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Abstract—The problem of determining a collision-free path for
a mobile robot moving in a dynamically changing environment
is addressed in this paper. By explicitly considering a kinematic
model of the robot, the family of feasible trajectories and their
corresponding steering controls are derived in a closed form and
are expressed in terms of one adjustable parameter for the purpose
of collision avoidance. Then, a new collision-avoidance condition
is developed for the dynamically changing environment, which
consists of a time criterion and a geometrical criterion, and it
has explicit physical meanings in both the transformed space and
the original working space. By imposing the avoidance condition,
one can determine one (or a class of) collision-free path(s) in
a closed form. Such a path meets all boundary conditions, is
twice differentiable, and can be updated in real time once a
change in the environment is detected. The solvability condition
of the problem is explicitly found, and simulations show that
the proposed method is effective.

Index Terms—Car-like robot, chained form, moving obstacle,
nonholonomic systems, obstacle avoidance, piecewise parameter-
ization, polynomial inputs, trajectory generation.

I. INTRODUCTION

FOR most real-world applications, it is desirable that mo-
bile robots are capable of exploring or moving within a

dynamic environment. In addition, the environment is usually
uncertain as complete information and future trajectories of ob-
stacles cannot be assumed a priori. In this context, the problem
naturally arising is how to plan in real time a collision-free path
in the presence of dynamically moving objects and with a lim-
ited sensing range. A preferred solution to the problem would
be one that takes kinematic constraints into consideration, ex-
plicitly handles dynamically moving objects, and is analytical.

Standard motion-planning approaches [1], such as potential
field [2] and vector field histogram [3], are developed to deal
with geometrical constraints, more specifically, holonomic sys-
tems in the presence of static obstacles. For nonholonomic sys-
tems such as mobile robots, their kinematic constraints make
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time derivatives of some configuration variables nonintegrable,
and, hence, a collision-free path in the configuration space is
not necessarily feasible (that is, it may not be achievable by
steering controls) [4], [5]. Up to now, most of the existing re-
sults deal with nonholonomic systems and object avoidance in
one of two ways. One way is to exclusively focus upon motion
planning under nonholonomic constraints. Without considering
obstacles, many algorithms have been proposed, for instance,
differential geometry [6], differential flatness [7], input param-
eterization [8]–[10], and optimal control [11]. In particular, the
nonholonomic motion-planning problem can be recast as an op-
timal control problem, Pontryagin’s Maximum Principle can be
applied, and it is shown in [12] (improved later in [13]) that the
feasible shortest path for a point robot under two boundary con-
ditions is a concatenation of simple pieces (such as an arc and
a straight line segment) that belong to 46 three-parameter fam-
ilies of controls. The second way is to modify the result from
a holonomic planner so the resulting path is feasible. For ex-
ample, the online suboptimal obstacle avoidance algorithm in
[14] is based on the Hamilton–Jacobi–Bellman equation [15],
[16], it admits stationary obstacles, a planned path is holonomic,
and its feasibility has to be verified for a chosen nonholonomic
mobile robot. The nonholonomic path planner in [17] is based
on the same principle, that is, a path is generated by ignoring
nonholonomic constraints, and it is then made feasible via ap-
proximation by using a sequence of such optimal path segments
as those in [12].

Exhaustive search or numerical iteration-based methods have
also been used to deal with nonholonomic constraints and col-
lision avoidance. The search-based algorithm [18] involves dis-
cretization of the configuration space in order to build and search
a graph whose nodes are small axis-parallel cells; two cells are
called to be adjacent if there is a feasible path segment between
them, and these path segments are constructed by discretizing
the controls and integrating the equations of motion. In [19],
nonholonomic motion planning is formulated as a nonlinear
least-squares problem in an augmented space, obstacle avoid-
ance is included as inequality constraints, and a solution is found
numerically. In [20], a dynamic programming-based algorithm
is introduced to search approximately for minimum-time tra-
jectories and to take into account both kinematic constraints
of avoiding static obstacles and dynamic constraints in terms
of bounds on velocity, acceleration, and force. In [21], trajec-
tory planning (so-called kinodynamic planning) is pursued by
considering first-order differential equations and static obstacles
and by finding appropriate inputs through a random tree search.
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There have been a few results on dealing with moving ob-
stacles. It is proposed in [22] that, if the entire trajectories of
the moving obstacles are known a priori, an -dimen-
sional configuration-time space can be formed by treating the
time as a state variable and recasting the dynamic motion-plan-
ning problem into a static one. In [23], kinodynamic motion
planning with moving obstacles is done using a randomized mo-
tion planner in which a control is chosen randomly from the
set of admissible values to integrate equation of motion and,
if the resulting local trajectory is collision-free, its endpoint is
put into a probabilistic roadmap. Similar to the approach in
[18], the random motion planning of [23] is a search method.
In [24], the dynamic motion-planning problem is decomposed
into two subproblems: a static path-planning problem and a ve-
locity-planning problem. The static path-planning problem is to
find a path that avoids all static obstacles, and the velocity-plan-
ning problem is to determine the velocity of the robot along that
path so that there will be no collision. However, this approach re-
quires complete information (including future trajectories), and
its solution is not guaranteed. For obstacles moving with known
constant velocities, velocity planning can be done using the ve-
locity obstacle concept in [25]. That is, collision does not occur
if the robot velocity is chosen such that its velocities relative to
the obstacles’ motion do not enter the corresponding collision
cones. To the best of our knowledge, there has been no compre-
hensive result on analytical motion planning for nonholonomic
systems operating in a dynamical and uncertain environment.

In this paper, a new collision-avoidance method is proposed
to analytically solve the problem of real-time trajectory plan-
ning and replanning for nonholonomic mobile robots operating
in a environment of multiple dynamically moving obstacles. The
proposed method is a three-leg paradigm: mapping the system
kinematic constraints into a chained form, parameterizing all
feasible trajectories by a family of piecewise-constant polyno-
mials and determining the corresponding steering controls, and
developing a new collision-avoidance condition (which consists
of a time criterion and a geometrical criterion and is explicit
in both the transformed space and the original working space).
Specifically, it has been shown that, for a car-like mobile robot
(and others in the (2, 4) chained form), a family of sixth-order
piecewise-constant polynomials can be used to describe feasible
trajectories (for which steering controls are explicitly found)
and that, upon satisfying all boundary conditions, collision-free
trajectories can be expressed in terms of one parameter. This pa-
rameterization makes it possible to analytically solve for colli-
sion-free path(s) by invoking the proposed collision-avoidance
condition. The resulting trajectory is twice differentiable, and
the corresponding steering controls are piecewise continuous.
As a result of the piecewise representations used, the paradigm
works if obstacles have varying speeds and if on-board sensors
have a limited range. Iteration (i.e., updating the planned trajec-
tory) is only needed when speed changes of objects are detected
or when new objects emerge, and the iteration itself is done in a
closed form and limited to one set of calculations (that is, no suc-
cessive substitution or iteration). It is shown that, so long as col-
lision does not occur at the boundary conditions and there is no
perpetual disconnectivity (such as a lasting trap), the dynamic
path generation problem is always solvable and that solutions
are given in closed form.

This paper is organized into five sections. In Section II, the
problem of real-time motion planning in the presence of dy-
namically moving obstacles is formulated, a four-wheel mobile
robot is used as the plant, and its chained form is presented. In
Section III, a piecewise-constant parameterization of feasible
trajectories is introduced, a new collision-avoidance condition
(in both time and geometry) is developed, and analytic solutions
to collision-free trajectory and steering functions are obtained.
Simulation results on path planning, replanning, and steering of
the car-like mobile robot are discussed Section IV. In Section V,
several conclusions are drawn.

II. PROBLEM FORMULATION

In this paper, we shall consider the general problem of trajec-
tory planning for mobile robots in a dynamic and changing en-
vironment. As shown in Fig. 1, possible two-dimensional (2-D)
environmental changes are due to limited ranges of on-board
sensors and to the appearance of and/or motion of objects. To
solve the problem, one can make the following choices without
loss of any generality:1

• The robot under consideration is represented by a 2-D
circle with the center at and of radius . Its
motion is controlled but nonholonomic and is represented
by the velocity vector . The range of its sensors is
also described by a circle centered at and of radius

.
• The th object, , will be represented by a

circle centered at point and of radius , denoted by
. For moving objects, the origin is time

varying and moving with linear velocity vector .
• The robot starts at initial position and initial orientation

, moves collision-free, and arrives at final position
and with final orientation .

Intuitively, the trajectory-planning problem has at least one so-
lution if the robot is capable of moving sufficiently fast, if the
free space contains the initial condition at , and if there
exists a finite time instant such that the free space is
connected and contains the final position for and
for all . The condition of solvability and its impli-
cations will be mathematically introduced and then discussed in
Section III-C.

However, the general trajectory-planning problem is physi-
cally ill-posed as its solution will require a priori knowledge
of both the objects’ present and future motion information. To
overcome this difficulty while making the proposed method
practically implementable, we use piecewise constants and
functions to represent arbitrary functions. Specifically, within a
specified period of time (where

is often small):

• velocity of the th object is constant, denoted by ;
• only the objects in the range of sensors are considered;

1It is trivial to allow the envelope of either the robot or an obstacle to be rep-
resented by union/intersection of several circles. The envelopes could also be
polygonal. Mathematically, circular envelopes can be represented by second-
order inequalities while polygonal envelopes can be described by first-order
linear inequalities.
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Fig. 1. General setting of trajectory planning in the presence of moving obstacles.

Fig. 2. Simplified setting of trajectory planning in the presence of moving obstacles.

• trajectory and control of the robot are chosen to be func-
tions with piecewise-constant parameters.

In some application, not only is the sensor range limited, the
final position may not be fixed either and thus can also be
represented by a piecewise-constant function. Therefore, trajec-
tory planning or replanning is done for Fig. 2, a snapshot of
Fig. 1, and is constantly updated. To do so efficiently online, the

proposed piecewise-constant parameterization must yield ana-
lytical solutions.

A. Velocity Cones

The simplification of approximating an arbitrarily moving
object by a constant velocity (or linearly moving) object can
always be done for a period of time. In the case that only
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Fig. 3. Trajectory planning in the presence of velocity objects—velocity cone
method.

linear velocity objects are present, the method of velocity
planning [25] can be used to solve the problem of obstacle
avoidance. To illustrate its idea, consider Fig. 3 in which two
objects are moving with constant velocities and and
the objects are enlarged by the radius of the robot. Given
an arbitrary robot velocity (of its guidepoint (GP), i.e.,

), the relative velocities can be
determined. It is straightforward to verify graphically that, if the
relative velocities do not enter the two velocity cones (which
are corresponding to and are pointing toward the objects),
respectively, collision will never happen. As shown in Fig. 3,

is in the cone of object 1, and is not in the cone of
object 2. As a result, if all three velocities are maintained, the
robot will collide with object 1 but not with object 2. Thus, as
proposed in [25], velocity planning of should be done so that

are not in their corresponding cones. In [26], the concept
of the velocity cone is extended to “nonlinear velocity” objects
by taking into account the information of shape, velocity, and
path curvature of a moving obstacle along a known trajectory.
Nonetheless, the basic idea remains the same, that is, choosing
robot velocity so that the relative velocities do not enter the
corresponding velocity cones.

While the concept of the velocity cone is simple and intuitive,
it has several shortcomings if applied to the problem defined
previously in Figs. 1 and 2.

• In most cases, velocities of the robot and objects are not
constants and consequently it is not necessary or sufficient
for collision avoidance that the relative velocities are not
in the corresponding cones.

• The decomposition of trajectory planning into two sub-
problems of path planning and velocity planning is inade-
quate for a truly dynamic environment as all obstacles and
their complete trajectories must be known a priori.

Fig. 4. Car-like robot.

• Since path planning is a kinematic problem and velocity
planning is a dynamic problem, kinematic constraints and
the dynamic model of the robot must be considered in
trajectory planning. Most of the existing work give little
consideration to either.

B. Robot Modeling

In this paper, a new paradigm is proposed to plan trajectories
and avoid moving obstacles for nonholonomic mobile robots. In
the new paradigm, the kinematic models of the robots are explic-
itly considered in trajectory planning, and the dynamic models
could also be included (though the latter will not be considered
in this paper). To this end, a kinematic model of a car-like mo-
bile robot is used in this paper to develop a trajectory-planning
algorithm using the paradigm.

The car-like robot is shown in Fig. 4, its front wheels are
steering wheels, and its rear wheels are driving wheels but have a
fixed orientation. The distance between the two wheel-axle cen-
ters is , the midpoint along the line connecting the axle centers
is set to be the GP, and the whole vehicle is physically within
a circle of radius and centered at the GP. Trajectory plan-
ning will be done for the GP. Let the generalized coordinates be

, where are the Cartesian coordinates of the
GP, is the orientation of the robot body with respect to the
axis (that is, the slope angle of the line passing through the GP
and center of the back axle), and is the steering angle.

Let be the radius of the (back) driving wheels, be the
angular velocity of the driving wheels, and be the steering
rate of the (front) guiding wheels. One can obtain the following
kinematic model for the car-like robot:

(1)

Kinematic model (1) has singularity at , which does
not occur mathematically or in practice by limiting the range of

within .
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In order to standardize the process of analytically solving the
trajectory-planning problem for model (1) and for other appli-
cable models as well, we choose to proceed with our develop-
ment by first transforming kinematic model (1) into a canonical
form, called the chained form. Following the standard results on
the chained form, one can find following transformations of co-
ordinates and inputs:

(2)

(3)

Under the transformations, kinematic model (1) can be mapped
into the following two-input four-state chained form:

(4)

Remark 2.1: State and control transformations (2) and (3)
are one to one if . This diffeomorphism can always
be guaranteed by properly prerotating the – plane and making

provided that boundary conditions and
on satisfy the inequality . If ,

it becomes necessary to introduce an intermediate configuration
with such that and . In this
case, trajectory planning from to can be done by solving
the problem twice, one from to and another from to

.
Remark 2.2: It should be noted that a collision-avoidance

criterion has to be established in the physical space (e.g., the
plane of versus ) rather than the transformed space specified
by the chained form. Nonetheless, the chained form provides
the standardization by which most of the derivations (such as
path parameterization and steering controls) are invariant. For
example, if the GP is set at the real-axle midpoint, chained form
(4) can be obtained except that and [rather than
those in (2)]. In this case, simpler criteria for obstacle avoidance
can be derived by following the discussions in Section III-B,
but the result will become conservative as radius has to be
increased to cover the vehicle. Similarly, the proposed method
can be applied to other types of robotic vehicles.

In this paper, we use the car-like robot as the example and
adopt the chained form in solving the problem of trajectory plan-
ning. The proposed steering paradigm for trajectory planning
and object avoidance has the following features.

• Kinematic models of robots are explicitly considered.

• Motion of objects are represented by piecewise constant
velocities, and collision-avoidance criterion is defined
analytically and thus less conservative than the existing
methods.

• Piecewise-constant parameterization will be used to de-
fine trajectory and steering control, and their solutions are
obtained in closed form.

III. PROPOSED STEERING PARADIGM

The proposed paradigm consists of three basic steps, and it
is based on the two corner stones of steering and collision-free
criterion (newly defined for moving objects). On one side, it be-
gins with a kinematic model, that is, steering strategies are used
to find out the class of physically achievable trajectories. On the
other hand, a collision-avoidance criterion can be explicitly de-
veloped for moving objects. As the third step, a specific class
within all achievable trajectories will first be parameterized and
then solved using the object avoidance criterion.

A. Feasible Trajectories

A trajectory is feasible if it satisfies both the boundary
conditions imposed and dynamics of the kinematic model. The
chained form in (4) is used as the standard one to study and
determine trajectories that observe the kinematic model. The
following result shows a general class of feasible trajectories in
terms of transformed state .

Lemma 1: Consider a mobile robot that has its kinematic
model in the chained form (4) and operates in an obstacle-free
environment. Then, given any boundary conditions

and (for
some ), there exist inputs and that render a fea-
sible trajectory of functional form (in the plane of

and ). In particular, any function is feasible as
long as it satisfies the following boundary conditions:

Proof: For a function of form to qualify as a
feasible trajectory, all of the boundary conditions must be met,
and they are satisfied because, according to (4)
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Clearly, there are many choices of to drive from
to . By choosing to be nonzero, can be found

by differentiating according to (4). This con-
cludes the proof.

Remark 3.1: If , the first control component can be
set to be for some nonzero constant . If

would be the constant control but cause singularity
in determining . In the latter case, the singularity problem
with being zero can be overcome by first choosing an
intermediate point with and then by pro-
ceeding with planning two subpaths in the plane of and ,
that is, letting move from to and then back to

. By doing so, the resulting control will be piecewise
constant but nonzero.

Lemma 1 shows that, by first choosing and then making
conform the boundary conditions

and in the original state space, the steering
problem can be solved. In this paper, it is assumed that

. Thus, for a feasible trajectory, the following
boundary conditions on boundary points, slopes, and curvatures
are applied: given we have

(5)

(6)

Remark 3.2: For the class of feasible trajectories in the form
of , boundary conditions in (5) and (6) represent six
constraint equations. Thus, function can be chosen
to be a polynomial of fifth order or higher.

Remark 3.3: If is not imposed, then the
boundary curvatures in boundary conditions (5) and (6) should
be changed to

(7)

The above boundary conditions on the second-order derivatives,
together with those on first-order derivatives, are equivalent to
boundary curvatures of the trajectory as

In the next subsection, collision avoidance is studied for a fea-
sible trajectory. Later, a specific class of feasible trajectories will
be defined to yield a closed-form solution for collision avoid-
ance and steering control.

Fig. 5. Steering paradigm: robot and the ith object.

B. Criterion for Avoiding Dynamic Objects

To illustrate the criterion in the proposed steering paradigm,
consider the robot (of coordinates ) and the th object
(of coordinates ) in Fig. 5 for the period

. In the figure, the robot is moving at a

vector velocity (which is to be determined),
the object has an initial location where

and , and point is moving at

a known constant velocity .
To develop a criterion for collision avoidance, we define the

robot velocity relative to that of the th object as

(8)

Using the relative velocity, Fig. 5 is transformed into Fig. 6 in
which the object is “static.” According to Fig. 6, the collision-
avoidance criterion in the – plane should be: for
with and we have

where for ,
and (which are the predictive velocities for
the future). Note that the circle of radius for collision
avoidance can be placed around the center of either the robot or
the th object. If the circle is placed around the robot, the col-
lision-avoidance criterion in the – plane becomes: whenever

as follows:

(9)

where , and are defined as before.
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Fig. 6. Relative velocity of the robot with respect to the ith obstacle.

It follows from state transformation (2) that, given any steer-
able path , the corresponding feasible path in the

- plane is

Thus, the corresponding collision-avoidance criterion
in the transformed space is: whenever

we
have

(10)

where and .
Note that, although can be determined from and can be

obtained as a result of applying Lemma 1, exact mapping from
to should not be used to numerically solve the problem
of trajectory planning by imposing criterion (10). Instead, we
choose to develop a new criterion only in terms of and
(or and ) so that an analytical solution can be found for the
problem of trajectory planning. To this end, note that all possible
locations of point are on the right semicircle centered at

and of radius for . As shown in
Fig. 7, plotting a family of circles of radius along the
right semicircle renders the region from which the center of the
th object must stay clear, and the region is completely covered

by the unshaded portion of the circle centered at and
of radius . Mathematically, the proposed collision-
avoidance criterion in the plane is

(11)

provided that

(12)

Fig. 7. Illustration of the collision-avoidance criterion in the transformed
plane.

It is apparent from Fig. 7 that criterion (11) implies criteria
(10) or (9). Once a steering method is chosen, the time interval
during which criterion (11) should be imposed to avoid collision
can be found from (12). That is, the proposed collision-avoid-
ance scheme has two parts: time criterion (12) and geometrical
criterion (11).

C. A Feasible Collision-Free Trajectory Parameterization
and Solution

A specific candidate class of feasible, collision-free trajecto-
ries are parameterized as

(13)

where is a constant vector to be deter-
mined, and is the
vector composed of basis functions of . As discussed in
Remark 3.2, the minimum order of polynomial-type feasible
trajectories is fifth, and hence the class of sixth-order polyno-
mials in (13) is of lowest order for collision avoidance under
the boundary conditions if such a solution exists.

Our proposed method is to utilize the class of polynomials
in (13) to parameterize motion trajectories. After imposing all
of the boundary conditions in (5) and (6), the class of feasible
trajectories have their polynomial parameterizations in terms of
only one parameter to be determined. This last parameter
is then determined by using the proposed collision-avoidance
criteria in (12) and (11). Because obstacles may be dynamically
moving, the solution to a feasible and collision-free trajectory
and its corresponding steering controls are solved once within
time interval and updated with
respect to , where is the sampling period.

The following theorem is the main result of the paper, and
it provides an analytical solution to the problem of finding a
feasible collision-free trajectory. It is intuitively clear from the
discussions in Section III-B that the third item in Assumption 1
ensures solvability. Note that, in Assumption 1, the th changing
speeds of objects denoted by need not to be known until

.
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Assumption 1: Consider a nonholonomic car-like robot of
model (1) and operating in the presence of circular moving ob-
stacles that are centered at and of radius , for .
Assume the following.

• Boundary conditions, and
with , are de-

fined by (5) and (6), and they satisfy the conditions
and .

• Let and be the time for the mobile robot
to complete its maneuver and be the sampling period
such that is an integer, that centers of ob-
jects are located at at , and that
these objects are all moving with known constant veloci-

ties for .
• For any given , the free space is con-

nected in the presence of unshaded circular regions given
by that in Fig. 7 but located at and of radius

, and the connectivity is with respect to “initial con-
dition” and “terminal condition” ,
where . Also, in relation to the free
space and robot’s sensing range, the robot’s speed can be
made faster than those of the objects.

Theorem 1: Under Assumption 1, a collision-free path can be
generated analytically by undertaking the following steps.

Step 1) Select coordinates of the working space
such that , apply state and input transfor-
mations (2) and (3), determine the corresponding
boundary conditions and

, and obtain the dynamics in
chained form (4).

Step 2) For , determine recursively con-
stants by ensuring the following second-order
inequality (or inequalities):
where is the number of objects within
the sensing range2 during time interval

and as
follows:

(14)

where is the time interval
(if it exists3) during which

(15)

In (14), functions , and
are defined as follows: for

2Within the time interval t 2 [t + kT ; t + (k + 1)T )]; n will change
if an object moves into or out of the sensing range. When n changes, the path
and its corresponding steering controls need to be updated. As the default, one
could choose to update only if n increases.

3If the interval does not exist for some or all i, inequality (14) is not needed
for those objects.

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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Step 3) A feasible, collision-free path of form (13) in the
transformed state is found by solving according
to

(23)

Step 4) The steering inputs to achieve path (13) are given
by, for ,
and , where

(24)

(25)

Step 5) The corresponding feasible, collision-free Carte-
sian trajectory is given by

, where can be found in closed form
from state transformation (2) under steering inputs
(24) and (25) together with control mapping (3).

Proof: The proof, provided below according to the state-
ments in the theorem, is done recursively for time intervals

, with boundary conditions in (5)
and (6), and with intermediate boundary conditions in equations
from (17) to (20).

Step 1) Obvious from the discussions in Section II.
Steps 2) and 3) Consider the class of candidate trajectories

in (13). Starting with initial conditions in (5)
and given intermediate boundary conditions
at time instant for ,
the intermediate boundary conditions at time
instant can be obtained by directly
integrating (4), and the results are given in
equations from (17) to (20). Then, applying
boundary conditions from (17) to (20) and
(6) to (13), we have

which renders (23). Note that matrix
in (22) is nonsingular as long as .
Hence, trajectories satisfying all of the
boundary conditions are parameterized in
terms of as

Substituting the above equation into (11)
yields (14), a second-order polynomial in-
equality in .

Step 4) To determine the steering control inputs, let

where and are constants.
Directly integrating (4) yields

(26)

for . It is obvious
that we have

On the other hand, substituting
into yields

(27)

where
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Then, in light of (23), we can solve for con-
stants in by comparing (27) and
(26). The result renders the steering inputs in
(24) and (25).

Step 5) It is obvious from the discussions in the pre-
vious sections.

Remark 3.4: The theorem can be used for both trajectory
planning and real-time trajectory replanning. If boundary
steering angles ( and ) and the corresponding boundary
curvatures are nonzero (in a more general case), Theorem 1 still
holds except that in (21) should be set to be

where .
Remark 3.5: Due to the boundary conditions imposed in

(17)–(20) and those in matrices , and , the colli-
sion-free path found in the transformed plane of and is
always smooth (more specifically, differentiable at least twice).
On the other hand, steering inputs in (24) and (25) are piecewise
continuous. Consequently, the resulting collision-free trajectory
in the original – plane is also differentiable.

Remark 3.6: It is clear from the proof of the theorem that a
quintic polynomial function in the transformed space can satisfy
the boundary conditions specified in (5) and (6). Therefore, for
collision avoidance, polynomial (13) is of the minimum order
necessary. Polynomials higher than sixth order provide addi-
tional freedom in the design and may potentially yield better
performance, which is a topic of future study.

Remark 3.7: If only constant velocity objects are present,
one can simply choose . In this case, we have
and ; intermediate boundary conditions are no longer
needed; and steering inputs in (24) and (25) are continuous. In
particular, collision-free criterion (14) and the -plane solution
to trajectory planning become

(28)

and

(29)

where

(30)

Nonetheless, even if all objects keep moving at constant speeds,
choosing may improve performance as it can approximate
polynomials higher than sixth order.

Remark 3.8: In the presence of dynamically moving objects
whose speeds change rapidly, should be chosen to be suffi-
ciently small. On the other hand, if the robot is operating at the
same speed, becoming smaller implies that becomes
smaller as approaches . This in turn makes matrix in

(22) closer to being singular. Thus, it is necessary for computa-
tional efficiency and robustness that is not too small.

Remark 3.9: It is apparent from steering inputs in (24)
and (25) that, the larger the value of is chosen, the smaller
the values of steering inputs become. As such, should be
chosen to meet constraints on steering inputs and/or their
rates of change. On the other hand, the collision-avoidance
capability will be physically curtailed if the values of steering
inputs are limited, as will be shown in the next remark. To
avoid dynamically moving objects, a robot must maneuver fast
enough with respect to motions of the objects. In other words,
as illustrated by the proposed criterion, the robot has to be
able to properly adjust its relative velocities with respect to the
moving objects.

Remark 3.10: Assumption 1 needs to be and can be relaxed
in two ways. First, since the algorithm is applied iteratively, the
condition on connectivity of the free space between “initial con-
dition” and “terminal condition” can be
reduced to that between the initial condition and the
terminal condition . Furthermore, if connectivity of the
free space is lost for some finite values of , there is no solution
for during those periods of time but, so long as connectivity is
eventually recovered and maintained afterwards, a desired tra-
jectory can be found. In other words, the proposed algorithm
solves the trajectory-planning problem if there is a solution and
it is flexible enough to handle issues that may be encountered in
practice.

Remark 3.11: Computationally, the proposed approach re-
quires that inequality (14) be solved for at most times,
where is the number of the objects and is the number of
changes detected in the velocities of the objects. The equality
version of (14) has two closed-form solutions, and its compu-
tational complexity depends only on the number of boundary
conditions imposed (that is, matrix multiplications are six-di-
mensional). Therefore, the proposed algorithm is well suited for
real-time implementation.

In comparison, a tree search routine would depend on a
product of , and , where , and are the
numbers of grids along the , and axes, respectively. Since
it is usual that and , a tree search algorithm
is rapidly growing and, if implemented online, is, in comparison,
much more computationally intensive.

Remark 3.12: It is noted that, in the proposed steering
control (24), is a constant. Under this choice, we know
from (3) that Cartesian -directional speed is constant while

-directional speed is not. To have time-varying speeds in both
directions, one can simply make piecewise constant as

(31)

where is constant and satisfies the condition
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Fig. 8. Simulation results under ja j of smaller magnitude. (a) Paths of robot and obstacles. (b) Paths of robot and obstacles. (c) Paths of robot and obstacles.
(d) Entire trajectory of �(t). (e) Entire trajectory of �(t). (f) Steering controls: u (t)—solid line and u —dashed line.

Upon replacing in (24) by (31), it is straightforward to
show that has the same expression as that in (25) and
that Theorem 1 holds, except that (16)–(19) are replaced by the
following ones, respectively:
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An extension to obtain a smooth control input may also
be done with little difficulty.

Given the class of feasible trajectories in (13), collision
avoidance in the presence of multiple moving objects depends
upon solvability of inequality (14). To see that Assumption 1
ensures solvability, note that . If ,
inequalities in (14) belong to a family of parabolic functions
with openings upward in the plane of versus . Thus, as
long as , a solution to always exists for any
one object and, for the th object, the solution is of the form

, where and are the two roots of the equality
version of (14). In the presence of multiple objects, the final
solution is given by , and it always yields
at least one finite value for unless the objects and their
associated collision regions make the free space disconnected
between “initial condition” and “terminal condition”

. On the other hand, if , it follows
that as well and that the choice of does
little to make inequality (14) valid.

To understand the condition of and its implica-
tions, consider the simpler case that . It follows from (29)
that

Comparing with the expression of in (30), we know
that if, no matter what is chosen, the feasible
trajectory is degenerated into a quintic polynomial. Clearly,
this is impossible for the function except for
the boundary points at which boundary conditions must hold
for both fifth- and sixth-order polynomials, and hence, order
degeneration occurs. At the boundary points, inequality (28)
is not needed unless and/or is in the interval as
defined by (15). In the first case, collision has occurred already,
and little can be done. In the second case, collision can be
avoided by adjusting (unless one of the objects stays close
enough to ). Other than these two cases,
and hence inequality (14) is valid even though .
For the general case of , one can inductively conclude the
third item in Assumption 1 is the solvability condition as the
planning algorithm is applied iteratively.

In the vicinity of but not exactly at the boundary conditions,
is close to being zero. If the interval (15) contains

time instants corresponding to any of these points, one can
form a proper solution to not by solving inequality (28), but
by adjusting the robot speed and in turn the interval in (15) so
that it no longer contains any value very close to the boundary
time instants. In summary, for the trajectory-planning problem
in the presence of multiple dynamically moving objects, a
solution exists under Assumption 1 and can be obtained using
the theorem.

IV. SIMULATION

In this section, the proposed steering algorithm is simulated
to illustrate its effectiveness. In the simulations, the following
settings are used:

Fig. 9. Free-space path (a = 0) versus trajectories of obstacle 1 (dotted line),
obstacle 2 (dash–dotted line), and obstacle 3 (dashed line).

• Robot parameters: , and .
• Boundary conditions: and

, where and s.
• Moving obstacles:

, and for .
• Speeds of obstacles:

The sampling period is adaptively chosen according to
speed changes detected, and hence s.

• Baseline choices of design parameters: , which
implies that the robot has enough sensor range to detect all
three obstacles at all times (i.e., for ).

• At each sampling instant, current steering controls are de-
termined based on the motion of obstacles detected within
the sensor range of the robot. Therefore, the baseline so-
lution to the parameterized trajectory is given by

(32)

which are the solutions to the equality version of (14) in
Theorem 1 and of the smaller magnitude.

All quantities conform to a given unit system, for instance,
meter, meter per second, etc. The case of the robot having
a limited sensing range will be presented at the end of this
section.

The simulation results under the solution of (32) are shown
in Fig. 8(a)–(f). In Fig. 8(a)–(c), the paths of the robot and ob-
stacles 1–3 are represented by the solid line, the dotted line, the
dash–dotted line, and the dashed line, respectively.
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Fig. 10. Simulation results under ja j of larger magnitude. (a) Paths of robot and obstacles. (b) Paths of robot and obstacles. (c) Paths of robot and obstacles.
(d) Entire trajectory of �(t). (e) Entire trajectory of �(t). (f) Steering controls: u (t)—solid line and u —dashed line.

Fig. 8(a) provides the trajectory solution (called path 1) if the
objects were to maintain their velocities at for .

Fig. 8(b) shows the trajectory (called path 2 and compared
to path 1) if the object velocities were to change from to
but be kept at afterwards (for ). Finally, Fig. 8(c)
is the complete solution of the entire trajectory (called path 3
and compared to paths 1 and 2) by considering all of the speed
changes of all objects.

In Fig. 8(a)–(c), positions of the robot and the three objects
at and every five seconds afterwards are marked by small
circles along their corresponding trajectories, respectively. It is
clear from Fig. 8(a) that, if path 1 is followed beyond ,
collisions between the robot and objects 1 and 3 will occur
around and s, respectively. Similarly, Fig. 8(b)
shows that if path 2 is followed beyond , a collision be-
tween the robot and object 3 will occur around s. By
design, path 3 is collision-free.
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Fig. 11. Simulation results under R = 7. (a) Paths of robot and obstacles. (b) Paths of robot and obstacles. (c) Paths of robot and obstacles, (d) Entire trajectory
of �(t). (e) Entire trajectory of �(t). (f) Steering controls: u (t)—solid line and u —dashed line.

Fig. 8(d)–(f) contains the entire trajectories of orientation
angle, steering angle, and steering controls, respectively.

Piecewise solution (32) is found by solving the equality ver-
sion of inequality (14). There are two solutions, and in (32) is
set to be that of smaller magnitude. This is because the smaller

is, the closer the resulting trajectory is to the free-space tra-
jectory (which is shown in Fig. 9 and has collisions with objects

1, 2, and 3 around s, respectively). The solution
of larger magnitude is given by
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For comparison purposes, the corresponding trajectories are
plotted in Fig. 10(a)–(f). It turns out that, for the two-input
four-state chained form, the swing direction of planned tra-
jectories is determined by the sign of : upwards if is
negative, and downwards if is positive. On the other hand, if

is set to be that of larger magnitude, the resulting trajectory
tends to have larger detour or swing, which may be undesirable.
Therefore, a combination of (in terms of their magnitudes
and signs) may prove to be better in some situations.

For comparison purposes, let us finally consider the case that
. In this case, the robot’s sensor has a limited range so the

robot detects the presence of objects 1, 2, and 3 intermittently.
Sampling period is chosen to account for speed changes of
objects detected, and is introduced to account for emergence
and disappearance of various objects in the sensing range of the
robot. It is obvious that, when elapses or increases, the
proposed algorithm needs to be applied to update the trajectory
and its corresponding steering controls. Thus, the only differ-
ence from the baseline simulation is that, in light of the limited
sensing range, is changing, and so are the planned trajectory
and steering controls. Again, all of the following choices of
are those of smaller magnitude.

Given , the evolution of planned trajectories are
plotted in Fig. 11(a)–(f). Specifically, at (ob-
ject 1 only) and applying the algorithm in Theorem 1 yields

. The corresponding trajectory is shown
by path 1 in Fig. 11(a), and it is kept until either elapses or

changes. At time instant , object 2 is detected by the
robot sensor, and becomes 2 (objects 1 and 2). Accordingly,
using the same algorithm and at is updated to be

, and for the robot will be
commanded to follow path 2 given in Fig. 11(b). It is clear from
Fig. 11(a) that, if the robot followed path 1 for the entire time
interval , a collision between the robot and object 2
will occur around s.

The rest evolution of planned trajectories is conceptually the
same. In particular, at , we have (objects 1 and
2) and hence is kept at the same value as
that of preceding . Within the interval , objects 1
and 2 gradually move out of the sensing range, nonetheless the
robot trajectory can remain path 2 in Fig. 11(b) (or, one could
choose to replan the trajectory). At (no object),
the algorithm chooses to keep as so that the robot
continues to follow path 2. Around , objects 1 and 3 are
detected, is updated to be , and
is determined by the algorithm. Thus, for and

, the robot is commanded to follow path 3 plotted in Fig.
11(c).

V. CONCLUSION

In this paper, a new collision-avoidance paradigm is proposed
to solve the problem of real-time trajectory generation. While
the robotic platform is chosen to be a four-wheel car-like mobile
vehicle, the proposed paradigm uses the chained form as the
basic model and therefore is applicable to other nonholonomic
systems. Based on a piecewise-constant polynomial param-
eterization of all feasible trajectories, the proposed scheme

prevents any collision by checking a time criterion and then
a geometrical criterion, and it yields analytical solutions to
collision-free path(s) and the corresponding steering controls.
The piecewise-constant representation of feasible trajectories
and steering controls enables the proposed method to admit
such changes in a dynamical environment as speed change
of obstacles, limited sensor range (and the corresponding ap-
pearance and disappearance of obstacles), and resetting of
terminal conditions. Solvability condition is explicitly found.
Effectiveness of the proposed method are illustrated by sim-
ulation results.
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