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1 Introduction 2 Problem Statement

A string-based system can be extracted from many physicalThe string system considered in the paper is shown in Fig. 1. It
systems, such as magnetic tapes, cables, belts, wires, chains. Taissists of three parts: a stretched nonlinear string, two supporting
and other kinds of flexible systems will have induced vibrationgnechanisms that are driven independently by actuators along two
especially in the presence of system uncertainties and/or distbarallel tracks, and a transporter at the base. The two supporting
bances. Vibrations are harmful in many applications. There af¢echanisms provide the boundary control forces/translations to
extensive research results on various aspects of vibration suppf8§-string. Vibrations of the string could be induced either by its
sion. Recent developments on control of nonlinear string systefj&n-2€ro initial condition or by speed variation of the transporter.
can be found if1—6], and[7]. This setL_Jp has many applications in material handling and process

In this paper, a transported nonlinear string system is introduc@ytomation.
to represent potential applications in the area of material handling2.1  System Dynamics. The motion of the transportef,(t)
and manufacturing automation, and the corresponding boundéycharacterized by a constant cruising spesgl plus a variation
control problem is studied. The string system was first introducef)(t), that is,dy,(t)/dt=c,+ &,(t). Although dynamics of/(t)
in [3]. The main differences between this pagas well as[1]) satisfy the Newton’s law, their explicit expressions are uncertain
and other resultéin [2—6], and[7]) are twofold: nonlinear uncer- (for example, friction and are not needed for the proposed control
tainties in string dynamics, and moving transport. As[ij, design. Itis the speed variation of the transporter and/or change of
robust/adaptive control is designed to suppress the vibration the cruising speed will cause the string to have transverse vibra-
duced by the variations in base motion. Adaptive control algdion.
rithm is used to estimate online the unknown parameters describlt follows from the derivations if1] that the equation of mo-
ing the base motion. At the same time, the control is also madett@n for a stretched nonlinear string is
be robust in order to compensate for uncertain dynamics in string Pyxt)
dynamics. Control design and stability analysis are done using the m(x) ayxb 9
Lyapunov direct method. Compared [tb], two major progresses at? 2
have been achieved in this paper. First, the boundary controllerﬁ'pn the string i rted on a moving transporter. the motion
[1] is improved to be a robust adaptive version for the overa ce the Sf hg S §uppohe Ic? ba ho g transpo el’ de b otio
system. That is, all system dynami@enown or unknowin are equzj[ltlgn ot t%ehs:r_lngths ou t_e t ?t W;_ﬂ(x,é) replaced by
considered in the design. Second, performance of the robust cg#-(’ ) +Yp(t). Thatis, the equation of motion becomes
troller in [1] and the newly proposed robust adaptive controller are 2Y(x,t)  d { ay(x,t)]

studied using numerical simulation. In the simulation, variable m(x)—z——
ot ax ax

ay(x,t)
X,t X .

1)
separation, modal analysis and their extension to handle nonlinear
functional dependence are developed. And, the simulation resuylfsereY(x,t) =y(x,t) +y,(t), or equivalently,
demonstrate the effectiveness of the proposed control in damping

out vibrations in the presence of disturbance and uncertain string &Zy(x,t) J
dynamics. m(x) T2 ox

doy(t)

ay(x,t
YD oo S0 )

ox

T(x,t)
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Design Objective. Given the string system described §),
(7) and (1) with nonlinear tension3), find boundary controls
fo(t) and fi(t) and the corresponding adaptation laws so that,
under assumptions 1 and 2, the nonlinear string will asymptoti-
cally converge to the equilibrium.

= Sliding assembly

3 Robust and Adaptive Control

s In this section, robust control and robust/adaptive control are
designed foff 5(t) andf(t) using the Lyapunov direct method. To
’o[ Yo this end, consider the following Lyapunov function candidate for
- the string system:
! ay(x,t) 2 To(x) [ay(x,0)]?
Fig. 1 A stretched string on a moving transporter Vy(t)= fom(X)H ot +op(t) | + m(x) X
w(x) [ay(t)]*  a()x[ay(x.t)
whereTy(x)>0 is the initial tension, and/(x)=0 is the nonlin- 2mex) | ox ! N
ear elastic modulus. y(x,t)
To find a solution to the string equation, initial conditions of +0p(t) | —dx (8)

displacement and velocity and boundary conditions of the string
are needed. It can be assumed without loss of any generality thdiere its initial condition can be computed using the initial con-

initial conditions are given by ditions in(4), anda(x) is a positive scalar function satisfying the
ay(x.) following inequalities: for alkk e [0, ] and for some constaet-0,
Yy (X, _
y(x.0=cy(x) and —- t70=cz(X)- (4) x2a’(x)m<cy |, 9)
Boundary conditions in terms of displacements are provided by 9a*(l)m<16cr, (10)
y(O)=po(t) and y(l,t)=pi(t), ©) 11e*(l)m=[4\/2¢r + 327 —1la*(hm]?,  (11)
wherepg(t) andp,(t) are the solutions to the following dynamic
equations for control mechanisms: M> € (12)
X '
d?po(t)  doy(t) y(x,1) dpo(t)
+ =fo(t)—T(Ot - : dLa(x)x ITo(X
o 42 dt o(H=T(0H) X | o o dt —[a( ) ]To(x)>a(x)x ol) +e€, (13)
ox
(6)
and and
d2p(t)  doy(t) | dp() 3 A0 > x4 2 (14)
| b ) | ——— W(X)>a(X)X €.
— _pn X ax
M||: dt2 + dt fl(t)+T(|1t) IX - | dt

@) It is straightforward to show the following result.

Lemma 1 Under assumption 1, inequalities (9) up to (14) can
Mo, M, are the masses of supporting mechanisms,tgrehdb,  a|| be satisfied by simply choosing(x) = 8,e*#2 (with 8, B,
are dynamic friction coefficients between the control mechanismg) whose value can be made sufficiently small and whose par-
and the transporter. Variableg(t) and f,(t) are the boundary tja| derivative can be made arbitrarily large. In addition,
controls to be designed in the next section so that robust stabilityapunov functional in (8) is positive definite with respect to
and performance can be achieved. [y (x,t)/at+ 8,(t)] and dy(x,t)/dx.

Under assumption 1 and under the condition tidgft) is
dpown, a successful robust control design is availabldjrand is
now restated as Theorem 1.

Theorem 1 Consider the string system described by (6), (7) and

with the boundary condition (5). Under assumption 1, the
llowing boundary controls together are robust and globally ex-
ponentially stabilizing with respect to the equilibrium of the string
provided that scalar functiom(x) is chosen to satisfy inequalities
(9) up to (14) and that parameterg, bb,, », and n, are known

aY(0})
t

2.2 Vibration Suppression. The control problem studied in
the paper is characterized by the following assumptions and c
trol objective.

Assumption 1: Functions ngx), To(x) and w(x) in the string
dynamics may be uncertain to the control designer, but they
bounded by known, constant lower and upper bounds as fallo

« Bounded in size: for all x[0,]], m=m(x)<m, cr,<To(X)
<cr,, and w=w(x)<w.

* Bounded in the rate of spatial change: for alEx0, ], values
of am(x)/dx, dTo(x)/dx, anddw(x)/dx are known to be within a B Y (0})
certain range fo(t)=—ko ot

Assumption 2: Speed variation in the motion of the transporter
can be parameterized as an

+3c4(0t) +bg —6b(t)y (15)

— ; 3 aay(x,t aY(l,t aY(l,t
Op(t) = my sin(wpt + 7), fl(t)z—kl{—a(l) youh)| + .t —3cq(1,t)+b, dn
. I 8 ax | _ at at
where w,, is a known oscillation frequency;; and 7, represent x=I
unknown magnitude and phase angle, respectively. Furthermore, 3 F2y(x,1)
friction coefficients § and b in (6) and (7) are unknown but —6b(t)}——M,a(I)— , (16)
constant 8 IXIt
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where k=0 and k=«(l)m are positive control gainsc¢(0t) applied by taking the following steps. First, transform the
=T(ON)[ay(x,t)/ox]y=q and c(I,t) =T(l,t)[ dy(x,t)/9x],~, are boundary-value problem consisting of a homogeneous differential
boundary contacting forces equation with non-homogeneous boundary conditions into a prob-

The control defined byl5) and(16) is calledrobustas, by the lem consisting of a nonhomogeneous differential equation with
choice of gainsa(l) andk;, these two fixed control laws can homogeneous boundary conditions. Second, solve the homoge-
maintain stability under admissible uncertainties in system dpeous boundary value problem by separating the time and spatial
namics(and as defined by assumption While the string system dependence of the solution. This leads to the eigenvalue problem
is structurally symmetric, the choice of Lyapunov functiof@l yielding the normal modes and the associated natural frequencies
yields different expressions for the two boundary control laws. of the system. The solution to the non-homogeneous differential

The above control requires the perfect knowledge of such paguation is obtained by the expansion theorem, which assumes
rameters a®,, b, 7, and n,. Sincey(t) is an unknown per- that the solution can be expressed as a superposition of normal
turbation and sincé, andb, may be unknown, we propose themodes. The above process leads to a numerical simulation model.
following new robust adaptive controller to compensate for these . . . .
uncertaignties. The proof ig included as AppendiEA. ~ 4.1 Simulation Model. The purpose of the simulation study

Theorem 2 Consider the string system described by (6), (7) ang t© Qemonstrate the robustness and the capability of on-line ad-
(1) with the boundary condition (5). Under assumption 1, th ptation OT the proposed contro_l. Fl_,lnctlc_msx) and T(X’t) are
following boundary controls are robust and globally asymptotit1€ Potential sources of uncertainty in string dynamics. Meantime,
cally stabilizing with respect to the equilibrium of the string promedal analysis calls for superposition o;;othe modes. Therefore, we
vided that scalar functiom(x) is chosen to satisfy inequalities (9)Choose to f.“ake,the fqllowmg assumpton. .
up to (14) Assumption 3: Tension of the string is constant (i.€0(x,t)

=T for all (x,t)), and mass per unit length (r) is the source of

aY(0}) ~ dY(0r) ~ uncertainty
fo(t) = —ko——r—— +3C1(01) + bo———— &, sin(wpt) Under assumption 3, the string equation becomes
— & codwyt), @ YOt mx) dPy(xt)  mx) d(t) -
and Ix2 T ot2 T dt (20)
f,(t)=—kK §a(|) ay(x.b)| + AL —3c(1,t) + b NUD  yith the boundary conditior(5). Following the steps outlined
8 (2 ’x:I at at above, one needs to separate the time and spatial dependence by
) representing the velocity at any point along the string with respect
. sin(wgt)— & cod wgt) — - M a(l) 2XY to the ground &
3 b 4 bt)— g M x|
IY(X1) dyi(t) dpo(t) x[dp(t) dpo(t
o TE-F i S e
with adaptation laws =t
db, {(W(O,t)r *on(0), 1)
dt A at ’ where ¢;(x) are the modal functions to be determined. For the
- purpose of performance studies, we need to assume the types of
%:_ av({.y +§a ) ay(x,t)| AU uncertainties inm(x) considered in the simulation so that the
dt a ot 8 ax || et modal functions can be found.
. Assumption 4: The mass per unit length of string(®) has a
dé; aY(0Ot) maximum of 25% variation from its nominal value. Furthermore,
TR sin(wpt), its spatial dependence changes in such a way that, given a modal
A (19)  function ¢;(x) in (21), modal function with respect to the decom-
dé, aY(0}) position of n{x)[ 3%y(x,t)/at?]/T will be
— = 2Kg———— cog wyt),
dt at .
) i X
dé;_,, [avdn 3 ayon| ] 1+4ocos——
gt~ 2Kel T goeh—r2 . sin(wpt), — %, (22)
R 1+ 5COS|—
dé, aY(l,t) 3 ay(x,t)
— =2k + = a(l co t
dt a{ at 8 a() ;x| spt) where i=1,2,3 . .., and 0<6<0.25.

Theorem 3 If assumption 4 holds, modal functions in (21) for

where =0 and k=2«(l)m are positive control gains, and,k the simulated string equation (20) are given by

>0 is adaptation gain

o X i X
4 Performance Verification d)i(x):sml— 1+ 5cos|— ,
In this section, effectiveness of robust and robust/adaptive con-
trollers presented in the previous section will be evaluated usimdhere i=1,2,3 ... . If the first four modes are chosen, Matlab-

simulation. Mathematically, the resulting closed loop system ufrased simulation model will be in terms f{(t) governed by the

der the proposed control is a problem consisting of homogenedo#owing ordinary differential equations

partial differential equation with non-homogeneous boundary con-

ditions. To the best of our knowledge, there is no commercially 2This assumption is made to find a class of modal functions with or without

available software package that is capable of simulating the si‘gcertaimies imm(x). The same process appliesTi{x,t) is not a constant. In the

tem under the proposed control. Thus, we shall first develop n ter case, other tephmq_ues such as finite difference mgthod can also be applied to
X . yield a numerical simulation model, and the results of simulation under those con-

essary equations for us to simulate the proposed control USiighns can be found in another pagéi.

Matlab. In what follows, the method of modal analyi$ will be 3ts derivation can be seen from Appendix B.
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Fig. 8 The closed-loop velocity at point  x=/ under robust con-

trol

d?y(t)
A | [~WenD
d?p _[ B
de2
where i=1,2,3,4and j=1,2,3,4,

Wy —W;
0o W,

, (23)

|
%(jxi):fod’i(x)ﬁﬁj(x)d)(,

{iﬂ'x)
. 0008 T g (x)
Wa(j,i)=— , ) 0 ¢i(x)dx,

0 i X
1+46co I

| 1 |
%(j,l):—fo%(X)dXJrTLan(X)dx,
1 |
%<j,2>=f|fjx¢,-<x>dx,

0
|
déy(t) L(ﬁj(x)dx

dt

u(j,h=-

Pys Py String Equation

ODE(py, p;>7)

b

L by b, v h 4
L amimt [76)

4é0é0ds

>

Boundary Condition / Control|

plfo. f) },;,_f; v

velocity

Fig. 9 The signal flow graph for robust adaptive control
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e T
T T I ; ; ; i % 5 1‘0 1I5 2'0 2ls slo 3[5 w 4|5 50
15 20 5 30 35 40 45 50 Time (sec}
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. . Fig. 15 The estimate of §&;
Fig. 13 The estimate of b,
YO =[y1(t) ya(t) va(t) ya(®)]T, 005 T ' ' ' T i T i '
po(t)} 10 : : : z : §
)= . W= , SRS S ST SO PO PSP LUPUPUPPE RPN : Lo
Pt Lﬂ(t) 4o 1 oot e ; :
and
d2 ( ) ( ) d (t) 0.03 -
1 Sp(t ay(x,t p
| =Mg— = ()= T —bo—
MO dtz X =0 dt
u =
! Co0) o7 VO dp(t)
| M +1()— —b—
M| dt2 X =l dt
4.2 Simulation Parameters. In the simulation, the follow-
ing setup is used:
e The initial conditions of ordinary differential equations in
(23) are set to be zero. ] : : : : _
e The following parameter values are used=1m, Mg _og i i i j i i i o 4.5 -
=5kg, M,=5 kg, w,=5 rad/sec, and=0.1N. o ey B
* Values assumed by “uncertainties;=0.1, 7,=0.15, b,
=1,b/=1, and5<[0,0.25. Fig. 16 The estimate of &,
x107
Y T T T T T T T T T 0.12 T T T T T Y T T T
o2k _
04} 1
-06 4 7
-0.8 = -
o _
0.04 4
0.02 -
% 5 0 5 20 = % S w s 50 % s m 5 20 25 S pr pn pr 50
Time (sec) Time (sec)
Fig. 14 The estimate of b, Fig. 17 The estimate of &;
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0.05 i f g ' i f i ' i than control in the setting of this paper. In case that the feedback
: ' ‘ ‘ ‘ is contaminated by noise, adaptation laws will have to be modified
to be those of leakage-type so that they are ropl@it

0.04 OO T D : S 4

5 Conclusion

B 1 S S S S ] In this paper, a new robust adaptive controller has been pro-

1 ’ : posed for suppressing oscillations in a nonlinear string system.
Global asymptotic stability is shown in control design. The pro-
posed control is capable of stabilizing the nonlinear string without
the perfect knowledge of string dynamics or the motion of its
transporter. Compared to the robust controllefif all system
dynamics are considered. The effectiveness of the proposed con-
troller and the existing robust controller has been demonstrated
via simulation.
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Fig. 18 The estimate of &,
Appendix A: Proof of Theorem 2

- Bounds: cr =Cr=0.IN, m=0.0545kg/m, and m _ 1O compensate for unknown parametés by, 7; and 7,
0 0 while taking into account the effect of control mechanisms, the

=0.1556 kg/m. ; : ; ; .
+ Design parametex(1) = 0.16 with 3, = 0.059 andg,—1 (o following Lyapunov function candidate is chosen:
satisfy inequalitieg9) up to (14)). V(t)=Vs+Vo+V,+L(1),

* Control gainsko=10, k=10, andk,=10. whereV, is given by(8), positive definite function&/,, V, and
Due to limited space, simulation results for the valuessf0.1 L(t) (with respect to their argumentare defined by
will be presented although several runs were done to verify that 1 aY (02
the same behavior is observed ®«[0,0.25. Vo(t) = > Mo{ } ,

}2

maximum oscillation occurred at the middle of the string. x=1

The frequency of “input,” 5 rad/sec or 0.8 Hz, is clearly seen in 1 . , 1 . )
the open loop responses. Applying pointwise linear analysis, one L(1) = 5 - [Po=Do() ]+ 5 - [b1=by(1)]
can conclude that the first mode frequency is between 0.2 and 0.4, a !
which is the “low frequency” element seen in Fig. 3. 1 4 R

While only 4 modes are simulated in this and the next two + WE [&—&(D]3
subsections, convergence is ensured by studying the magnitudes ai=1
of tlrr!;e drespfonst(;s ?_or{espondl(;lgtr:pdthesdefmot?]es. ipecnflcag =071 COST,  E,=bomising,  E=bpicosy, &
magnitudes for the first, second, third and fourth modes are gblﬂl sin7,, and# is the estimate o.

order 10°% 107, 10 % and 10°, respectively. This verifies  |i tdllows from conditions(12) to (14) that
both our choice of the four modes and convergence of high

ot

4.3 Open-Loop Responses.Without applying any control,
velocities at pointsx=0, 0.3, | with respect to the reference Vi) = lM aY(l,t) 3 | ay(x,t)
frame are shown in Figs. 2, 3 and 4 respectively. As expected, the (= PR T * g¥ X

modes. The same phenomenon is also observed in the closed-labys(t) ay(x,t) aY(0})
responses, and hence there is no spill-over problem. dt =—2To(0) X at
x=0

4.4 Simulation of Robust Controller. By theorem 3, simu-
lation of robust control$15) and(16) should be done according to +2T(1,1t) ay(x.t) av(lo) + § a(l) Y1)
the signal flow graph shown in Fig. 5. Under the robust control, ' ox || ot 8 2
velocities measured at points=0, 0.9, | are shown in Figs. 6, 7 5 )
and 8, respectively. It is obvious that robust control is very effec- 3 Ea(l)T 0 ay(x,t) N Ea(l)m(l) aY(l,t)
tive in damping out the oscillations. 4 0 x|, 2 at

4.5 Simulation of Robust and Adaptive Controller. The T aY(x.012 Tavix.0)12 Tavix.t)]4
proposed robust and adaptive controller can be simulated by add- _ £ H . y(x.b y(x. ]dx.
ing an adaptation module, and the resulting signal flow graph is 2l Joll ot X Ix

shown in Fig. 9. Specifically, differential equations(&8) will be ; - P )
integrated simultaneously with the adaptation law§li®. Under ﬁggl)(/lln% ;?; Pf;%vzoﬁg\llt'eon%) and (7) and substituting con

the robust adaptive control, velocities measured at poirt9,

0.3, | are shown in Figs. 10, 11 and 12, respectively. It is obvious  dVy(t) JY(0}) aY(0y) ay(x,t)
that the proposed control is asymptotically stabilizing. And, the Gt - ot | Ko 2100 —~
result is verified for all admissible values of the control gains. x=0
Estimates obg, by, &1, &, €3, and§, are shown in Figs. 13, 14, . aY(0)

15, 16, 17, and 18, respectively. As expected, estimation errors of +(bo—byg) pn — (&= &) sin(wpt)
system parametersuch as friction coefficients, magnitude and

phase shift of the oscillatiordo not converge to zero without a .

certain persistent excitation condition, which is of less importance —(&,— &5)cog wbt)},

60 / Vol. 126, JANUARY 2004 Transactions of the ASME



dvi(t) [aY(l,t) 3 ay(xt) ay(x,t) dL(t) 1 0( ) 1 . dby(t)
T —[ o Tgah— X_IH 2T, —~ . ar :_k_a[ bo(1)] k_a[b'_b'(t)]—dt
av(,t)y 3 &y(x t) N aY(l,t) dg,( )
—k{—t ga() X_J(b'_b') P _:.2 [6— &1~
(%3§3>sin(wbt>(é4§4>cos<wbt>],
Summing up the above four inequality/equalities, we can con-
and clude that
|
dv(t) e ['[aY(x,t) [ay(x,t)]? [ay(x,t)]* 1 Ay(x,t) 2 aY(l,t) aY(0)]?
at = 21 [ T ax ]dX_Za(l)TO(l) x| _“(l)m(l){ } _ko{ at }
Y( t)1]? ( t) aY(0y)
+(b0 bo)| —— (f &1)sin(wpt) _(fz fz)COiwbt)—t
N aY(l,t)y[aY(l,t) 3 ay(x,t) Y({,t) 3 ay(x,t)
+(bj—b, at at +§a ax X_I}_(fa §3)Sln(wbt)[ ga(l) X _J
R ay(lt) 3 ay(x,t) ay(lt 3 y(x,t) 2 1 db ( )
— (&4 &a)coq wpt) P +§01(|) X J '[T+§al — } *k_a[bo bo(t)] O
1 ) 1w )
b= b0~ '( o2 EEO] =5 f( :
a ai=1
[
Now, substituting the adaptation laws into the right hand side ahd
the above inequality yields
v(l,t)=0.
dv(t) _ 2k, ay(x DI . : . .
B TR YN Vo(t)— —V,(t)— a(| YTo() } rurthermore, it is assumed thd(x,t) be a linear-like function of
x=I orm
&Y(I D] e ['[aY(x, v [y 2 H(x,t)=A(t)x+B(t) (B1)
a(l)ym(l) 20 ot ox s ofi
whereH(x,t) satisfies
L[y “]dx_ H(0,t) = po(t)
and
It is obvious that, under inequalityl0), gain k; satisfying k
=2a(l)m can be chosen to establish the following inequality: H(LO=p(D).
1 [av(l) 3 ay(x,t) 2 1 Solving first functionsA(t) and B(t) and then functiorH (x,t),
5 ,[T+§a h— ‘X_l + 7 aDTo(l) we have
X
x|l 1?2 1 aY(l,1)]? YO =00 +po(O)+ [P ~Po(D)], (B2)
p >§a(l)m(l)
x= from which Eq.(21) can be concluded.
Therefore, we have Substituting(B2) into Eq. (20), we have
$< e (Vot Vo b V). Poxt) T ot dPpe(t) x[dPpi(t)  dpo(t)
t at? m(x)  gx? dez 1] df? dt?
for some constang,>0, from which asymptotic stability of the
state inV4(t) can be claimed10]. Q.E.D. _ ddy(t) (B3)
dt '

Appendix B: Proof of Theorem 3 and the corresponding eigenvalue problem is

To yield homogeneous boundary conditions, assume that dis- Foxt) T Fu(xt)
placementy(x,t) can be expressed as ot2 mx) gx2 B4)
yxH=v(x,) +H(Xx1), The method of variable separation can now be applied by set-
wherev (x,t) is subject to the boundary conditions ting
v(0H)=0, v(X,t) = (X) ¥(1). (B5)
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Under assumption 4, the eigenvalue problem after substituting *
(B5) into Eq.(B4) becomes the following differential equation: for v(x,t)= E &i(X) (1),
some constant; , i=1

we can rewrite Eq(B3) as

X
a2 l+5cos|— s _—
: = » o COS——
ae ' C i 40 (®6) d2y(t) I dhix)
1+45cos—— 2_:1 &i(X) e _2'1 o 7i(t)
o "t 1+48cos—
Using the boundary condition$(0)=0 and ¢(l)=0, we findC; '
=(iw/1)2 and 2 2 2
_ _ _ d%po(t) x| dpy(t)  dTpo(t)| dép(t)
i mX i X - T - .
¢i(x):sin7|7—(1+ 50037—) dt? Hoa? dt? dt
Multiplying both sides of the above equation hy;(x) (]
wherei=1,23 ... . =1,2,3...) andthen integrating with respect to from 0 to |
Letting yield
|
1+6 X
w ao cos——
d?y(t) ! : I d?¢i(x) d’po(t) | dop(t)| (!
2 Tfowij(x)dx—zl yimfo e A0 | ot = fo@-(x)dx
1+46cos——

I'x
fl—qu(x)dx.
0

|t dPpo(t)
dt? dt?
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