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applied by taking the following steps. First, transform t
boundary-value problem consisting of a homogeneous differen
equation with non-homogeneous boundary conditions into a p
lem consisting of a nonhomogeneous differential equation w
homogeneous boundary conditions. Second, solve the hom
neous boundary value problem by separating the time and sp
dependence of the solution. This leads to the eigenvalue prob
yielding the normal modes and the associated natural frequen
of the system. The solution to the non-homogeneous differen
equation is obtained by the expansion theorem, which assu
that the solution can be expressed as a superposition of no
modes. The above process leads to a numerical simulation m

4.1 Simulation Model. The purpose of the simulation stud
is to demonstrate the robustness and the capability of on-line
aptation of the proposed control. Functionsm(x) andT(x,t) are
the potential sources of uncertainty in string dynamics. Meanti
modal analysis calls for superposition of the modes. Therefore
choose to make the following assumption.2

Assumption 3: Tension of the string is constant (i.e., T(x,t)
5T for all (x,t)), and mass per unit length m(x) is the source of
uncertainty.

Under assumption 3, the string equation becomes

]2y~x,t !

]x2
2

m~x!

T

]2y~x,t !

]t2
5

m~x!

T

ddb~ t !

dt
(20)

with the boundary condition~5!. Following the steps outlined
above, one needs to separate the time and spatial dependen
representing the velocity at any point along the string with resp
to the ground as3

]Y~x,t !

]t
5(

i 51

`

f i~x!
dg i~ t !

dt
1

dp0~ t !

dt
1

x

l Fdpl~ t !

dt
2

dp0~ t !

dt G
1db~ t !, (21)

wheref i(x) are the modal functions to be determined. For t
purpose of performance studies, we need to assume the typ
uncertainties inm(x) considered in the simulation so that th
modal functions can be found.

Assumption 4: The mass per unit length of string m(x) has a
maximum of 25% variation from its nominal value. Furthermo
its spatial dependence changes in such a way that, given a m
functionf i(x) in (21), modal function with respect to the decom
position of m(x)@]2y(x,t)/]t2#/T will be

114d cos
ipx

l

11d cos
ipx

l

f i~x!, (22)

where i51,2,3, . . . , and 0<d,0.25.
Theorem 3 If assumption 4 holds, modal functions in (21) fo

the simulated string equation (20) are given by

f i~x!5sin
ipx

l S 11d cos
ipx

l D ,

where i51,2,3, . . . . If the first four modes are chosen, Matlab
based simulation model will be in terms ofg i(t) governed by the
following ordinary differential equations:

2This assumption is made to find a class of modal functions with or with
uncertainties inm(x). The same process applies ifT(x,t) is not a constant. In the
latter case, other techniques such as finite difference method can also be app
yield a numerical simulation model, and the results of simulation under those
ditions can be found in another paper@9#.

3Its derivation can be seen from Appendix B.
Transactions of the ASME



Fig. 2 The open-loop velocity at point xÄ0

Fig. 3 The open-loop velocity point xÄ0.5l

Fig. 4 The open-loop velocity at point xÄ l
Journal of Vibration and Acoustics
Fig. 5 The signal flow graph for robust control where
ġnd g„t …Õdt

Fig. 6 The closed-loop velocity at point xÄ0 under robust
control

Fig. 7 The closed-loop velocity at point xÄ0.5l under robust
control
JANUARY 2004, Vol. 126 Õ 57



FW1 2W3

0 W4
GF d2gI ~ t !

dt2

d2pI

dt2
G5F2W2•gI ~ t !1u1

u2
G , (23)

where i51,2,3,4and j51,2,3,4,

W1~ j ,i !5E
0

l

f i~x!f j~x!dx,

W2~ j ,i !52E
0

l 11d cosS ipx

l D
114d cosS ipx

l D
d2f i~x!

dx2
f j~x!dx,

W3~ j ,1!52E
0

l

f j~x!dx1
1

l E0

l

xf j~x!dx,

W3~ j ,2!52
1

l E0

l

xf j~x!dx,

u1~ j ,1!52
ddb~ t !

dt E
0

l

f j~x!dx

Fig. 8 The closed-loop velocity at point xÄ l under robust con-
trol

Fig. 9 The signal flow graph for robust adaptive control
58 Õ Vol. 126, JANUARY 2004
Fig. 10 The closed-loop velocity at point xÄ0 under robust
adaptive control

Fig. 11 The closed-loop velocity at point xÄ0.5l under robust
adaptive control

Fig. 12 The closed-loop velocity at point xÄ l under robust
adaptive control
Transactions of the ASME



gI ~ t !5@g1~ t ! g2~ t ! g3~ t ! g4~ t !#T,

pI ~ t !5Fp0~ t !
pl~ t ! G , W45F1 0

0 1G ,
and

u25F 1

M0
F2M0

d2db~ t !

dt2
1 f 0~ t !2T

]y~x,t !

]x U
x50

2b0

dpI ~ t !

dt G
1

Ml
F2Ml

d2db~ t !

dt2
1 f l~ t !2T

]y~x,t !

]x U
x5 l

2bl

dpI ~ t !

dt G G .

4.2 Simulation Parameters. In the simulation, the follow-
ing setup is used:

• The initial conditions of ordinary differential equations i
~23! are set to be zero.

• The following parameter values are used:L51 m, M0
55 kg, Ml55 kg, vb55 rad/sec, andT50.1 N.

• Values assumed by ‘‘uncertainties’’:h150.1, h250.15, b0
51, bl51, anddP@0,0.25#.

Fig. 13 The estimate of b 0

Fig. 14 The estimate of b l
Journal of Vibration and Acoustics
n

Fig. 15 The estimate of j1

Fig. 16 The estimate of j2

Fig. 17 The estimate of j3
JANUARY 2004, Vol. 126 Õ 59
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• Bounds: cI T0

5 c̄T0
50.1 N, mI 50.0545 kg/m, and m̄

50.1556 kg/m.
• Design parameter:a( l )50.16 withb150.059 andb251 ~to

satisfy inequalities~9! up to ~14!!.
• Control gains:k0510, kl510, andka510.

Due to limited space, simulation results for the value ofd50.1
will be presented although several runs were done to verify t
the same behavior is observed fordP@0,0.25#.

4.3 Open-Loop Responses.Without applying any control,
velocities at pointsx50, 0.5l , l with respect to the reference
frame are shown in Figs. 2, 3 and 4 respectively. As expected,
maximum oscillation occurred at the middle of the string.

The frequency of ‘‘input,’’ 5 rad/sec or 0.8 Hz, is clearly seen
the open loop responses. Applying pointwise linear analysis,
can conclude that the first mode frequency is between 0.2 and
which is the ‘‘low frequency’’ element seen in Fig. 3.

While only 4 modes are simulated in this and the next tw
subsections, convergence is ensured by studying the magnit
of time responses corresponding to these modes. Specific
magnitudes for the first, second, third and fourth modes are
order 1023, 1024, 1024, and 1026, respectively. This verifies
both our choice of the four modes and convergence of h
modes. The same phenomenon is also observed in the closed
responses, and hence there is no spill-over problem.

4.4 Simulation of Robust Controller. By theorem 3, simu-
lation of robust controls~15! and~16! should be done according to
the signal flow graph shown in Fig. 5. Under the robust contr
velocities measured at pointsx50, 0.5l , l are shown in Figs. 6, 7
and 8, respectively. It is obvious that robust control is very effe
tive in damping out the oscillations.

4.5 Simulation of Robust and Adaptive Controller. The
proposed robust and adaptive controller can be simulated by
ing an adaptation module, and the resulting signal flow graph
shown in Fig. 9. Specifically, differential equations in~23! will be
integrated simultaneously with the adaptation laws in~19!. Under
the robust adaptive control, velocities measured at pointsx50,
0.5l , l are shown in Figs. 10, 11 and 12, respectively. It is obvio
that the proposed control is asymptotically stabilizing. And, t
result is verified for all admissible values of the control gain
Estimates ofb0 , bl , j1 , j2 , j3 , andj4 are shown in Figs. 13, 14
15, 16, 17, and 18, respectively. As expected, estimation error
system parameters~such as friction coefficients, magnitude an
phase shift of the oscillation! do not converge to zero without a
certain persistent excitation condition, which is of less importan

Fig. 18 The estimate of j4
60 Õ Vol. 126, JANUARY 2004
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than control in the setting of this paper. In case that the feedb
is contaminated by noise, adaptation laws will have to be modi
to be those of leakage-type so that they are robust@10#.

5 Conclusion
In this paper, a new robust adaptive controller has been p

posed for suppressing oscillations in a nonlinear string syst
Global asymptotic stability is shown in control design. The pr
posed control is capable of stabilizing the nonlinear string with
the perfect knowledge of string dynamics or the motion of
transporter. Compared to the robust controller in@1#, all system
dynamics are considered. The effectiveness of the proposed
troller and the existing robust controller has been demonstra
via simulation.
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Appendix A: Proof of Theorem 2
To compensate for unknown parametersb0 , bl , h1 and h2

while taking into account the effect of control mechanisms,
following Lyapunov function candidate is chosen:

V~ t !5Vs1V01Vl1L~ t !,

whereVs is given by~8!, positive definite functionsV0 , Vl and
L(t) ~with respect to their arguments! are defined by

V0~ t !5
1

2
M0F]Y~0,t !

]t G2

,

Vl~ t !5
1

2
MlF ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G2

,

L~ t !5
1

2ka
@b02b̂0~ t !#21

1

2kl
@bl2b̂l~ t !#2

1
1

2ka
(
i 51

4

@j i2 ĵ i~ t !#2,

j15b0h1 cosh2, j25b0h1 sinh2, j35blh1 cosh2, j4

5blh1 sinh2, and ĵ is the estimate ofj.
It follows from conditions~12! to ~14! that

dVs~ t !

dt
<22T0~0!

]y~x,t !

]x U
x50

]Y~0,t !

]t

12T~ l ,t !
]y~x,t !

]x U
x5 l

F ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G
2

1

4
a~ l !T0~ l !F ]y~x,t !

]x U
x5 l

G2

1
1

2
a~ l !m~ l !F]Y~ l ,t !

]t G2

2
e

2l E0

l H F]Y~x,t !

]t G2

1F]y~x,t !

]x G2

1F]y~x,t !

]x G4J dx.

Applying boundary conditions~6! and ~7! and substituting con-
trols ~17! and ~18!, we have

dV0~ t !

dt
5

]Y~0,t !

]t F2k0

]Y~0,t !

]t
12T~0,t !

]y~x,t !

]x U
x50

1~ b̂02b0!
]Y~0,t !

]t
2~ ĵ12j1!sin~vbt !

2~ ĵ22j2!cos~vbt !G ,
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on-
dVl~ t !

dt
5F ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G H 22T~ l ,t !
]y~x,t !

]x U
x5 l

2klF ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G ~ b̂l2bl !
]Y~ l ,t !

]t

2~ ĵ32j3!sin~vbt !2~ ĵ42j4!cos~vbt !J ,

and
Journal of Vibration and Acoustics
dL~ t !

dt
52

1

ka
@b02b̂0~ t !#

db̂0~ t !

dt
2

1

ka
@bl2b̂l~ t !#

db̂l~ t !

dt

2
1

ka
(
i 51

4

@j i2 ĵ i~ t !#
dĵ i~ t !

dt
.

Summing up the above four inequality/equalities, we can c
clude that
dV~ t !

dt
<2

e

2l E0

l H ]Y~x,t !

]t
1F]y~x,t !

]x G2

1F]y~x,t !

]x G4J dx2
1

4
a~ l !T0~ l !F ]y~x,t !

]x U
x5 l

G2

1
1

2
a~ l !m~ l !F]Y~ l ,t !

]t G2

2k0F]Y~0,t !

]t G2

1~ b̂02b0!F]Y~0,t !

]t G2

2~ ĵ12j1!sin~vbt !
]Y~0,t !

]t
2~ ĵ22j2!cos~vbt !

]Y~0,t !

]t

1~ b̂l2bl !
]Y~ l ,t !

]t F ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G2~ ĵ32j3!sin~vbt !F ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G
2~ ĵ42j4!cos~vbt !F ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G2klF ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G2

2
1

ka
@b02b̂0~ t !#

db̂0~ t !

dt

2
1

ka
@bl2b̂l~ t !#

db̂l~ t !

dt
2

1

ka
(
i 51

4

@j i2 ĵ i~ t !#
dĵ i~ t !

dt
.

set-
Now, substituting the adaptation laws into the right hand side
the above inequality yields

dV~ t !

dt
<2

2k0

M0
V0~ t !2

2kl

M l
Vl~ t !2

1

4
a~ l !T0~ l !F ]y~x,t !

]x U
x5 l

G2

1
1

2
a~ l !m~ l !F]Y~ l ,t !

]t G2

2
e

2l E0

l H ]Y~x,t !

]t
1F]y~x,t !

]x G2

1F]y~x,t !

]x G4J dx.

It is obvious that, under inequality~10!, gain kl satisfying kl
>2a( l )m̄ can be chosen to establish the following inequality:

1

2
klF ]Y~ l ,t !

]t
1

3

8
a~ l !

]y~x,t !

]x U
x5 l

G2

1
1

4
a~ l !T0~ l !

3F ]y~x,t !

]x U
x5 l

G2

>
1

2
a~ l !m~ l !F]Y~ l ,t !

]t G2

.

Therefore, we have

dV~ t !

dt
<2ev~Vs1V01Vl !,

for some constantev.0, from which asymptotic stability of the
state inVs(t) can be claimed@10#. Q.E.D.

Appendix B: Proof of Theorem 3
To yield homogeneous boundary conditions, assume that

placementy(x,t) can be expressed as

y~x,t !5v~x,t !1H~x,t !,

wherev(x,t) is subject to the boundary conditions

v~0,t !50,
of

dis-

and

v~ l ,t !50.

Furthermore, it is assumed thatH(x,t) be a linear-like function of
form

H~x,t !5A~ t !x1B~ t ! (B1)

whereH(x,t) satisfies

H~0,t !5p0~ t !

and

H~ l ,t !5pl~ t !.

Solving first functionsA(t) and B(t) and then functionH(x,t),
we have

y~x,t !5v~x,t !1p0~ t !1
x

l
@pl~ t !2p0~ t !#, (B2)

from which Eq.~21! can be concluded.
Substituting~B2! into Eq. ~20!, we have

]2v~x,t !

]t2
2

T

m~x!

]2v~x,t !

]x2
52

d2p0~ t !

dt2
2

x

l Fd2pl~ t !

dt2
2

d2p0~ t !

dt2
G

2
ddb~ t !

dt
, (B3)

and the corresponding eigenvalue problem is

]2v~x,t !

]t2
2

T

m~x!

]2v~x,t !

]x2
50. (B4)

The method of variable separation can now be applied by
ting

v~x,t !5f~x!g~ t !. (B5)
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t
Under assumption 4, the eigenvalue problem after substitu
~B5! into Eq.~B4! becomes the following differential equation: fo
some constantCi ,

d2f i

dx2
1Ci

11d cos
ipx

l

114d cos
ipx

l

f i50. (B6)

Using the boundary conditionsf~0!50 andf( l )50, we findCi

5( ip/ l )2 and

f i~x!5sin
ipx

l S 11d cos
ipx

l D
wherei 51,2,3, . . . .

Letting
o

g

n

t

n

62 Õ Vol. 126, JANUARY 2004
ing
r v~x,t !5(

i 51

`

f i~x!g i~ t !,

we can rewrite Eq.~B3! as

(
i 51

`

f i~x!
d2g i~ t !

dt2
2(

i 51

` 11d cos
ipx

l

114d cos
ipx

l

d2f i~x!

dx2
g i~ t !

52
d2p0~ t !

dt2
2

x

l Fd2pl~ t !

dt2
2

d2p0~ t !

dt2
G2

ddb~ t !

dt
.

Multiplying both sides of the above equation byf j (x) ( j
51,2,3, . . . ) andthen integrating with respect tox from 0 to l
yield
(
i 51

`
d2g i~ t !

dt2
E

0

l

f i~x!f j~x!dx5(
i 51

`

g i~ t !E
0

l 11d cos
ipx

l

114d cos
ipx

l

d2f i~x!

dx2
f j~x!dx2Fd2p0~ t !

dt2
1

ddb~ t !

dt G E
0

l

f j~x!dx

2Fd2pl~ t !

dt2
2

d2p0~ t !

dt2
G E

0

l x

l
f j~x!dx.
the
n-

g
-

g

-

em
-

By choosing the first four modes and by applying boundary c
ditions ~6! and ~7!, one can conclude Eq.~23! from the above
equation. Q.E.D.
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