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Remark: i): Our result was inspired by the work of Blondel on ro-
bust stable polynomials omitting two values. In [7], a bound connecting
the range of the leading coefficient to the absolute value of the second
coefficient was established.

The diameter bound derived previously holds for all real
Schur-stable interval polynomials of arbitrary degree. The uni-
form bound is sharp at least for the diameter of the second coefficient
ja+
n�1 � a�

n�1j as the following example shows.
Example (Reproduced from [4]): Consider the family of polyno-

mials of degree n � 2 given as the real polynomials k(z) = (1 + �) �
zn + q � zn�1 + zn�2 where q varies in the interval [�2; 2], and � is
positive. The family is Schur-stable as the nonzero roots belong to the
quadratic (1+ �) � z2+ q � z+1 and lie inside the unit circle. Normal-
izing the family to be monic the second coefficient’s diameter becomes
4=(1 + �). Thus, the constant 4 in Theorem 1 is the best possible.

Remark: ii): The perturbation limits of Theorem 1 might be refined
using explicit expressions for the higher coefficients gv ; see [3].
It might be instructive to compare the above diameter bound to
the exact (symmetric) perturbation bound (based on the complete
polynomial information) for real robust, Schur-stable polynomials
given in [8].

III. CONCLUDING REMARKS

A sharp constant bound for the coefficient diameter of real Schur-
stable interval polynomials has been established. The bound holds
uniformly for all polynomials and all coefficients. It may be used as
a check criterion for stability given only limited information, and for
the explicit study of perturbation effects on the allowable coefficient
range. Another application is the study of gain margins for invariant
structures which will be presented in detail in a forthcoming paper.
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Global Stabilization and Convergence of Nonlinear Systems
With Uncertain Exogenous Dynamics

Zhihua Qu

Abstract—In this note, a class of nonlinear uncertain systems are con-
sidered, and uncertainties in the systems are assumed to be generated by
exogenous dynamics. Robust control is designed by employing nonlinear
observers to estimate the uncertainties. It is shown that, if a partial knowl-
edge of the exogenous system is available and its known dynamics meet
certain conditions or if input channel of the plant has certain properties,
global stability and global estimation convergence can be achieved. In the
latter case, the results on stability and convergence hold even if exogenous
dynamics are completely unknown but bounded by some known function.

Index Terms—Exosystem, Lyapunov direct method, robust control, un-
certainty estimation.

I. INTRODUCTION

Uncertainties are commonly present in most control systems due
to modeling errors, parameter variations, unknown dynamics, distur-
bances, and unmodeled dynamics. To ensure stability and performance,
feedback control must be robust. Typically, a nonlinear robust control
is designed by first describing size variations of the uncertainties using
a norm bound (or bounding function) and then compensating for all
the variations within the bound by size domination in a Lyapunov ar-
gument [5], [1]. Many existing results on robust stability and robust
control of nonlinear uncertain systems can be found in [6], [7], [9], [4],
[18], and [12].

While domination by a control is essential to achieve robust stability
and performance, precisely knowing the bound on uncertainties is
often practically impossible. Since underestimating the bound will
jeopardize robustness and since overestimating the bound will make
robust control too conservative, estimating uncertainties or their
bounding function online while guaranteeing robustness would be the
alternative. There have been several results along this line of research.
If the bounding function has a known functional expression and can
be parameterized linearly in terms of finite unknown constants, an
adaptive version of robust control was designed in [2] to adaptively
estimate the unknowns in the bounding function. Recently, extensions
have been made by using robust adaptive control [3] and robust and
adaptive controls [14] so that robust stability can be achieved for
systems whose uncertain dynamics or their bounding functions have
nonlinear parameterization in terms of unknown constants.

In many applications, source(s) of uncertainties in the plant can be
identified. In such cases, plant uncertainties can be modeled as output
(or the state) of an exogenous system whose dynamics may be either
completely or partially unknown. By adopting this dynamic augmenta-
tion, uncertainties or their bounding function can be estimated. It was
shown in [13] that, if uncertainty bounding function is parameterized
linearly in terms of time varying outputs of a known or partially known
exogenous system and if known dynamics of the exogenous system
has certain stability properties, uncertainties can be estimated using an
adaptation law and a globally stabilizing robust control can be found.
If explicit and useful stability property of the exogenous system is not
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available, it was shown in [15] that robust control based on nonlinear
observer can be designed to ensure semiglobal stability of uniform ul-
timate boundedness.

In this note, we search for observer-based robust controls that
ensures not only global robust stability but also global convergence
of uncertainty estimation. The proposed controls are designed by
exploring the properties of both the plant and the exogenous system,
and two different robust controls are obtained: one based on properties
of the partially known exogenous system, and the other based solely
on properties of the input channel of the plant. Compared to the
existing results, the proposed controls achieve better performance
(in particular, uncertainty estimation is globally convergent), and the
proposed design approach is different. Specifically, global convergent
observers along that in [20] are used in this note, while adaptation
laws (of standard forms in [16] and [9]) are used in [13] and
high-gain observers (similar to those in [8]) are used in [15].

It is worth noting that unstructured nonlinear uncertainties can
directly be estimated online to guarantee semi-global robust stability
[17]. By restricting uncertainties to be those generated by an ex-
ogenous system, performance is improved in this note to be global
stability for the state and global convergence for estimation.

The note is organized as follows. In Section II, a class of nonlinear
plants and their associated exogenous systems are described, the con-
trol problem is defined, and basic technical assumptions are introduced.
In Section III, an observer-based robust control is designed for the
case that the exogenous system is partially known and its nominal
part has certain stability properties. In Section IV, the case of the ex-
ogenous system being completely uncertain is considered, and an ob-
server-based robust control is proposed based on certain condition on
input channel of the plant. Conclusions are drawn in Section V.

II. PROBLEM FORMULATION

In this note, an uncertain system under consideration is of form

_x = F (x; t) +B(x; t)[w(x; �; t) + u] (1)

where x 2 <n is the state, u 2 <m is the control, w( � ) has a known
function expression and could be nonlinear in �, and � 2 <l is an
uncertainty generated by the exogenous system

_� = G(�; x; t) + �G(�; x; t): (2)

The objective of this note is to develop sets of simple conditions on
uncertain plant (1) and on exogenous dynamics (2) under which an
observer-based robust control can be designed to ensure global stability
of the state and global convergence of estimating uncertainty �(t). To
this end, let xi; fi( � ) and bi( � ) are the ith row of x; F ( � ), and B( � ),
respectively. Also, let

x = [�T ; zT ]T � [x1 x2 � � � xn�p]
T

z [xn�p+1; . . . xn]
T

F (x; t) = F
T
1 (x; t)FT

2 (x; t)
T

and

B(x; t) = B
T
1 (x; t) B

T
2 (x; t)

T

where p � 0 is an integer, and z; F2( � ) and B2(x; t) are the bottom
pth-order vector blocks (all of which are empty if p = 0) in x; F (x; t)
and B(x; t), respectively.

Remark 2.1: In this note, the state x of the plant is assumed to be
measured. Observers will be designed to generate v̂, an estimate of un-
certainty vector �, and an estimation-based control u = u(x; v̂; t) will
be synthesized. To gauge the effectiveness of uncertainty estimation,

one can use an auxiliary observer to generate ẑ even though z is avail-
able. This is because, according to (1)

B2(x; t)[w(x; �; t) + u(x; v̂; t)] = _z � F2(x; t)

(as in the case of a reduced-order observer designed for linear systems)
z can be viewed as “output” of the exogenous system, and hence (z�ẑ)
can be used as an “output estimation error.” In short, an observer of � is
a closed loop one if it utilizes “output feedback” of (z� ẑ); otherwise,
it is open loop. Note that p = m is a common choice under which, if
matrix B2(x; t) is invertible, impact function w(x; �; t) of uncertainty
� on the plant can be solved (with the aid of the auxiliary observer).
More discussions on the choices of p can be found in Remarks 3.8,
4.2, and 4.4. }

The following two technical assumptions are commonly made in
robust control. Assumption 1 says that the origin x = 0 is globally
asymptotically stable for the uncontrolled nominal system of (1), _x =
F (x; t), and that the fictitious system _x = F (x; t)+u0 is input-to-state
stable [19] with respect to u0.
Assumption 1: There exists a C1 function V (x; t): <n�< ! <+

such that


1(kxk) � V (x; t) � 
2(kxk)
@V (x; t)

@t

+rT
x V (x; t)F (x; t)

� �
3(kxk) rT
x V (x; t) � 
4(kxk) (3)

where 
i: <+ ! <+ are class K1 functions and, for some constants
�1 > 0 and 0 < �2 < 1


4(kxk) � �1

�
3 (kxk): (4)

Furthermore, it is assumed that Lyapunov function V (x; t) be found.
Assumption 2: All functions in system (1) and (2) are Caratheodory,

locally Lipschitzian with respect to x and �, uniformly bounded with
respect to t, and locally uniformly bounded with respect to x or �.

The second assumption is needed to ensure existence of a classical
solution under a continuous feedback control. As a result, it can be
assumed without loss of any generality that

kB(x; t)k � cb(kxk) and kB2(x; t)k � c
0

b(kxk) (5)

where cb( � ) and c0b( � ) are nonnegative functions.
Without knowing a bounding function on the size of uncertainty �,

robust stabilization will require more conditions, and so will conver-
gence of estimation. In the next two sections, two sets of such condi-
tions are found.

III. CONTROL DESIGN BASED ON PROPERTIES OF THE

EXOGENOUS SYSTEM

In this section, we proceed with robust control design by exploiting
properties of the exogenous system if such properties are known
apriori. Among the following three assumptions, Assumption 4A on
a certain stability property of the nominal exogenous system is the
key. As will be shown, Lyapunov matrix Pg in the assumption is only
used in the analysis but not in the proposed control (to be given in
the subsequent theorem), thus it does not have to be solved explicitly
as long as �1( � ) and cg are available. Since function expression of
w( � ) is known, Assumption 5A can easily be verified. If the proposed
control is made adaptive, constants �3 and �4 in Assumption 3 need
not be known either.
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Assumption 3: If x remains in a bounded subset (within an invariant
set of x(�); � 2 [t0; T ] for an arbitrary T � t0), state � of exogenous
system (2) is uniformly bounded. Furthermore, there exist known con-
stants �3 � 0 and �4 > 0 such that

k�G(�; x; t)k � �3

�
3 (kxk): (6)

Assumption 4A: Function G( � ) has the property that, for all
bounded x and for all (�1; �2; t)

(�1 � �2)
T
Pg[G(�1; x; t)�G(�2; x; t)] � ��1(kxk)k�1 � �2k

2

(7)

where �1(kxk) > 0 is a positively valued or positive–definite known
function, Pg is a positive–definite matrix, and kPgk � cg for some
known constant cg .

Assumption 5A: Function w( � ) has the property that, for all
bounded x and for all (�1; �2; t)

kw(x; �1; t)� w(x; �2; t)k � �5k�1 � �2k

�
3 (kxk) (8)

where �5 � 0 and 0 � �6 < 1 are constants.
Under the assumptions, global stability and convergence stated in

the following theorem can be achieved under a robust observer-based
control. In contrast, robust adaptive control in [13] does not yield any
result on convergence of uncertainty estimation, and observer-based
robust control in [15] cannot ensure global stability and its closed-loop
performance is characterized by either uniform ultimate boundedness
or uniform boundedness.

Theorem 1: Consider system (1) satisfying Assumptions 1–3, 4A,
and 5A. If there exist constants c1 � 0 and c2 > 0 such that, for all
s > 0

�1(s)
3(s) �
9

4
c2�1�5cb(s)


� +�
3 (s) +

�3cg

c2



�
3 (s)



c
1 (s)

2

(9)

then global asymptotic stability of state x, global convergence of
estimating uncertainty (i.e., convergence of ~v = �� v̂), and bound-
edness of all variables are ensured under the observer-based robust
control

u = �w(x; v̂; t) (10)

where ẑ and v̂ are defined by

_̂z = k(x)(z � ẑ) + F2(x; t) (11)
_̂v = G(v̂; x; t) (12)

and

k(x) =
9�25


2�
3 (kxk)[c0b(kxk)]

2

4�1(kxk)
(13)

is a scalar gain function.
Proof: It follows from control (10) and from observer (11) and

(12) that dynamics of estimation error are

_~z = �k(x)~z +B2(x; t)[w(x; �; t)� w(x; v̂; t)] (14)
_~v = G(�; x; t)�G(v̂; x; t) + �G(�; x; t): (15)

Consider the Lyapunov function

L(x; ~z; ~v; t) =
�1

1 + �2
V
1+� (x; t) +

1

2
�3k~zk

2 +
1

2
�3~v

T
Pg~v

where �1; �3 > 0, and �2 � 0 are parameters used only in stability
analysis. It follows from (1), (3), (5)–(8), (14), and (15) that

_L � ��1V
� (x; t)
3(kxk) + �1V

� (x; t)rT
x V (x; t)B(x; t)

� [w(x; �; t)� w(x; v̂; t)]� �3k(x)k~zk
2

+ �3~z
T
B2(x; t)[w(x; �; t)� w(x; v̂; t)]

� �3�1(kxk)k~vk
2 + �3~v

T
Pg�G(�; x; t)

� ��1V
� (x; t)
3(kxk) + �1�5cb(kxk)V

� (x; t)

� 
4(kxk)

�
3 (kxk)k~vk � �3k(x)k~zk

2

+ �3�5

�
3 (kxk)c0

b(kxk)k~zkk~vk

� �3�1(kxk)k~vk
2 + �3�3cg


�
3 (kxk)k~vk: (16)

It follows from the Cauchy–Schwarz inequality that

�
1

3
�1V

�

3(kxk) + �1�5cb(kxk)V

�

4(kxk)


�
3 (kxk)k~vk

+�3�3cg

�
3 (kxk)k~vk �

1

3
�3�1(kxk)k~vk

2 � 0

and that

�
1

3
�3k(x)k~zk

2 + �3�5

�
3 (kxk)c0

b(kxk)k~zkk~vk

�
1

3
�3�1(kxk)k~vk

2 � 0

provided that

2

3
�1�3�1(kxk)V � 
3(kxk)

� �1�5cb(kxk)V
�

4(kxk)


�
3 (kxk)

+ �3�3cg

�
3 (kxk) (17)

and that

2

3
k(x)�1(kxk) � �5


�
3 (kxk)c0

b(kxk): (18)

It follows from the choice of k(x) and from (9) and (4) that inequalities
(17) and (18) hold for some �i. Therefore, we have

_L � �
2

3
�1


�
1 (kxk)
3(kxk)

�
2

3
�3k(x)k~zk

2 �
1

3
�3�1(kxk)k~vk

2
: (19)

Stability, convergence, and boundedness can be readily concluded from
(19) and from Assumption 3.

The following remarks provide further elaboration or relaxation on
stability analysis and conditions.
Remark 3.1: To ensure that gain k(x) in (13) is bounded at the

origin, function �1(kxk) must be infinitesimal of order equal to or
lower than that of 
2�3 (kxk)[c0

b(kxk)]
2. As a sufficient condition, one

could assume that �1(kxk) � �1 for some constant �1 > 0. }
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Remark 3.2: In the proof of Theorem 1, stability and convergence
is obtained for x; ~z and ~v. Thus, the requirement of � being uniformly
bounded, as stated in Assumption 3, is a sufficient condition for internal
stability and for boundedness of the control. On the other hand, it is
obvious from system dynamics that � being uniformly bounded is also
necessary for closed-loop stability of state x under a bounded control.}

Remark 3.3: Inequality (6) in Assumption 3 can be relaxed so that

k�G(�; x; t)k � ��Gk�k+ �3

�
3 (kxk)

where ��G > 0. In this case, the product

��Gcg�3k�kk~vk

will appear on the right-hand sides of (16) and (19) as an additional
term. Recalling from Assumption 3 that kvk can be bounded by a func-
tion of x, one can show (by using the same Lyapunov function and, if
necessary, by increasing �2) that the previous term can be dominated
(at least outside a neighborhood around the origin) by the negative def-
inite terms in (19). Therefore, in the presence of ��G > 0, global
stability of uniform and ultimate boundedness of all variables can be
maintained under same control. Unless � is known to converge to zero
once x is zero, an counterexample can be used to show that, in general,
global convergence of uncertain estimation cannot be achieved for the
case that ��G > 0. }

Remark 3.4: In (9), �3 and �4 represent the magnitude and the
type of nonlinearities in uncertainty �G( � ) as related to those of
the nominal system. The uncertainty specified by inequality (6) can
be compensated for without any degradation of performance because
the uncertainty is equivalently matched (as defined by [10]) and its
bounding function depends only on x. Along this line, Assumption
3 and condition (9) can also be relaxed further. For example, if
bounding function on uncertainty �G(�; x; t) could be decomposed
as, for some constants �0

3 > 0 and �0

4 > 1

k�G(�; x; t)k � �3

�
3 (kxk)

+�0

3
1 (kxk) rT
x V (x; t)B(x; t)

�

then the value of �4 would equivalently be reduced. Then, the second
term newly introduced previously into the bounding function on
�G( � ) can be compensated for by changing control (10) into

u = �w(x; v̂; t)�
4

c22

[�0

3]
2c2gkr

T
x V (x; t)B(x; t)k2(� �1)

�1(kxk)

�BT (x; t)rxV (x; t) (20)

while its associated observer remains to be (11) and (12). In this case,
�1(kxk) � �1 > 0 and �04 > 1 are usually required. }

Remark 3.5: Assumption 4A states that the nominal system of es-
timation error system (15) is asymptotically stable. For the nominal
exogenous system _� = G(�; x; t), the assumption means that the map-
ping from “input” x (if arbitrarily given) to “state” � is asymptotically
stable for all initial condition �(t0). Therefore, Assumption 4A can be
referred to as asymptotic stability of input-to-state mapping.

Extension of the assumption can be made so that Assumption 4A ad-
mits a nonquadratic Lyapunov function of argument (�1��2), and such
a Lyapunov function may also depend on x. In addition, if G(�; x; t)

has a matrix representation of the lower triangular structure [11], con-
dition (7) can be relaxed so that it needs to hold only for the diagonal

entries. However, such extensions require more detailed information
about the exogenous system. }

Remark 3.6: If (9) holds only for small kxk, then stability and con-
vergence become local. If (9) holds only for kxk over some threshold,
global stability of uniform and ultimate boundedness of all variables
can be ensured, but not convergence of uncertainty estimation.

It follows from (1) and (10) that

lim
s!+1

cb(s)
4(s)

�
3 (s)


3(s)
= 0

is needed for input-to-state stability [19] of xwith respect to ~v (in terms
of the Lyapunov function V (x; t)). Similarly, input-to-state stability of
(15) can be concluded for all x if

lim
s!+1



�
3 (s)

�1(s)
= 0:

Thus, the previous two conditions are combined and then balanced into
condition (9) for global convergence. }

Remark 3.7: If the uncertain system is of form

_x = F (x; t) +B(x; t)[�f(x; �; t) + u]

and if unstructured uncertainty �f(x; �; t) has a bounding function of
known functional expression as

k�f(x; �; t)k � w(x; �; t)

then the same stability results in Theorem 1 can be concluded provided
that control (10) and observer (11) and (12) are replaced by

u = �w(x; v̂; t)sign[BT (x; t)rxV (x; t)]

_̂z = k(x)(z � ẑ)

+ F2(x; t) +B2(x; t)w(x; v̂; t)
BT
2 (x; t)~z

kBT
2 (x; t)~zk

+B2(x; t)u

_̂v = G(v̂; x; t)

where gain k(x) remains to be the same. }

Remark 3.8: Note that control (10) and observer (12) do not depend
on ẑ from auxiliary observer (11). Therefore, observer (12) is open
loop, which is feasible due to Assumption 4A. Thus, except for the
case in Remark 3.7, one can remove the auxiliary observer by setting
p = 0. Besides the need for Remark 3.7, auxiliary observer (11) is kept
for the purpose of comparing the results in Theorems 1 and 2 (the latter
is presented in the subsequent section). }

IV. CONTROL DESIGN BASED ON PROPERTIES OF THE PLANT

Assumption 4A implies that, given any fixed trajectory of x(t),
various trajectories of �(t) of the nominal exogenous system will
be asymptotically convergent to the same trajectory for all initial
conditions. This convergence property does not very likely hold for
uncertainties based upon physical observations. More importantly,
modeling of an exogenous system is typically as difficult as (if not
more than) identifying a bounding function on the magnitude of un-
certainties. Without any prior knowledge of the exogenous system, we
have to set G(�; x; t) = 0 (in which case Assumption 4B is trivially
satisfied nonetheless), do not use Assumption 4A and its associated
control design, and find another way of estimating uncertainties and to
design robust control. In what follows, a different set of conditions are
obtained by exploring properties of the plant.
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Assumption 4B: Function G( � ) has the property that, for all
bounded x and for all (�1; �2; t)

kG(�1; x; t)�G(�2; x; t)k � �7

�
3 (kxk)k�1 � �2k (21)

where �7 � 0 and �8 � 0 are constants.
Assumption 5B: There exist a known constant rank-l matrix C 2

<l�p and a known positive–definite matrix Pw 2 <l�l such that, for
all bounded x and for all (�1; �2; t)

(�1 � �2)
T
PwCB2(x; t)[w(x; �1; t)� w(x; �2; t)]

� ��2(kxk)k�1 � �2k
2 (22)

where �2(kxk) > 0 is a known positively valued or positive definite
function (or a positive constant), cc = kCk, and cw = kPwk.

Assumption 5B says that, if used to construct a fictitious dynamic
system, a part of the input-channel dynamics of the plant has the same
property explained aforementioned (as that of functionG(�; �; t)). Ma-
trix C can be freely chosen to find positive–definite solutions Pw and
�2( � ). If the solutions exist, robust control and uncertainty estimator
are given by the following theorem.

Theorem 2: Consider system (1) satisfying Assumptions 1–3, 4B,
5A, and 5B and under the observer-based robust control

u = �w(x; v̂ � C~z; t) (23)

where ~z = z � ẑ; ẑ, and v̂ are defined by

_̂z = k(x)~z + F2(x; t) (24)
_̂v = G(v̂ � C~z; x; t)� k(x)C~z (25)

and

k(x) =
9c2c�

2
5


2�
3 (kxk)[c0b(kxk)]

2

4�2(kxk)
: (26)

Then, global asymptotic stability of the state and global convergence
of estimating uncertainty can be ensured as long as the following in-
equalities hold: For all s > 0

�2(s)
3(s) �
9

4
c2�1�5cb(s)


� +�
3 (s) +

�3cw

c2



�
3 (s)



c
1 (s)

2

(27)

and

�2(s) > 3�7cw

�
3 (s) (28)

where c1 � 0 and c2 > 0 are constants.
Proof: It follows from observer (24) and (25) that dynamics of

estimation error are

_~z = �k(x)~z +B2(x; t)[w(x; �; t)� w(x; v̂ � C~z; t)] (29)
_~v = G(�; x; t)�G(v̂ � C~z; x; t) + �G(�; x; t) + k(x)C~z: (30)

Now, choose the Lyapunov function to be

L
0(x; ~z; ~v; t)

=
�1

1 + �2
V
1+� (x; t) +

1

2
�3(C~z)TPzC~z

+
1

2
�3(C~z + ~v)TPw(C~z + ~v) (31)

where �1; �3 > 0 and �2 � 0 are constants to be determined, and so
is positive–definite matrix Pz . It follows from (1), (3), (29), and (30)
that

_L0 � ��1V
� (x; t)
3(kxk) + �1V

� (x; t)rT
x V (x; t)

�B(x; t)[w(x; �; t)� w(x; v̂ � C~z; t)]

� �3k(x)(C~z)TPzC~z + �3(C~z)TPzCB2(x; t)

� [w(x; �; t)� w(x; v̂ � C~z; t)] + �3(C~z + ~v)TPw

� fCB2(x; t)[w(x; �; t)� w(x; v̂ � C~z; t)] +G(�; x; t)

�G(v̂ � C~z; x; t) + �G(�; x; t)g: (32)

Setting Pz = I , using inequalities (3)–(6), (8), (21), and (22), and then
applying the Cauchy–Schwarz inequality and (27) yields

_L0 � ��1V
� (x; t)
3(kxk) + �1�5cb(kxk)V

� (x; t)

� 
4(kxk)

�
3 (kxk)kC~z + ~vk � �3k(x)kC~zk2

+ �3cc�5

�
3 (kxk)c0b(kxk)kC~zkkC~z + ~vk

� �3�2(kxk)kC~z + ~vk2 + �3cw �7

�
3 (kxk)kC~z + ~vk

+ �3

�
3 (kxk) kC~z + ~vk

� �
2

3
�1


�
1 (kxk)
3(kxk)�

2

3
�3k(x)kC~zk2

�
1

3
�3 �2(kxk)� 3�7cw


�
3 (s) kC~z + ~vk2

from which stability, convergence, and boundedness can be
concluded.

The following remarks explain several details of design choices and
stability conditions, and also expose possible extensions.
Remark 4.1: Counterparts of Remarks 3.1–3.5 hold here as well.}
Remark 4.2: Assumption 5B is mathematically parallel to As-

sumption 4A except for the presence of matrices C and B2(x; t).
If w(x; �; t) = �, choices of Pw and C should be made so that
PwCB2(x; t) be negative semi-definite or definite (with respect to x).
In general, the negative definite property in (22) implies that l � p.
Recalling p � n and m � n, we know that, while p = m is a typical
choice, setting p = n maximizes the chance of meeting Assumption
5B.

As a simple example, consider a mechanical system of form _x1 = x2
and _x2 = v+U , where x1; x2 2 <k are the position and velocity vec-
tors, v is the vector of lumped uncertainties that are smooth and uni-
formly bounded, and U is the total control (i.e., nominal plus robust).
It is obvious that Assumption 4B is satisfied with G = 0 and that As-
sumption 5B is met with Pw = I and C = �I , where I 2 <k�k is
the identity matrix. Hence, Theorem 2 can readily be applied.

An extension is possible to establish global stability when l > p

(but not global convergence of uncertainty estimation). For instance,
consider the case where

w(x; �; t) =

q

j=1

�(x; �j ; t)

where �j 2 <m, and q > 1 is an integer. Let �( � ) be a function
satisfying the property that aj�(aj) < 0, for j = 1; . . . ; q, imply

q

j=1

aj

q

j=1

�(aj) < 0
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which is negative definite (with respect to q

j=1
aj ). Examples of such

functions include �(s) = �s and �(s) = �s3. If function �( � ) has
the property that

q

i=1

(ai � bi)

q

i=1

[�(x; ai; t)� �(x; bi; t)]

�

q

i=1

(ai � bi)

q

i=1

�(ai � bi)

then global stability conditions [similar to (27) and (28)] can be estab-
lished by following the proof of Theorem 2 except for modifying robust
control and observer to be

u = �

q

j=1

� x; v̂j �
1

q
C~z; t

_̂z = k(x)~z + F2(x; t)

while (25) remains to be the same.
It is also worth noting that an extension of Assumption 5B can be

made to admit matrix C(x) [and consequently a stability condition
more complicated than (9) must be obtained] and that, if n > l, choices
of p and corresponding matrix B2(x; t) may not be unique (and, thus,
could be optimized). }

Remark 4.3: It follows from (32) that Assumptions 4B and 5B can
be combined into the condition that, for a known constant matrixC and
a known positive–definite matrix Pw , inequality

(�1 � �2)
T
PwfCB2(x; t)[w(x; �1; t)� w(x; �2; t)]

+ [G(�1; x; t)�G(�2; x; t)]g

� ��2(kxk)k�1 � �2k
2 (33)

holds for all bounded x and for all �1; �2, and t. In this case, Assump-
tion 4B is no longer required, and one can set �7 = 0 in (28).

Assumption 4B is no longer needed and �7 = 0 can again be set in
condition (28) if Assumption 5B holds and if

(�1 � �2)
T
Pw[G(�1; x; t)�G(�2; x; t)] � 0: (34)

Note that (34) holds automatically if all dynamics of the exogenous
system are uncertain. In this case, one can choose the same control but
modify the observer to be

_̂z = k(x)~z + F2(x; t) +B2(x; t)[w(x; v̂ � 2C~z; t) + u]

while (25) remains to be the same. Then, setting Pz = Pw in (31)
yields

_L0 � ��1V
� (x; t)
3(kxk) + �1�5cb(kxk)V

� (x; t)

� 
4(kxk)

�
3
(kxk)kC~z + ~vk � �3k(x)(C~z)TPwC~z

� �3�2(kxk)k2C~z + ~vk2 + �3cw�3

�
3
(kxk)kC~z + ~vk

= ��1V
� (x; t)
3(kxk) + �1�5cb(kxk)V

� (x; t)

� 
4(kxk)

�
3
(kxk)kC~z + ~vk � �3k(x)(C~z)TPwC~z

� �3�2(kxk)kC~z + ~vk2 � �3�2(kxk)kC~zk2

+ 2�3�2(kxk)kC~zkkC~z + ~vk

+ �3cw�3

�
3
(kxk)kC~z + ~vk

from which _L0 being negative definite can be concluded under (27),
and the choice of control gain in (26) can be relaxed (if smaller) to be

k(x) = c
0

w�2(kxk)

where c0

w = kP�1w k.
Relaxation of (27) can also be made along this line. For instance, if

Assumption 5B and (34) hold, if B1(x; t) = 0 and �G(�; x; t) = 0,
and if C is invertible, then (27) and Assumption 5A can be completely
removed by changing the control and observer to be

u = �w x; v̂ � C~z � P
�1

w C
�TrzV (x; t); t

_̂z = k(x)~z + F2(x; t) (35)

and (25), where k(x) > 0 can be chosen arbitrarily. }
Remark 4.4: It follows from (29) and (30) that

d(C~z + ~v)

dt
= CB2(x; t)[w(x; �; t)� w(x; v̂ � C~z; t)] +G(�; x; t)

�G(v̂ � C~z; x; t) + �G(�; x; t):

Therefore, (33) implies that the nominal dynamics of the afore-
mentioned system has an asymptotically stable input-to-state
mapping. Matrix C provide the means of possibly achieving this
stability property. For instance, consider a scalar system with
B(x; t) = 1 + x; w(x; �; t) = �, and G(�; x; t) = (x � x2)�. It
is easy to see that Assumptions 4A and 5B do not hold but condition
(33) holds for C = �1.

For multivariable systems, matrix C is an l � p matrix. The state-
ment in Assumption 5B that matrix C is of rank l implies p � l, this
assumption is needed to conclude global convergence of estimating un-
certainties from the exogenous system, but can be dropped for a partial
convergence. }
Remark 4.5: While control (10) remains to be one designed based

on the certainty-equivalence principle, all other proposed controls such
as (20), (23), and (35) are not of the same type, and they are synthesized
using a Lyapunov argument to achieve stability under Assumption 5B
or (34). }

V. CONCLUSION

In this note, the problem of estimating uncertainties and designing
observer-based robust control is studied for a class of nonlinear un-
certain systems whose uncertainties are generated by some exogenous
system. It is shown that, if the exogenous system is partially known
and if the input-to-state mapping of its nominal system is asymptoti-
cally stable, the uncertainties can be observed asymptotically and com-
pensated for. Otherwise, observer and robust control designs can still
be proceeded with by exploring properties of the physical plant, and a
set of conditions are found to yield a pair of globally stabilizing robust
control and globally convergent observer.
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Achieving Proportional Fairness Using Local Information
in Aloha Networks

Koushik Kar, Saswati Sarkar, and Leandros Tassiulas

Abstract—We address the problem of attaining proportionally fair rates
using Aloha protocols at the medium access layer. We consider a wireless
network where all nodes need not be in transmission ranges of each other.
We show how the attempt probabilities in Aloha protocols should be set so
that the achieved rates are globally proportionally fair. For both slotted and
unslotted Aloha, we argue that each node can compute its optimal attempt
probability just by knowing some minimal information about the network
topology in its two-hop radius.

Index Terms—Aloha networks, fairness, local information.

I. INTRODUCTION

Medium access control (MAC) algorithms are used in wireless
networks to control access to a shared wireless medium, and thereby
reduce collisions, ensure high system throughput, and distribute the
available bandwidth fairly among the competing streams of traffic. We
address the issue of designing medium access protocols for attaining
proportionally fair rates [2] in wireless networks. The problem of
designing distributed access control for attaining fair rates in wireless
networks has not been adequately addressed. Tassiulas et al. [7] have
proposed a centralized algorithm for attaining max–min fairness
in certain classes of networks. However, centralized strategies can
not be used in large, dynamic ad-hoc networks. In another line of
work, Nandagopal et al. [5] and Ozugur et al. [6] have proposed
decentralized heuristic medium access strategies that try to achieve
some fairness objectives, but the authors did not prove the fairness
properties of these approaches.

The problem of fair rate control at the transport layer of wired
networks has however been extensively researched, e.g., [3] and
[4]. In this context, researchers have shown that globally fair rates
can be attained via distributed approaches based on convex pro-
gramming. However, these techniques can not be directly applied
to wireless networks. This is because the rates attained by most
wireless MAC protocols can only be indirectly controlled by regu-
lating the transmission probabilities or back-off window sizes. It is
difficult to attain the globally fair rates in wireless networks through
a distributed approach as the feasible rate region is a complex,
nonconvex, and nonseparable function of the attempt probabilities
or back-off window sizes. In contrast, distributed rate control algo-
rithms have been developed for wired networks, using the feature
that the feasible rate region can be represented by a set of simple,
separable, convex constraints.
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