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Abstract: The feedback stabilisation problem of non-holonomic chained systems and a novel feedback design
scheme is proposed, which renders a smooth, time-varying, aperiodic, pure feedback control with exponential
convergence rates. There are three main advantages with the proposed design. (i) In general, time-varying
designs are mostly periodic and render asymptotic stability, whereas the proposed approach is aperiodic and
have exponential convergent rates. (ii) A novel state scaling transformation is proposed. It shows that even
though u1 vanishes in regulation problems, intrinsic controllability of chained systems can be regained by
judiciously designing the input u1 and by applying the state scaling transformations. (iii) A class of memory
functions is introduced into the control design, the controller dependency on the system’s initial conditions in
our previous work is removed and the control is a pure feedback. Moreover, the design is shown to be
inversely optimal. Simulations and comparisons are conducted to verify the effectiveness of the proposed
approach.
1 Introduction
Feedback stabilisation of non-linear systems has been one of
the most important subjects in the study of non-linear control
problems. As early as the 1980s, feedback linearisation
technique has been prevailing, and sufficient and necessary
conditions for exact feedback linearisation of large classes of
affine non-linear systems were explicitly established with
the adoption of differential geometry methods [1, 2]. Later
on, the renewed interests on Lyapunov methods become
dominant with the invention of the notion of control
Lyapunov function and recursive designs such as
backstepping [3, 4] in order to deal with more large classes
of non-linear systems with unmatched and/or generalised
matched uncertainties [5]. While those conventional non-
linear control designs are broadly applicable, there exist
some classes of inherently non-linear systems, such as non-
linear systems with uncontrollable linearisation [6], which
do not admit any smooth (or even continuous) pure state
feedback controls as observed in the seminal paper [7] and
therefore make the standard feedback linearisation
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technique and Lyapunov direct method no longer
straightforwardly applicable. A typical such class of non-
linear systems are non-holonomic mechanical systems [8],
which are not feedback linearisable and their feedback
stabilisation problem is challenging because of Brockett’s
necessary condition [7].

In recent years, considerable efforts have been devoted to
the control and stabilisation of non-holonomic dynamic
systems. Because many practical non-holonomic systems
can be transformed into the chained form by coordinate
and input transformations, the control designs based on
chained form ensure their wide applicability. Apparently,
chained systems do not satisfy Brockett’s necessary
condition, discontinuous and/or time-varying feedback
controls have to be sought for its stabilisation. During the
past decades, extensive studies have been performed and a
great deal of solutions have been obtained following the
lines of using discontinuous control method and/or time-
varying control method [8]. In general, discontinuous
controls can render exponential stability [9–13], whereas
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time-varying controls lead to asymptotic stability [14–17].
More recent studies have also seen the results of
r-exponential stability of chained systems using periodic
time-varying homogeneous feedback controls [18].
Exponential convergence is also reported in [19, 20];
however, the controls are not pure feedback because of the
inclusion of systems initial conditions into the controller
parameters.

In regulation problems of the chained systems, u1 has to
vanish; hence, the original system loses the controllability
over time. However, this controllability may be recovered in
a transformed space. An early attempt was the s-process,
which results in discontinuous switching controls.
Improvements were made in [21], in which dynamic
extension for control component u1 was introduced to
bypass the possible singularity because of singular initial
conditions. The proposed methods are quasi-smooth and
achieve quasi-exponential stability. Although the existing
controls provide elegant solutions, there is still a desire to
seek a global singularity-free transformation that maps the
chained system into a controllable linear system. In this
paper, a feedback design scheme is proposed based on an
innovation non-linear design of dynamic control u1, which
is applicable under any initial conditions. Then a global
state scaling transformation is applied and the transformed
system is composed of a controllable linear nominal system
and a time-varying component that vanishes in the sense of
L2. To this end, control u2 can be synthesised using linear
design methods. Both control u1 and u2 are shown to be
optimal with respect to some performance index. Moreover,
by introducing a class of memory function into u1, the
controller is irrelevant of the system’s initial conditions,
rendering the controls pure feedback.

The paper is organised as follows. In Section 2, the
feedback stabilisation problem is formulated. In Section 3,
controls are synthesised, convergence is proved and
performance is discussed. Section 4 discusses the inverse
optimality of the proposed control and Section 5 provides
design examples using the proposed scheme. Section 6
gives the simulation results and Section 7 concludes the
paper.

The notations used in this paper are standard. For a vector
x [ <n, ‖x‖ denotes the euclidean norm. I denotes the
identical matrix. For a matrix A [ <n×n, AT is its
transpose, ‖A‖ denotes any form of matrix norm. For a
scalar function f (t), maxa≤h≤b f (h) or mina≤h≤b f (h)
denote the maximum/minimum of f on [a b], and
f (t) [ L2[a, 1) implies

�1

a
|f (t)|2 dt , 1.

2 Problem formulation
The objective of this paper is to present a control design
scheme that leads to a smooth pure feedback control,
which globally stabilises the chained non-holonomic system
with exponential convergence rates. Consider the following
36
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chained system with the initial condition x(t0), where
t0 ≥ 0 is the initial time.

ẋ1 = u1

ẋ2 = x3u1

..

.

ẋn−1 = xnu1

ẋn = u2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1)

where x = [x1, . . . , xn]T [ <n is the state.

It follows that system (1) can be reorganised into the
following two subsystems

ẋ1 = u1 (2)

And

ż = u1Az + Bu2 (3)

where z = [z1 z2 · · · zn−1]T
W [x2 x3 · · · xn]T, and

A W

0 1 0 · · · 0

0 0 1 · · · 0

..

. ..
. . .

. ..
.

0 0 · · · 1

0 0 · · · 0

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦, B =

0

0

..

.

0

1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

Obviously, subsystem (2) is linear and can be easily stabilised.
Subsystem (3) is a linear time-varying system, it is a chain of
integrators weighted by u1. Although chained system (1) is
non-linearly controllable, the stabilisation of chained
systems is difficult because of the following technical issues:

1. Chained systems are not linearly controllable around the
origin.

2. Topologically, the chained systems cannot be stabilised by
any continuous static feedback control u ¼ u(x) because of its
non-linear characteristics.

3. Chained systems are not globally feedback linearisable
(local feedback incarnation is possible such as the
s-process, but singularity manifold remains in all the
neighbourhoods around the origin).

A straightforward thinking to overcome these difficulties is
to search for a global-singularity free transformation that
maps the chained system into a controllable linear system,
then obtain controls in the transformed domain. We
propose such a state scaling transformation, and based on
this transformation, a feedback control design scheme is
derived.
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3 Global state scaling
transformation and control
design scheme
In this section, the feedback control design of a component of
u1 is proposed. Based on the design, a global state-scaling
transformation is introduced to overcome the singularity
problem of the existing scaling transformations. This new
transformation enables the designer to regain uniform
complete controllability for the chained system and to
design a class of smooth, time-varying, aperiodic, pure
feedback and optimal controls which make the system
states converge to the origin exponentially.

3.1 Design of control component u1

Before giving the design of u1, let us first define a set of
memory functions.

Definition 1: For a time set:

T = [t0, t], t ≥ t0 ≥ 0

a set of memory function is defined to be

MF = { f :<n × <� <
m| f (x(h),h), ∀h [ T ; n, m [ ℵ}

From the definition, it is clear that the output of a memory
function not only relates to its current variables, but also
relates to the history of its variables.

The proposed control for component u1(t) is

u1(t) = −ax1 + g(z, t)e−bt (4)

where a . b . 0. To be a pure state feedback and non-
switching control, g(z, t) is required to have the following
two properties:

1. g(z, t) is smooth, uniformly bounded by c . g(z, t) ≥ g ≥ 0
for some constants c . g ≥ 0.

2. In case of ‖z(t0)‖ = 0, there should be g = 0 and
g(z, t) ; 0 for all t . t0, that is, if the subsystem (3) is
initially at the origin, control u1 reduces to a regular
negative state feedback. In case of ‖z(t0)‖ = 0, g(z, t)
should monotone converge to c from g and
(c − g(z, t)) [ L2[t0 1).

Property 2 requires that if ‖z(t0)‖ = 0, then g(z, t) ; 0.
However, in case of ‖z(t0)‖ = 0, there is
limt�1 ‖x(t)‖ = 0, which implies limt�1 ‖z(t)‖ = 0, but
now limt�1 g(z, t) = c = 0. From this contradiction, one
can conclude that if g(z, t) is to meet the requirements for
both cases, it can only be a memory function, that is,
g(z, t) [ MF . The second property also implies that if
x(t0) is in the singular manifold {x|x1 = 0, ‖z‖ = 0}, then
g(z, t) is able to yield a non-zero number so that x1 and u1
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1235–1244
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will deviate from zero. Then the controllability of
subsystem (3) can be recovered in the subsequent design
through state scaling transformations.

Remark 1: Although the first property sets
c . g(z, t) ≥ g ≥ 0, the design scheme is also valid if
c , g(z, t) ≤ g ≤ 0, with g ≤ 0 to be some constant and
corresponding changes are made in property 2.

3.2 Global state transformation

For subsystem (3), the following novel state scaling
transformation is proposed: for i = 1, . . . , n − 1

ji =
0 if ‖z(t0)‖ = 0

zi

e−(n−1−i)bt
if else

{
(5)

In the case that ‖z(t0)‖ = 0, the j-system would not move.
In the case that ‖z(t0)‖ = 0, for i = 1, . . . , n − 2, the new
dynamic equations are

j̇i =
żi

e−(n−1−i)bt
−−b(n − 1 − i)e−bt

e−(n−i)bt
zi

= u1

e−bt
ji+1 + b(n − 1 − i)ji (6)

For i ¼ n 2 1, since ji = zi, it follows that

j̇n−1 = u2 (7)

Combine (6) and (7) into a matrix form and put together
with the case that ‖z(t0)‖ = 0, then the following dynamic
model in transformed space is established

j̇ = 0 if ‖z(t0)‖ = 0
F (z, t)j+ Bu2 if else

{
(8)

where

F (z, t) = diag{b(n − 2), b(n − 3), . . . , b, 0}

+ g(z, t) − a
x1

e−bt

[ ]
A

The uniform complete controllability of the transformed
system {F (z, t), B} is established in the following theorem.

Theorem 1: If g(z, t) has the properties given in Section 3.1,
then the transformed system {F (z, t), B} is uniformly
completely controllable.

Proof: Simple derivation shows that

d

dt

x1(t)

e−bt
= −(a− b)

x1

e−bt
+ g(z, t)
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Therefore x1(t)/e−bt can be solved as

x1(t)

e−bt
= x1(t0)

e−bt0
e−(a−b)(t−t0) +

∫t

t0

e−(a−b)(t−t)g(z, t)dt (9)

Since limt�1 g(z, t) = c, there is limt�1 (x1(t)/e−bt)
= (c/(a− b)). Therefore we can obtain

lim
t�1

g(z, t)−a
x1

e−bt

[ ]
= lim

t�1
g(z, t)−a lim

t�1

x1

e−bt
=− cb

a−b

It follows that the time-varying system {F (z, t), B} can be
partitioned into a nominal component and a time-varying
component

F (z, t) = Fn +Ft(z, t)

where

Fn = diag{b(n− 2), . . . , b, 0}− cb

a−b
A

and

Ft(z, t) = g(z, t)−a
x1

e−bt
+ cb

a−b

[ ]
A (10)

It is clear that the time-varying component Ft(z, t) vanishes,
hence the transformed system {F (z, t), B} converges to its
nominal system {Fn, B}. By the design properties of g(z, t),
there is c = 0. Hence the pair {Fn, B} is completely
controllable, which implies the time-varying system
{F (z, t), B} is uniformly completely controllable. A

3.3 Design of control component u2

The dynamic control component u2 is designed to be

u2(t) = −R−1
2 BTP̂(t)j (11)

where P̂(t) . 0 is symmetric, uniformly bounded and
satisfies the following matrix differential Riccati equation
with P̂(1) . 0

˙̂P(t) + P̂(t)F̂ (t) + F̂
T

(t)P̂(t) + Q2 − P̂(t)BR−1
2 BTP̂(t) = 0

(12)

where

F̂ (t) = Fn + g + bc

a− b
+ a(g − c)(t − t0)

[ ]
e−(a−b)(t−t0)A

and Q2 [ <n−1×n−1, R2 [ < are constant and positive-
definite matrices. By a procedure similar to Theorem 1, the
uniform complete controllability of the pair {F̂ (t), B} can
be verified, hence such a P̂(t) can always be found.
38
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Lemma 1: Let

F̂ t (t) = g + bc

a− b
+ a(g − c)(t − t0)

[ ]
e−(a−b)(t−t0)A (13)

then the norm of difference ‖Ft(z, t) − F̂ t(t)‖ [ L2[t0 1).

Proof: It follows from (9) and (10) that

Ft(z, t) = g(z, t) − a
x1(t)

e−bt
+ cb

a− b

[ ]
A

= [ g(z, t) − c] − ge−(a−b)(t−t0)

{

−a

∫t

t0

e−(a−b)(t−t)[ g(z, t) − c] dt

}
A (14)

where g = a[[x1(t0)/e−bt0 ] − [cb/(a− b)]]. In the above
equation, by the design properties of g(z, t), (g(z, t) − c)
is L2, and the second term is also L2. For the third term, it
can be treated as the input response of an exponential
stable, linear time-invariant dynamic system with a L2

input; hence, this term has to be L2 [3]. Therefore
‖Ft(z, t)‖ is L2. Moreover, from (13), ‖F̂ t(t)‖ is L2. Since

‖Ft(z, t) − F̂ t(t)‖ ≤ ‖Ft(z, t)‖ + ‖F̂ t(t)‖

there must be ‖Ft(z, t) − F̂ t(t)‖ [ L2[t0 1). A

The closed-loop convergence of system (1) under control
(4) and (11) is stated in the following theorem.

Theorem 2: For any g(z, t) that has the properties presented
in Section 3.1, the control (4) and (11) globally asymptotic
stabilise system (1) with exponential convergence rates.

Proof: It is clear from (4) and (11) that if ‖z(t0)‖ = 0, then
u2 ; 0 and u1 reduces to u1 = −ax1, therefore system (1) is
exponentially stabilised. Consider the case that ‖z(t0)‖ = 0.
For subsystem (2), construct the following Lyapunov

function candidates V1(x1) = 1/2x2
1, and V2(j) = jTP̂(t)j.

It follows that

V̇ 1(x1) = x1ẋ1 = −ax2
1 + x1g(z, t)e−bt

≤ −ax2
1 + ce−bt0 |x1| (15)

Equation (15) shows that x1 is uniformly ultimately bounded
by the set

V W x1:|x1| ≤
ce−bt0

a

{ }

Since if x1(t0) � V, there will be V̇ 1 , 0, hence |x1|
monotonically decreases to V. If x1(t0) [ V, x1(t) cannot
get out of V where V̇ 1 , 0. Therefore a uniform bound
IET Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1235–1244
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for x1(t) is

d W max |x1(t0)|, ce−bt0

a

{ }

It follows that

V̇ 1(x1) ≤ −2aV1 + dce−bt

Hence subsystem (2) is globally exponentially attractive by [5,
Lemma 2.19]. Therefore subsystem (2) is asymptotic stable
with exponential convergence.

The closed-loop system of (8) is

j̇ = F (z, t)j− BR−1
2 BTP̂(t)j

= [Fn − BR−1
2 BTP̂(t) + Ft(z, t)]j

= [F̂ (t) − BR−1
2 BTP̂(t) + Ft(z, t) − F̂ t(t)]j

where Ft(z, t) is defined in (10). It follows that

V̇ 2(j) = jT{ ˙̂P(t) + [F̂ (t) − BR−1
2 BTP̂(t) + Ft(z, t)

− F̂ t (t)]TP̂(t) + P̂(t)[F̂ (t) − BR−1
2 BTP̂(t)

+ Ft(z, t) − F̂ t(t)]}j

= jT[ ˙̂P(t) + F̂ (t)TP̂(t) + P̂(t)F̂ (t)

− 2P̂(t)BR−1
2 BTP̂(t) + N (z, t)]j

= −jT[Q2 + P̂(t)BR−1
2 BTP̂(t) − N (z, t)]j

≤ − c2

c3

+
∑n−1

i=1 |li(N (z, t))|
c4

[ ]
V2 (16)

where li(·) denotes the ith eigenvalue of a square matrix, c2,
c3, c4 are constants that satisfy

c1I . Q2 + P̂(t)BR−1
2 BTP̂(t) . c2I . 0,

c3I . P̂(t) . c4I . 0

and

N (z, t) = [P̂(t)(Ft(z, t) − F̂ t(t)) + (Ft(z, t) − F̂ t(t))T P̂(t)]

[ <n−1×n−1

(17)

Since Q2, R2 are constant matrices, hence P̂(t) is uniformly
bounded and constants c1, c2, c3, c4 can be found.

Note that

|li(N (z, t))| ≤ ‖N (z, t)‖ ≤ 2‖P̂(t)‖‖Ft(z, t) − F̂ t(t)‖

Since P̂(t) is uniformly bounded, and by Lemma 1,
‖Ft(z, t) − F̂ t(t)‖ [ L2[t0 1), both ‖N (z, t)‖ and
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1235–1244
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|li(N (z, t))| are L2. Then treating (16) as a scalar dynamic
system, V2 is exponentially stabilised by invoking [22, Lemma
2.2] and comparison principle. It follows that the j-systems is
exponentially stabilised, which implies that the z-system is
exponentially stabilised according to the transformation (5).
After combining the results for subsystems (2) and (3), it is
concluded that the overall system has asymptotic stability with
exponential convergence rates. Since the argument is globally
valid, the stability results is global. A

The control u2 in (11) shows that the underlying idea is
that using the pure time function F̂ t(t) in (13) to
approximate the time-varying component Ft(z, t) of
F (z, t), which is given in (14). The goal is to remove the
state variable z from the system matrix so that the control
u2 can be derived from the linear time-varying
system {F̂ (t), B}. This approximation assumes that g(z, t)
converges to c exponentially, that is

g(z, t) − c ≃ ( g − c)e−(a−b)(t−t0)

In this case, the model difference ‖Ft(z, t) − F̂ t(t)‖ is L2 by
Lemma 1, which guarantees the exponential stability.

Note that in limit, both F(z, t) and F̂ (t) reduce to their
nominal system Fn. Hence by solving P . 0 from the
following algebraic Riccati equation

F T
n P + PFn + Q2 − PBR−1

2 BTP = 0

the control

u′2(t) = −R−1
2 BTPj (18)

is also a stabilising control, since this case is equivalent to take
F̂ t(t) ; 0, F̂ (t) = Fn, and the model difference is ‖Ft(z, t)‖,
which by itself is L2 as shown in Lemma 1. In simulations,
we compared control effects for both u2 and u′2. It shows
that the performance of u2 with F̂ t(t) in (13) is much better.

4 Optimal performance
The following theorem shows that the proposed control (4)
and (11) is optimal with respect to certain performance index.

Theorem 3: For system (1), the feedback control (4) and
(11) is optimal with respect to performance index
J = J1 + J2, where

J1(t, u1(t)) =
∫1

t

x1 y
[ ]

Q1(t)
x1

y

[ ]
+ u2

1

{ }
dt

and

J2(t, u2(t)) =
∫1

t

[jTQ̂2(t)j+ u2R2u2]dt
1239

& The Institution of Engineering and Technology 2010

d on July 12,2010 at 18:29:01 UTC from IEEE Xplore.  Restrictions apply. 



12

&

www.ietdl.org
where y = e−bt is the augmented state

Q1(t) = a2 ġ − (a+ b)g

ġ − (a+ b)g 2kb+ g2

[ ]

with k chosen to satisfy

k . max
c2

a
,

ġ2 + g2b(4a+ b) − 2gġ(b+ 2a)

4a2b
,

{

ġ2 + g2b(2a+ b) − 2gġ(b+ a)

2a2b

}

and Q̂2(t) = Q2 − N (z, t), with N(z, t) defined in (17).

Proof: By design properties of g(z, t), g is monotone and
uniformly bounded, therefore g must be uniformly
continuous, hence ġ is uniformly bounded. Therefore such
a k can always be found and by the specified choice of k,
Q1(t) is positive definite.

Under control (4), the closed-loop system of subsystem (2) is

ẋ1 = u1 = −ax1 + g(z, t)y (19)

We first show that

V ′
1(x1, y) W ax2

1 − 2gx1y + ky2

is a Lyapunov function of the augmented system (19). It is
straightforward that by the specified choice of k, V ′

1 is positive
definite. It follows that

V̇
′
1 = 2ax1ẋ1 + 2kyẏ − 2ġx1 y − 2gẋ1 y − 2gx1 ẏ

= −2a2x2
1 − 2(kb+ g2)y2 + (4ag + 2gb− 2ġ)x1 y

= − x1 y
[ ] 2a2 ġ − g(2a+ b)

ġ − g(2a+ b) 2kb+ 2g2

[ ]
x1

y

[ ]

V̇
′
1 is negative definite, hence V ′

1 is a Lyapunov function of the
augmented system. To show the optimality of u1 w.r.t. J1,
substitute control u1 in (4) with an incremental term Du1 into
J1, that is, u1(t) = −ax1 + g(z, t)y + Du1. Evaluate V̇

′
1

along the system’s new trajectory with the perturbed control,
40
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we have

V̇
′
1 = − x1 y

[ ] 2a2 ġ − g(2a+ b)

ġ − g(2a+ b) 2kb+ 2g2

[ ]
x1

y

[ ]

− 2u1Du1

It follows that the performance index J1 for the perturbed system is

J1 =
∫1

t

x1 y
[ ]

Q1(t)
x1

y

[ ]
+ (u1 + Du1)2

{ }
dt

=
∫1

t

x1 y
[ ]

Q1(t)
x1

y

[ ]
+ u2

1 + 2u1Du1 + Du2
1

{ }
dt

= −
∫1

t

dV ′
1 +

∫1

t

Du2
1 dt

= V ′
1(x1(t), y(t)) +

∫1

t

Du2
1dt

which is minimised by Du1 = 0, hence u1 is optimal with
respect to J1.

For system (8), it is straightforward to verify that the
following matrix differential equation holds

˙̂P(t) + P̂(t)F (z, t) + F (z, t)P̂(t) + Q̂2(t)

− P̂(t)BR−1
2 BTP̂(t) = 0 (20)

To show the optimality of system (8) with respect to J2,
substituting u2 in (11) with an incremental term Du2

(i.e. u2 = −R−1
2 BTP̂j+ Du2) into J2, and evaluating V̇ 2

along the new state trajectory and control

V̇ 2 = −jT[Q̂2(t) + P̂(t)BR−1
2 BTP̂(t)]j+ 2jTP̂(t)BDu2

It follows that the performance index J2 for the perturbed
system is

J2 =
∫1

t

[jTQ̂2(t)j+ jTP̂(t)BR−1
2 BTP̂(t)j

− 2jTP̂(t)BDu2 + DuT
2 R2Du2]dt

= −
∫1

t

dV2 +
∫1

t

DuT
2 R2Du2 dt

= V2(j(t)) +
∫1

t

DuT
2 R2Du2 dt
Table 1 Summary of various control approaches

Discontinuous control Ordinary time-varying r-exponential Our approach

continuity discontinuous smooth smooth smooth

convergence exponential asymptotic exponential exponential

oscillation aperiodic periodic periodic aperiodic

stability region global global global global
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Figure 1 Simulation results of the proposed control

a, c State and control with u2
′ in (18)

b, d State and control with u2 in (11)
e Model difference for u2

′ and u2
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Figure 2 Control effects for various other control designs

a, b State and control of discontinuous control
c, b States and controls for an ordinary periodic time-varying feedback design and r-exponential stabiliser
Here, (20) is used. It is clear that J2 is minimised by
Du2 = 0. Note that Q2 is positive definite and in
Theorem 2, we have shown ‖N (z, t)‖ is L2, therefore
N (z, t) vanishes. Hence in some cases, Q̂2(t) might
need a finite period to be positive definite. But by the
above Lyapunov argument, the performance index J2

would be always positive. To this end, the overall system
has been shown to be optimal with respect to J. A

5 Design examples
In this section, design examples are provided by applying the
proposed scheme. Examples of non-trivial memory functions
42
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in MF include, for instance

∫t

t0

l (‖z(t)‖) dt, min
t0≤h≤t

l (‖z(h)‖), max
t0≤h≤t

l (‖z(h)‖)

where l(.) is a function. For example, we design g(z, t) to be

g(z, t) =
t
�t

t0
‖z(t)‖ dt

1 + t
�t

t0
‖z(t)‖ dt

(21)

According to Theorem 2, to show the stability, one only
needs to show that g(z, t) in (21) has the two properties
given in Section 3.1.
IET Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1235–1244
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It is straightforward to verify that the closed-loop systems
of (2) and (8) under control (4) and (11) are globally
Lipschitz. Therefore the solution x1 and j exist and is
unique, hence by transformation (5), solution z exists. For
property 1, clearly g(z, t) is differentiable everywhere for
t ≥ t0 and uniformly bounded by g = 0 and c ¼ 1.
For property 2, if ‖z(t0)‖ = 0, then u2(t0) = 0. Subsystem
(3) would not move, hence z(t) ; 0, which in turn
yields g(z, t) ; 0. In case of ‖z(t0)‖ = 0, there is
limt�1 g(z(t), t) = c = 1. Moreover

c − g(z, t) = 1

1 + t
�t

t0
‖z(t)‖dt

. 0

It is clear that whether or not z is exponential convergent,
(c − g(z, t)) [ L2[t0 1).

6 Simulations and comparisons
In this section, simulation results are provided to illustrate the
effectiveness of the proposed control. Comparisons are made
with existing controls and their features are summarised into
Table 1.

In the simulation, a third-order chained system is studied.
g(z, t) in (21) is used. The design parameters are set to be
a ¼ 1, b ¼ 0.5, Q2 = I and R2 = 1. To verify the
effectiveness of avoiding singularity, initial condition of the
state is set to be x(t0) = [0 0 1]T.

The results in Fig. 1 verify that the proposed stabilising
control is successful. Figs. 1a and c illustrate the state and
control for u′2 in (18). Figs. 1b and d illustrate the control
effects for u2 in (11). Fig. 1e shows the model difference
for the two cases. Clearly, in both cases, despite x1(t0) = 0,
asymptotic stability and exponential convergence rates are
achieved and both states and controls are aperiodic. When
u′2 is used, F̂ t(t) ; 0, the model difference is ‖Ft(z, t)‖, its
transient is larger and converges slower. Fig. 1e shows that
by applying (13), the model difference ‖Ft(z, t) − F̂ t(t)‖ is
smaller, hence the transient response is improved.

For the same system with the same initial condition,
simulations for discontinuous controls [13], ordinary
periodic time-varying feedback controls [14] and
r-exponential stabiliser [18] are also conducted. Figs. 2a
and b show the state and control of the discontinuous
control. Fig. 2c shows the states for an ordinary periodic
time-varying feedback control and the r-exponential
stabiliser. Fig. 2d shows the controls for an ordinary
periodic time-varying feedback control and the r-
exponential stabiliser. Although both the proposed control
and the discontinuous control have exponential
convergence rates, the discontinuous control easily achieves
a faster rate as a trade-off for the continuity. Ordinary
periodic time-varying state feedback is well-known for its
low convergence rates. The r-exponential stabiliser is
improved from an ordinary periodic time-varying feedback
Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1235–1244
i: 10.1049/iet-cta.2008.0413
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control, which could achieve exponential convergence rates,
hence would be much faster than an ordinary one. From
the simulations, the proposed control with aperiodic feature
seems a bit faster than r-exponential stabiliser. The
characteristics of the aforementioned controls and our
proposed control are summarised in Table 1, and their
differences are easily seen.

7 Conclusion
In this paper, we presented a novel design scheme to
synthesise a pure feedback, exponential convergent
regulators for chained non-holonomic systems. It is known
that if u1 vanishes, the original chained system is not
controllable. However, based on an innovative design of
dynamic control u1, which includes a regular feedback term
and an additive disturbance composed of a bounded
memory function and an exponential decaying term, and
by applying a global singularity-free state scaling
transformation, subsystem (3) is cast into a new linear
time-varying system, which is guaranteed to be uniformly
completely controllable, therefore the controllability can be
recovered, and optimal controls can be derived. Moreover,
the controller is irrelevant of the system’s initial condition.
The design approach is systematic and straightforward and
simulation results verify the effectiveness of the proposed
control.
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