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Abstract

This paper studies the application of nonlinear cooperative control

theory to the attitude synchronization problem. To this end, explicit

conditions, in terms of vector nonlinear differential inequalities, is

presented firstly to ensure both the Lyapunov stability and asymp-

totically cooperative stability for a certain class of heterogeneous

nonlinear system. Then, decentralized control algorithm incorpo-

rated with standard backstepping scheme is developed to accomplish

attitude synchronization for a group of spacecraft with rigid body

dynamics described by unit quaternion. In particular, the proposed

control system imposes the least restrictive requirement on the

communication, a piecewise constant, intermittently available, and

sequentially complete topology is theoretically enough to ensure the

asymptotically cooperative stability. Simulation results demonstrate

the effectiveness of the proposed control algorithms.

1. Introduction

Attitude control of rigid bodies has been studied exten-
sively in the literature ([1] and references therein) with
various attitude representations [2], among which the unit
quaternion-based approaches have received significant at-
tention because of its inherent immunity to the singular-
ity, making it more appealling in large-angle manoeuver
scenarios than classical Euler angle representations [3, 4].
However, either the quaternion or Euler angle based meth-
ods covers the special orthogonal group (3) multiple
times, introducing ambiguities, this will lead to unwinding
behaviours as noted in [5, 6], which preclude the existence
of the globally asymptotically stable equilibrium point with
continuous feedback controller. In this paper, we will take
advantage of the distinguishable global non-singularity of
the quaternion-based control system while trying to elimi-
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nate its ambiguities so as to ensure almost global stability
under the requirement of large-angle attitude manoeuvers.

Attitude synchronization/coordination is defined as
controlling a group of rigid bodies such that their orienta-
tions are synchronized in a particular manner [7]. Inspired
by the recent advances in the cooperative control theory
[8, 9], cooperative attitude synchronization of multiple
rigid bodies attracts more and more attentions. In [9],
a quaternion-based attitude consensus algorithm has been
thoroughly discussed under an undirected graph. Kang
and Sparks [10] discussed several attitude coordination
strategies (i.e., leader–follower and a virtual desired atti-
tude strategy). VanDyke and Hall [11] developed a decen-
tralized control scheme to ensure all the agents converge
to the same orientation. In [12], an attitude synchroniza-
tion algorithm is introduced under a ring communication
topology assumption, its results were extended to the more
general topology case in [9, 13]. In addition, attitude
coordination of multiple underwater vehicles is studied in
[7, 14] using the energy shaping strategy, which shapes
the potential and kinetic energy of a system to make the
desired state a stable equilibrium.

However, in many of the existing results, the topology
is either assumed to be continuous, or is treated as of
certain patterns (strongly connected, balanced, or having
a spinning tree). In the venue of time-varying or switching
topologies, Moreau [15] stated that consensus could always
be reached for single-integrator systems if the topology or
the union of graphs within a finite time has a globally
reachable node. For double integrator system, the sufficient
conditions is that the topology has a directed spanning
tree or is connected [16] at every time interval; a similar
conclusion can also be found in [9]. In addition, Zhang
and Tian [17] proved that in Markov-switching topologies,
the network is mean square consentable under linear con-
sensus protocol if and only if the union of graphs has a
globally reachable node. Also, for both single and double
integrator systems, it is proved that the asymptotically co-
operative stability can be ensured if the system is feedback
linearizable [18, 19] and the communication topologies is
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sequentially complete over time, which is consistent to the
results in [8, 15]. Counterpart study on a certain class of
nonlinear system could be found in [8].

This paper studies the application of nonlinear coop-
erative control theory [8] to attitude synchronization prob-
lem for a group of spacecraft with rigid body dynamics
described by the unit quaternion. Note that such appli-
cation is nontrivial because of the inherent nonlinearity
associated with the attitude dynamics. More specifically,
decentralize control scheme incorporated with standard
backstepping procedure is introduced to accomplish atti-
tude consensus and tracking. Compared to prior work in
this venue, the proposed scheme does not need feedback
linearization and requires less restrictive communication
as well, a piecewise constant, intermittently available and
sequentially complete network is theoretically enough to
guarantee the cooperative and Lyapunov stability.

2. Spacecraft Attitude Dynamics and Control

In this paper, we consider the attitude synchronization
problem of a group of n spacecraft modelled as rigid bodies;
we assume the attitudes and angular velocities of all the
spacecraft used hereafter have been transferred to the
appropriate frames using proper transformation matrices,
and the orientation of the ith spacecraft, with respect to
the inertia frame , is described by the unit quaternion
qi = [qTi , ηi]∈�3 ×�, satisfying [2]

qTi qi + η2i = 1 (1)

where ηi and qi are the scalar and vector parts of quater-
nion, respectively.

The motion of the ith spacecraft can be expressed as
follows [1, 20]

Jiω̇i = −ω×
i Jiωi + τi (2)

q̇i =
1

2
(q×i + ηiI3)ωi η̇i = −1

2
qTi ωi (3)

where ωi ∈ �3 denotes angular velocity of the ith space-
craft, Im is the m-dimensional identity matrix, Ji ∈�3×3

+

is the constant diagonal inertial matrix of the ith space-
craft with respect to the body frame i, τi ∈�3 is the
control torque applied to the ith spacecraft expressed in

i. The subscript × of any vector ζ ∈�3 denotes the
skew-symmetric matrix formed by ζ, and is given by

ζ× =




0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0




Consequently,

q̈i = −1

4
ωT
i qiωi +

1

2
(ηiI3 + q×i )ω̇i +

1

2
q̇i × ωi

After some algebraic manipulations, and using the fact
qi ×ωi ×ωi −ωT

i qiωi =−ωT
i ωiqi, results

q̈i = −1

4
ωT
i ωiqi +

1

2
(ηiI3 + q×i )ω̇i (4)

In addition, the angular velocity of the ith spacecraft
could be described by its quaternion [2]

ωi = 2(ηiq̇i − qiη̇i)− 2q×i q̇i (5)

The discrepancy between the current the desired attitude
of the ith spacecraft defines the attitude tracking error.
That is

ei = ηdqi − ηdqd + q×i qd ω̃i = ωi − ωd (6)

Also, ei and ω̃i are error quaternions and angular velocities,
satisfying the attitude dynamics relations as in (2) and (3),
and the subscript d represents the desired value.

As is well known, the unit quaternion, although glob-
ally nonsingular, contains a sign ambiguity in that (qi, ηi)
and (−qi,−ηi) represent the same attitude. In many
quaternion extraction algorithms, however, the uniqueness
can be achieved by restricting the Euler angle to [0, π],
such that ηi ≥ 0 [1], [9].

Because of the inherent passivity between the control
torque τi and ωi (due to the fact ωT

i Jiω̇i = τTi ωi) as well as
qi and ωi [21, 23], it is thus straightforward to use angular
velocity and quaternion as feedback state in attitude con-
trol problems, to ensure the resulted closed-loop system is
dissipative in a way that rendering ωi → 0 as t→∞. In
particular, the error quaternion and error angular velocity
are often used in attitude tracking control problem, pro-
vided that the reference attitude is available to the group in
a continuous manner. In this case, the tracking controller
is [20]

τi = −κeiei − κωi ω̃i + Jiω̇d + ωd × Jiωd (7)

where κei ∈�3×3 and κωi ∈�3×3 are positive control gain
matrices, and they could be simply selected as κei = kJi
and κωi = cJi with k, c> 0. Alternatively, if the reference
attitude is defined as qd = [0 0 0]T , ηd =1, (7) becomes [9]

τi = ωi × Jiωi − κqiqi − κωiωi (8)

In essence, (8) could provide a rest-to-rest reorientation
manoeuver (i.e., ωi(tf )= 0) about an eigenaxis along the
initial quaternion vector, this property can be proved using
the following candidate Lyapunov function [1, 22]

V =
1

2κqi

ωT
i Jiωi + 2(1− ηi) (9)

Note that the attitude control objective limt→∞[qi ωi] =0
can only be achieved almost globally, since V̇ =−κωiω

T
i ωi

is negative semidefinite due to the well-known fact that
(3) is not a contractible space, and hence quaternion-

based control scheme does not offer globally continuous
stabilizing results [5, 6, 23]. Or in other words, the
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unwinding problem is unavoidable in continuous, feedback-
based attitude control problems, even of the controller is
well-defined. Thus, the objective of global stability should
be relaxed to almost global stability in this regard.

Remark 1 The gyroscopic term in (8) can be fur-
ther ignored without compromising the stability of the
equilibrium (because of ωT

i ω
×
i Jiωi =0) [1]. As such, (8)

becomes

τi = −κqiqi − κωiωi (10)

Clearly that (10) is a model-independent control law, but
its achievable performance (measured by the maximum
tracking error), under (10), for a given set of gains depends
on the body inertia [24]. In addition, the first term on the
right-hand side of (4) has an opposite sign with the control
torque τi, and it is commonly recognized as a damping term
to q̈i and does not need to be compensated in quaternion
based control design [19].

3. Preliminary Results on Cooperative Control

Without loss of generality, considering a group of agents
with linear dynamics

ẋi = ui (11)

where xi is the state of the ith agent, ui is the input to the
ith subsystem.

In what follows, all the agents/spacecraft are assumed
to be operated by themselves most of the time and the
exchange of output information occurs only intermittently
and locally. To capture the nature of information flow,
we define the following binary sensing/communication ma-
trix and its corresponding time sequence {tk : k∈ }
as S(t)∈{0, 1}n×n =S(k)=S(tk),∀ t∈ [tk, tk+1), where
= {0, 1, . . . ,∞}

S(t) =




1 s12(t) . . . s1n(t)

s21(t) 1 . . . s2n(t)
...

...
. . .

...

sn1(t) sn2(t) . . . 1




(12)

where sij(t)= 1 if information of the jth spacecraft is
available to the ith spacecraft, and sij(t)= 0 if otherwise.
Time sequence {tk : k∈ } and the corresponding changes
in the row Si(t) of S(t) are detectable instantaneously
by and locally at the ith subsystem, but they are not
predictable or prescribed or known a priori or modelled in
any way [8].

The standard cooperative control input for system (11)
is [8]

ui =
n∑

j=1

sij(t)lij∑n
l=1 sil(t)lil

(xj −xi) �
n∑

j=1

dij(t)(xj −xi) (13)

where l= [lij ]∈�n×n
+ is a row-stochastic gain matrix.

If the state xi is scalar, substituting (13) into (11), we
have close-loop dynamics as

ẋ = [−In +D(t)]x = −L(t)x (14)

where L(t) is essential equivalent to graph Laplacian, and
D(t)= [dij(t)].

It is known that system (14) is both Laypunov stable
and asymptotically cooperative stable if and only if (12)
is sequentially complete over time, or from graph point of
view, from any tk on, the union of all the future graphs has
at least one globally reachable node [8]. This conclusion
can be extended to the high-order, heterogeneous linear
systems, whose dynamics can be mapped into the canonical
form. Moreover, the resulted D(t) is non-negative, piece-
wise constant, row-stochastic, and has the same sequential
completeness property as S(t).

However, the results of the linear system cannot be
applied directly to the nonlinear system, simply because
most nonlinear systems are too sophiscated to be feedback
linearized, or the resulted cooperative input fails in prac-
tical implementation because of its complicated feedback
terms. Taking attitude control problem for instance, it is
nonlinear in a sense that the higher order derivatives of
quaternion are cross-coupled with the angular velocity and
the control torque as indicated in (4), any attempt to lin-
earize the system will lead to complicated control structure
[19].

Given a nonlinear system

ẋi = fi(xi) + gi(xi)ui yi = hi(xi) (15)

where yi ∈�l is the output, fi(xi), gi(xi), and hi(xi) are
the system matrices with proper dimensions.

Note that the input ui to system (15) often consists of
self feedback terms and cooperative control terms, that is

ui(t) = g−1(xi)


−αi(xi) +

[
∂βi(xi)

∂xi

]−1 n∑
j=1

dijβj(xj)



(16)

where αi(xi) denotes the self-feedback term, βi(·) is scalar
function, D(t)= [dij ] is the resulted network matrix deter-
mined by S(t) and the physical property of heterogeneous
nonlinear systems (i.e., relative degree), it is nonnegative,
piecewise constant as D(t) except D(t) is not necessarily
to be row-stochastic.

Therefore, under input (16), the closed-loop system
becomes

ẋi = f c
i (x, Di(t)) = f c

i (di1x1, di2x2, . . . , dinxn) (17)

where f c
i (.) is the closed-loop dynamics of the ith subsys-

tem, Di(t) are the ith row entries of D(t).
Before proceeding further, the following two condi-

tions are introduced to address the stability properties of
system (17). In what follows, Vi(·) with i∈ [1, . . . , n] and

3



Lµ,κ(.) with µ, κ∈ [1, . . . , n] are positive definite, radially
unbounded and differentiable functions.

Condition 1 [8]. System (17) is said to be amplitude
dominant on the diagonal if, for all i, the differential
inequality

d

dt
Vi(xi) ≤ −ξi(|xi|) + γi(xi)

n∑
l=1

dil(t)βi,l(xl − xi) (18)

holds for nonnegative function ξi(·), and strictly monoton-
ically increasing function γi(·) and βi,l(·) with γi(0)=βi,l

(0)=0.
Condition 2 [8]. System (17) is said to be relative

amplitude dominant on the diagonal if, for any index pair
{µ, κ}, the following differential inequality holds:

d

dt
Lµ,κ(xµ − xκ) ≤ γ′

µ,κ(xµ − xκ)
n∑

l=1

[dµl(t)β
′
µ,κ,l(xl − xµ)

−dκl(t)β
′′
µ,κ,l(xl−xµ)]−ξ′µ,κ(|xµ−xκ|)

(19)

where scalar function ξ′µ,κ(·) is non-negative, and γ′
µ,κ, β

′
µ,κ,

and β′′
µ,κ are strictly monotonically increasing functions

with γ′
µ,κ(0)=β

′
µ,κ(0)=β′′

µ,κ(0)=0.
In addition, Condition 2 can be verified if the following

relation is satisfied [8]

[βµ(xµ)− βk(xk)]
T

{
∂βµ(xµ)

∂xµ
[fµ(xµ)− αµ(xµ)]

−∂βk(xk)

∂xk
[fk(xk)− αk(xk)] +

∂βµ(xµ)

∂t
− ∂βk(xk)

∂t

}

≤ −‖βµ(xµ)− βk(xk)‖2
(20)

where functions βi(·), αi(·), and fi(·) are the same functions
as in (15) and (16).

In essence, Condition 1 renders the Lyapunov stability
of any nonlinear system by ensuring the closed-loop system
is dominant in diagonal, under the sequentially complete
communication matrix S(t). Condition 2 guarantees the
cooperative stability of the overall closed-loop system. The
following lemma addresses the relation between these two
conditions and the cooperative stability of the nonlinear
system:

Lemma 1 [8]. System (17) is both Lyapunov sta-
ble and asymptotically cooperative stable, if it satisfies
both the Condition 1 and Condition 2, and the com-
munication matrix S(t) is sequentially complete over
time. Furthermore, whenever the element dij(t) 	=0 of
the matrix D(t), it is uniformly bounded from below by
a positive constant.

Using Lemma 1, systematic development can be done
for several classes of nonlinear systems. In addition, it
should be noted that, while Lyapunov function compo-
nents Vi(·) and Lµ,k(·) can always be chosen, it is often
too difficult to find or assume a differentiable Lyapunov

function because of the nonlinear dynamics and the time-
varying topologies, whose changes are sequentially com-
plete but otherwise unknown a priori. However, despite
of the unpredictable changes in S(t) and hence in D(t),
the two conditions in Lemma 2 can always be checked,
thus they can be used to guide the cooperative control de-
sign. The details of its application to cooperative attitude
synchronization problem is provided in the Section 4.

4. Output-Feedback Cooperative Attitude
Synchronization

Cooperative attitude control in general requires both feed-
back and cooperative control terms to achieve the desired
group behaviour, while, in the existing results [9, 12], the
cooperative control term is determined by the topology
and often consists of both attitude and angular velocity
tracking error, imposing serious challenge in practical im-
plementation since the rate information is always hard to
be estimated online due to the physical limitations, and
the discrepancy caused by the exchange of the angular
velocities will accumulate with evolution and eventually
jeopardize the whole mission. In this section, a simple
and effective cooperative control algorithm is proposed
to accomplish the attitude synchronization requiring only
the exchange of quanternion/attitude information among
neighbours. In addition, a virtual leader will be introduced
such that the attitude consensus can be controlled to any
particular value.

According to (6), the attitude tracking or reorientation
for the ith spacecraft is accomplished when qi converges to
qd and ωi synchronizes ωd. That is, if qi → qd, then ei → 0
and ω̃i → 0. In addition, since the attitude discrepancy
between the ith and jth spacecraft [20] is

qij = ηjqi − ηjqj + q×i qj ω̃ij = ωi − ωj (21)

Clearly that the attitude coordination will be achieved if,
∀i, j and i 	= j, the attitude discrepancy qij vanishes as well
as ω̃ij →03×1 under continuously or intermittently avail-
able communication between the ith and jth spacecraft.

As such, the attitude synchronization is accomplished
if and only if qi → qj , which yields ω̃ij =03×1 according to
(5).

Furthermore, since

ei − ej = ηd(qi − qj) + (q×i − q×j )qd (22)

Hence, for any desired attitude qd, if qi → qj , then ei → ej .
Therefore, the control objective for attitude synchro-

nization is reduced to find a decentralized control scheme,
utilizing local measurements only, such that

lim
t→∞(qi − qj) = 03×1

Inspired by the above analysis and the attitude dynam-
ics indicated in (2) and (3), we choose quaternion and the
angular velocity as the state of the nonlinear control system
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for the ith spacecraft. Also, it is a common experience us-
ing quaternion as output in attitude control problem since
it can be measured/estimated online using onboard sensor
(i.e., IMU). In addition, the scalar part of the quaternion
(i.e., ηi) could be disregarded since it is bounded and given

by
√

1− qTi qi, and to avoid the underactuated property
inherent with quaternion as well.

As such, the nonlinear attitude dynamics is derived
via the following transformations:

xi = [qTi ωT
i ]

T , yi = qi, ui = τi (23)

Consequently, the system matrices related to the form
(15) are

f(xi) =


 1

2 (q
×
i + ηiI3)ωi

−J−1
i ω×

i Jiωi



6×3

g(xi) =


 03×3

J−1
i



6×3

h(xi) =
[
I3 03×3

]
xi (24)

Obviously, the proposed nonlinear system has an open-
loop equilibrium at xi =06×1, and from (4) it has a relative
degree of two. Moreover, since the attitude dynamics (3)
is highly nonlinear and cannot be expressed explicitly as
linear combination of monotone increased/decreased func-
tions [8], the standard backstepping procedure is intro-
duced to simplify the design procedure without linearizing
the system and sacrificing the overall performance [3]. In
particular, this recurring scheme is used to stabilize both
the attitude and angular velocity so as to ensure the almost
global stability of the closed-loop system.

Because of its inherent passivity between qi and ωi, it
is thus beneficial choosing ωi as the virtual input to system
(3) and selecting [qTi zTi ]

T and [ωT
i τTi ]T as the new state

and input of the resulted system, where zi =ωi −ω∗
i , ω

∗
i is

the desired ωi. As such, the new system matrices are

f ′(xi) =


 03

−J−1
i ω×

i Jiωi



6×3

h′(xi) =
[
I3 03×3

]
xi

g′(xi) =


 1

2 (q
×
i + ηiI3) 03×3

03×3 J−1
i



6×6

(25)

Hence, the virtual input to (3) can be designed as

ω∗
i = −κqiqi (26)

As such, we have q̇i =− κqi
ηi

2 qi. Since ηi ≥ 0, system
(3) will be stabilized almost globally and exponentially
under (26). As such,

żi = ω̇i − ω̇i
∗ = −J−1

i ω×
i Jiωi + J−1τi − ω̇i

∗ (27)

Hence, zi will also be stabilized exponentially with the
following feedback controller

τi = ω×
i Jiωi + Jω̇∗

i − κzizi (28)

where κzi is positive definite gain matrix.
In what follows, cooperative attitude synchronization

as well as its stability analysis will be conducted based
on (28). As mentioned earlier, since global stability is
impossible to be attained in quaternion-based attitude
control problems, all the results in this section under alias
of (28) are relaxed to almost global stability.

4.1 Cooperative Attitude Consensus

In essence, the attitude consensus is achieved among n
networked rigid bodies, if for all qi(0), ωi(0) with ∀i, j,
‖qi − qj‖ → 0 and ‖ωi −ωj‖→0, as t→∞ [9]. In this
section, the attitude consensus problem is treated as an
output cooperation problem, in which the main objective is
finding an implementable algorithm to ensure yi(t) → c1,
c∈�, ∀i.

With the nonlinear system defined in (25) and (27),
we propose the following input for the ith spacecraft

τi = ω×
i Jiωi + Jω̇∗

i − κzizi +
n∑

j=1

sij(t)(qj − qi) (29)

where sij(t) are the entries of communication matrix (12).
It is clear that the first three terms in (29) are feedback

terms, with which the dynamics equation for zi becomes
żi =−κzizi, indicating ωi approaches to ω∗

i in an exponen-
tial manner, which in turn means the attitude of the ith
spacecraft is also stabilized exponentially.

Furthermore, from (3) and (26), we have

ω̇∗
i = −κqi

2
(q×i + ηiI3)ωi (30)

Therefore, substituting (27) and (30) into (29), yields

τi = ω×
i Jiωi −

[
Jκqi

2
(q×i + ηiI3) + κziI3

]
ωi − κziκqiqi

+
n∑

j=1

sij(t)(qj − qi) (31)

With proper selection of the control gains, (31) be-
comes

τi = ω×
i Jiωi −

[
Jκqi

2
(q×i + ηiI3) + κωiI3

]
ωi − κqiqi

+
n∑

j=1

sij(t)(qj − qi) (32)

where κωi ≥ 0 and κqi ≥ 0 are control gains.
Clearly (32) includes PD control action of qi, which will

effectively stabilize the attitude, and if κqi is sufficiently
small or the attitude is slow-varying, (32) is rendered to

τi = ω×
i Jiωi − κωiωi − κqiqi +

n∑
j=1

sij(t)(qj − qi) (33)

It is apparent the first term on the right-hand side
of (33) is used to cancel the nonlinear effect of the local
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angular velocity, the second two terms are used to stabilize
the attitude so as to ensure a rest-to-rest manoeuver during
the transition, and the last term is the cooperative control
term using the intermittently available output information
from its neighbours, to ensure the cooperative behaviour
of the group.

In addition, the consensus value is determined by the
topology and the initial state, as is well known [8, 25].
Suppose the communication matrix D(t) is row-stochastic,
and γ= [γ1, . . . , γn]

T is the unity left eigenvector associated
with eigenvalue λ(D)= 1, then the consensus value is

lim
t→∞ qi(t) = qf = γ1q1(0) + · · ·+ γnqn(0) (34)

In particular, if the topology is at its lower-triangularly
form at every tk, the first spacecraft will act as the
leader (i.e., γ1 =1) while all other spacecraft converge
to its attitude asymptotically within finite time and the
convergence rate is in general justified by the Fiedler
value. Furthermore, if the topology is balanced or∑n

j=1 dij =
∑n

k=1 dik,∀j 	= k, the average consensus will
be ensured since in this case γi = γj ,∀i 	= j [25].

Consequently, substituting (32) into the system yields
an overall networked system as of (17), in which the
combined system structure and network matrix is

D(t) = [dij ] =




Λ1 0 0 ... 0 0

s12 0 ... s1n 0

0 0 Λ2 ... 0 0

s21 0 ... s2n 0

...
...

...
...
. . .

...
...

0 0 0 0 ...

sn1 0 sn2 0 ... Λn




(35)

where Λi is the binary matrix representing the internal
dynamical interconnections of the ith subsystem, of the
form:

Λi =


 0 1

1 0


 (36)

Apparently, Λi are nonnegative and irreducible
matrices. Therefore, D(t) has the same irreducibil-
ity/reducibility as S(t). As such, D(t) is uniformly sequen-
tially complete if and only if S(t) is uniformly sequentially
complete over time [8].

Theorem 1. Consider the spacecraft dynamics given
in (23) under the control (32), with restriction that S(t) is
uniformly sequentially complete. Then, all the spacecraft
in the group reach their attitude consensus asymptotically.

Proof: The proof of Theorem 1 can be found in
Appendix.

Remark 2. In case of linearized design, the state
for the ith subsystem is often chosen as xi = [qTi q̇Ti ]

T .
Using (4), the system is rendered to Jordan canonical

form and thereby input-state feedback linearizable [18]
[19].

Consequently, applying the linear cooperative control
approach [8], we have

τ li = ω×
i Jiωi + 2Ji(q

×
i + ηiI3)

−1

×

 n∑
j=1

dij(t)(qj − qi)− κωiωi


 (37)

Compared with (32), the main difference between the
linear and nonlinear design schemes is that, except using
inverse of internal quaternion dynamics to counteract the
nonlinear term, which may cause singularity problem, the
resulted interconnection matrix D(t) needs to be row-
stochastic in the linear case, while in the nonlinear case, the
resulted D(t) is of the form (35); this distinction provides
extra freedom in control design.

4.2 Cooperative Attitude Tracking

To simplify the cooperative attitude tracking problem, a
virtual leader is introduced to the group and labelled as
node 0 in the network; it will act as the leader to the group
and perform accordingly with respect to the topology,
in which the communication of all n + 1 nodes are also
intermittent and local; the overall communication matrix
has the same properties as (12) with the extra row and
column capturing the information exchange between the
virtual leader and the other nodes. That is, s0i(t)= 1 if
the information of the ith rigid body is observed by the
virtual leader and s0i(t)= 0 if otherwise, si0(t)= 1 if the
information of the virtual leader is known to the ith rigid
body and si0(t)= 0 if otherwise.

Moreover, the attitude dynamics of the virtual leader
is also represented by the unit quaternion, q0 = {η0, q0}
and

q̇0 =
1

2
(q×0 + η0I3)ω0 η̇0 = −1

2
qT0 ω0 (38)

where ω0 ∈�3 is the angular velocity, η0 and q0 are, re-
spectively, the scalar and vector part of the quaternion.

As such, the cooperative attitude tracking problem
is rendered to attitude consensus problem as discussed
previously. Therefore, (32) also applies in this case except
one minor revision to the cooperative term to account for
the inclusion of the virtual leader. That is

τi = ω×
i Jiωi −

[
Jκqi

2
(q×i + ηiI3) + κωiI3

]
ωi − κqiqi

+
n∑

j=0

sij(t)(qj − qi) (39)

where sij(t) are the entries to the augmented sen-
sor/communication matrix S(t).

Compared with (32), with the inclusion of the virtual
leader, the resulted input has an additional term for every
rigid body, si0(q0 − qi), which, based on the communica-
tion matrix, is used to eliminate the attitude discrepancy
between the ith spacecraft and the virtual leader.
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In addition, with (39) yields

ω̇0 =


 n∑
j=0

s0j(qj − q0)


− ω0 (40)

As such, if virtual leader has no feedback from the
group (i.e., s0i =0,∀i), ω0 will converge to zero in an
exponential manner, and then maintain unchanged at the
rest of the engagement, which indicates q0 will also remain
constant according to (38). Likewise, in the case s0i =1, as
shown in (40), q0 will change accordingly so as to achieve
consensus within the group, the attitude tracking problem
eventually becomes consensus seeking problem.

Substituting (39) into (15), the resulted network ma-
trixD(t) takes a similar form as (35), except with two extra
columns and rows characterizing the interaction with vir-
tual leader. Moreover, since the virtual leader is assumed
to have the same dynamics as the rigid bodies, adding a
node to the topology does not change its sequentially com-
plete property as well as the irreducibily/reducibility prop-
erty of the network matrix D(t). Then, applying Theorem
1 to the resulting closed-loop system renders the following
corollary:

Corollary 1. Under input (39), system (15) is
both almost global Lyapunov stable and asymptotically
cooperative stable, if the augmented communication
matrix sequence S(tk) is sequentially complete over
time.

Proof: The proof of theCorollary 1 is straightforward
from the proof of Theorem 1.

5. Numerical Simulations

In this section, the performance of the proposed coopera-
tive attitude control schemes are examined in a group of
three spacecraft. Moreover, cooperative attitude tracking
is essentially the same as consensus seeking with the inclu-
sion of the virtual leader. Thus, we will take cooperative
attitude tracking case for instance, examining application
of (39) to a group of three rigid bodies interacting with a
virtual leader.

The inertial matrix for all the rigid bodies in the group
is selected as

J =



1.2 0 0.2

0 1 0

0.2 0 1


 kgm2

The initial conditions for all the rigid bodies used in the
simulation is specified in Table 1, where the first column
stands for the index for the spacecraft (i.e., 0 for virtual
leader).

Without loss of generality, we take the case where the
virtual leader takes feedback from its neighbours for in-
stance, In particular, the topology is chosen to be randomly
switched between the following communication matrices

Table 1
Initial conditions

q1 q2 q2 ωx ωy ωz

1 0.5 0.1 0.2 0 0 0

2 0.2 0.3 0.2 0 0 0

3 0.3 0.1 0.6 0 0 0

0 0.5 0.5 0.5 0.1 0.2 0

S1 =




1 0 0 0

0 1 0 0

1 0 1 0

0 0 1 1



S2 =




1 0 0 0

0 1 1 0

1 0 1 0

0 1 0 1




S3 =




1 0 0 0

1 1 0 0

0 0 1 0

1 0 0 1




(41)

Their time sequence binary product is

S∗(t) = S3

∧
S2

∧
S1 =




1 0 0 0

1 1 1 0

1 1 1 0

1 1 1 1




(42)

Obviously, S∗(t) is reducible and sequentially lower-
triangularly complete; it is clear that virtual leader has no
feedback from its neighbours.

Figures 1 and 2 show, respectively, the attitude and
angular velocities of the spacecraft with input (39) and
topology (42). Note that all spacecraft converge to the
reference trajectory (labeled as i = 0 in the figures), and
since the virtual leader does not take feedback from the
its neighbours, so the reference attitude stays constant
throughout the engagement. Figure 3 provides the time
history of quaternion in the attitude consensus case under
topology (42) with eliminating the first row and column;
obviously all the spacecraft achieve attitude consensus in
less than 25 s.

6. Conclusion

This paper presents the cooperative attitude synchroniza-
tion algorithms for a group of rigid body spacecraft whose
kinematics are described by unit quaternion. In view
of the inherent nonlinearity related to attitude dynam-
ics/kinematics, the nonlinear cooperative control theory
is applied to develop decentralized control algorithm for
both cooperative attitude consensus and tracking prob-
lems. Simulation results indicate clearly that the proposed
schemes can achieve attitude consensus and ensure a fast
and stable tracking of the reference attitude.
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Figure 1. Time history of quaternion with virtual leader.

Figure 2. Time history of angular velocity with virtual leader.

While the proposed algorithm is effective in achieving
attitude synchronization, however, the uncertainties often
associated with spacecraft is not taken into account in the
control development, and the attitude dynamics does not
include the flexible part of the spacecraft, which should
be considered in the future version. Also, control algo-

rithm to improve the convergence rate of the network is
also expected. Moreover, the resulted cooperative control
algorithm (32) or (39) includes the terms of angular ve-
locity. In most practical cases, certain filters or observers
have to be designed to estimate the local angular veloc-
ity in a real-time manner. Therefore, how to compensate

8



Figure 3. Time history of quaternion without virtual leader.

for angular velocity without compromising the cooperative
stability should be of future interest.

Appendix

Proof of Theorem 1

To prove the amplitude dominant of the resulted closed-
loop system with input (32), designing the following
Lyapunov-like function Vi(zi) as in

Vi =
1

2κqi

zTJizi (A.43)

Obviously, Vi is a positive definite and radially unbounded
function.

Therefore, invoking the assumption Ji = JT
i , taking

the time derivative of Vi along the attitude dynamics, after
some algebraic manipulations, we have

d

dt
Vi = −κωi

κqi

zTi zi +
1

κqi

zTi

n∑
j=1

sij(t)(qj − qi) (A.44)

To verify Condition 1, define the following functions:

ξi(x) = 0 γi(x) =
1

κqi

[0 I3]x βi(x) = x (A.45)

Hence,

d

dt
Vi ≤ zTi

κqi

n∑
j=1

dij(t)(xj − xi)

where dij(t) is the ijth entries of D(t) as defined in (35).
It follows Condition 1 is verified and the resulted

closed-loop system is amplitude dominant on the diagonal,
which indicates (17) is Lyapunov stable.

Furthermore, as indicated in (32), select βi(xi) = qi in
(20) as the output of the ith subsystem. Therefore

∂βi(xi)

∂xi
= [I3 03×3]

∂βi(xi)

∂t
= 0

Consequently, substituting the above relations and (25)
into (20), yields

−κq(qi − qj)
T (qi − qj) ≤ −‖qi − qj‖2 (A.46)

which in turn demonstrates (25) is relative amplitude
dominant on the diagonal, or in other words, asymptoti-
cally cooperative stable.

Therefore, invoking Lemma 1, system (15) with input
(32) is both almost global Lyapunov stable and asymptot-
ically cooperatively stable provided that time sequence of
S(t) is sequentially complete.
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