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Abstract: A robust adaptive control is presented for a class of time-varying nonlinear uncertain systems which
have a fractional nonlinearly parameterised structure. The proposed design is based on robust adaptive
backstepping and neural network approximation. The unknown time-varying parameters in the fractional
nonlinear functions are estimated using a smooth projection algorithm and estimation errors are robustly
compensated for by the additive terms in the proposed virtual and actual controls. Neural networks are
employed to approximate the completely unknown bounding functions of the disturbance terms, and their
weights as well as approximation errors are adaptively tuned. It is proved that the proposed robust adaptive
control can ensure the semi-global uniform ultimate boundedness of all the closed-loop system signals. The
control performance can be improved by an appropriate choice of the design parameters. Simulation results
are provided to verify the effectiveness of the proposed design.
1 Introduction
Robust and adaptive control of nonlinear uncertain systems
using the Lyapunov direct method has seen a significant
progress in the past decades (see [1–4] and the references
therein). Particularly, robust control has been popular to
deal with feedback linearisable nonlinear systems with
various uncertainties (unmodelled dynamics and
disturbance) satisfying certain known bounding conditions,
and it is this kind of available bound information that
allows the development of robust control by dominating
the uncertainties. In contrast, adaptive control is based on
the estimation of unknown parameters in system, and
control design is completed by incorporating the parameter
adaptation law. Although the convergence of parameter
estimates is not guaranteed in most cases, adaptive control
may achieve the improved closed-loop performance due to
the direct estimation and compensation of system
uncertainties.

For adaptive control, fruitful results have been obtained for
nonlinear systems where the unknown constant parameters
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appear linearly [1, 5, 6]. However, it is quite common that
many practical systems, such as fermentation processes [7],
biochemical processes [8] and friction dynamics [9], often
contain unknown time-varying parameters that enter
systems nonlinearly and belong to the so called nonlinearly
parameterised systems. Under such a situation, the adaptive
control design becomes much more challenging since the
certainty equivalence principle may not be straightforwardly
applicable and the construction of adaptation law and
Lyapunov function is generally difficult. When the
discussed systems are first-order and/or satisfy the
matching conditions, adaptive controls for nonlinearly
parameterised systems have been developed in [7, 9–11],
among others. For a class of first-order plants containing
nonlinearities of the form of ratios of polynomials in the
process output with unknown parameters, an adaptive
control design was presented in [7] by choosing a suitable
Lyapunov function for the closed-loop system. By using an
integral-type Lyapunov function, adaptive control was
proposed in [11] for a class of more general first-order
nonlinearly parameterised systems than that studied in [7].
Adaptive tracking of nonlinearly parameterised systems has
617
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also been reported in [9] for concave or convex case. More
recently, a new robust-observer-based adaptive control was
designed under the assumption that the system
uncertainties have a nonlinear parameterisation in [10].
When nonlinearly parameterised systems are in triangular
form and do not satisfy the matching conditions, there are
also some recent works available in literature, such as that
in [12, 13]. In [12], robust adaptive control technique is
incorporated in the backstepping control design with flat
zones to tackle the nonlinear parameterisation together
with a novel smooth projection algorithms for parameter
estimation. In our recent work [13], a new adaptive control
is proposed by introducing a biasing vector function into
parameter estimate, which can also be used for a class of
strict-feedback nonlinearly parameterised systems without
disturbance.

As an alternative, stable adaptive neural network control of
nonlinear uncertain systems has also been extensively studied
in the past decade along the line of using linearly
parameterised adaptive control techniques [14]. For
instance, stable adaptive neural controllers were developed
in [15] for nonlinear systems in a Brunovsky form. For
nonlinear systems not satisfying matching conditions, stable
adaptive neural baskstepping controls were proposed in [14,
16, 17]. The main ideas behind those developments are to
approximate the unknown nonlinear functions by
parameterised neural networks and then through the
adaptive tuning of neural networks’ weights to achieve the
design objective.

In this paper, we consider the robust adaptive control for a
class of perturbed time-varying nonlinearly parameterised
systems of the form

_xi ¼ gi(�xi , t)xiþ1 þ fi (�xi , t)þ Di(t, x), i ¼ 1, . . . , n� 1

_xn ¼ gn(x, t)uþ fn(x, t)þ Dn(t, x)

y ¼ x1 (1)

where x ¼ [x1, . . . , xn]T [ Rn is the state vector,
�xi ¼ [x1, . . . , xi]

T, i ¼ 1, . . . , n� 1, u [ R is the control,
y [ R is the output, fi (�xi , t) and gi(�xi, t) are unknown
nonlinear system functions which are parameterised not
linearly but of a fractional expression, and Di are unknown
Lipschitz continuous functions. A new robust adaptive
control is proposed by using neural networks to
approximate the completely unknown bounding functions
of Di and using smooth parameter projection algorithms to
estimate the unknown time-varying parameters associated
with nonlinear functions fi and gi. Parameters estimation
errors are robustly compensated for by the additive terms
within the proposed virtual and actual controls. In addition,
with the aid of Nussbaum gain [18, 19], the proposed
design does not require the a priori knowledge of the signs
of the unknown control coefficients gi . It is rigourously
proved that the proposed robust adaptive control can ensure
the semi-global uniform ultimate boundedness of all the
8
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closed-loop system signals. The size of the bounding
compact set can be reduced by suitably adjusting the
control design parameters. The main contribution of the
paper is 2-fold: 1. the proposed design can explicitly
address the nonlinear system (1) with time-varying
unknown parameters and functions fi and gi having a
fractional structure; 2. the proposed control applies neural
network approximation to handle unknown dynamics Di

without imposing any size information on them.

The paper is organised as follows. Section 2 formulates the
control problem and provides the basic preliminaries. Section
3 presents the proposed robust adaptive neural control design
procedures and gives the rigorous stability analysis of the
closed-loop system. Simulation results are given in Section
4, and Section 5 concludes the paper.

2 Preliminaries
2.1 Problem formulation

Consider the control problem of time-varying nonlinear
uncertain systems given by (1). The control objective is to
construct a robust adaptive control such that: (i) all the
closed-loop signals remain semi-globally uniformly
ultimately bounded and (ii) the output y of system (1)
follows the desired reference signal yd (t) [ <, which is a
smooth bounded signal with bounded time derivatives
y(i)

d (t), 1 � i � n. In order to design adaptive control for
system (1), the following assumptions are introduced.

Assumption 1: Uncertain dynamics in the system have a
fractional parameterisation of the form

fi (�xi, t) ¼
uT

fin
(t)cfin

(�xi, t)

uT
fid

(t)cfid
(�xi, t)

, gi(�xi, t) ¼
uT

gin
(t)cgin

(�xi, t)

uT
gid

(t)cgid
(�xi, t)

(2)

where ufin
[ Rp1i , ugin

[ Rp2i , ufid
[ Rp3i , and ugid

[ Rp4i

are unknown time-varying parameters belonging to known
compact sets Vji , Rpji for j ¼ 1, . . . , 4, respectively,
cfin

(�xi , t),cgin
(�xi, t)cfid

(�xi , t), and cgid
(�xi, t) are

dimensionally compatible smooth known functional
vectors. In addition, for the well-defined non-singular
functions fi and gi , without loss of generality, we assume
that there exist some functions c1i(�xi) and c2i(�xi) and
constants c1i . 0 and c2i . 0 such that, for all (�xi, t) and
for all ufid

[ V2i and ugid
[ V4i

uT
fid

(t)cfid
(�xi, t) � c1i(�xi) � c1i,

uT
gid
cgid

(�xi, t) � c2i(�xi) � c2i (3)

For simplicity, let Vji be a closed ball of known radius rji

centred in the origin, for j ¼ 1, . . . , 4.

Assumption 2: The state-dependent and time-varying
control coefficients gi(�xi, t) = 0 for all xi [ <i and for all t.
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Without loss of generality, we assume that
gi(�xi , t) . 0, 8xi [ <i, 8t.

Assumption 3: For 1 � i � n, there exists unknown non-
negative smooth function fi(xi) such that 8(t, x) [ Rþ � Rn

jDi(t, x)j � fi(�xi) (4)

Remark 1: The considered nonlinear systems (1) belong to
a more general class of nonlinear uncertain systems.
Specifically, systems (1) contain two classes of uncertainties:
one is the time-varying parameters uncertainty as in the
fractional parameterisation (2), and in this sense the
systems (1) belongs to the so-called nonlinearly
parameterised nonlinear systems; another is the completely
unknown nonlinearity Di, which could be due to many
factors [20], such as measurement noise, modelling errors,
external disturbances, modelling simplifications or changes
due to time variations. Hence, it is generally difficult to
absorb the completely unknown nonlinearity Di into fi if
not impossible.

In this paper, instead of seeking the complete
approximation of system nonlinearities, a robust adaptive
control is proposed by fully taking into consideration the
system structure properties, that is, the parameters
uncertainty in (2) is handled directly using adaptation law
together with Nussbaum gain technique to cope with the
unknown control directions in gi, while unknown
nonlinearity Di is handled using neural network
approximation. The proposed design expands the class of
nonlinear systems for which robust adaptive control
approaches have been studied.

Remark 2: The fractional parameterisation structures in (2)
show that parameters ufin

and ugin
enter the system (1)

linearly, but ufid
and ugid

appear nonlinearly. Some practical
systems in biochemical engineering can be expressed into
such a structure [7, 8]. For example, a fermentation process
model given in [7] has the expression of

_x ¼
rk1x2

k2 þ k3x
þ g(x)u

where r, k1, k2 and k3 are unknown parameters.

Remark 3: In Assumption 1, inequality (3) is introduced to
avoid the crossing of zero of the denominators of functions
fi (xi, t) and gi(xi, t), which is a standard assumption in
order to ensure that uncertainties to be compensated for are
locally uniformly bounded. In addition, the lower bounds
c1i and c2i in (3) are only used for analysis purpose in the
proposed robust adaptive neural control, and their values
are not necessarily known.

Remark 4: In the literature, gi(xi , t), i ¼ 1, . . . , n are
referred to as virtual control coefficients [1], whose values
should not be zero for the purpose of controllability of
Control Theory Appl., 2009, Vol. 3, Iss. 6, pp. 617–630
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system (1). Therefore, Assumption 2 is a standard one as
shown in literature of adaptive nonlinear control [1].
Apparently, to be consistent with the inequality with
respect to gi(xi , t) in (3), Assumption 2 also implies that
numerator of gi(xi , t) satisfies uT

gin
(t)cgin

(�xi, t) . 0.

Remark 5: Assumption 3 implies that the allowed class of
uncertainties Di satisfy a triangularity condition in terms of
�xi which is standard in the literature of robust adaptive
control of nonlinear systems [20–22]. In this paper, a
linearly parameterised approximator [radial basis function
(RBF) neural network] will be applied to approximate the
unknown bounding function fi(xi). It is worth mentioning
that if Di is time-independent, we can directly approximate
Di using neural network instead of approximating the
bounding function and then same control design
procedures in this paper follow.

In this paper, we address the robust adaptive control design
problem for system (1) with completely unknown virtual
control coefficients gi(xi, t) by using Nussbaum gain
technique. A function N (z) is called a Nussbaum-type
function if it has the following properties [18]

lim
s!1

sup
1

s

ðs

0

N (z)dz ¼ 1, lim
s!1

inf
1

s

ðs

0

N (z)dz ¼ �1

Commonly used Nussbaum functions include:
k2 cos(k), k2 sin(k) and exp(k2) cos((p=2)k) [23]. In this
paper, the even Nussbaum function, exp(z2) cos((p=2)z), is
exploited.

Lemma 1: [19]: Let V (�) and z(�) be smooth functions
defined on [0, tf ) with V (t) � 0, 8t [ [0, tf ). If the
following inequality holds

V (t) � c0 þ e�c1t

ðt

0

g1(x)N (z)_zec1tdt

þ e�c1t

ðt

0

_zec1tdt, 8t [ [0, tf ) (5)

where constant c1 . 0, g1(x) takes values in the unknown
closed intervals I1 :¼ [l�1 , lþ1 ] with 0 � I1, and c0

represents some suitable constant, then V (t), z(t) andÐ t

0 g1(x)N (z)_zdt must be bounded on [0, tf ).

According to Prop. 2 of [24], if the solution of the
resulting closed-loop system is bounded, then tf ¼ 1.

A smooth project algorithm as given by Definition 1 is
used in this paper for parameters estimation.

Definition 1: [25] Let u(t) [ V be an unknown time-
varying parameter vector, û be the estimate, and V , Rp

be a closed ball of known radius rV. The projection
619
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algorithm Proj(y, û ) is given by

Proj(y, û ) ¼

y, if p(û ) � 0

y, if p(û ) � 0 and
@p

@û
y � 0

I �
p(û )(@p=@û )

T
(@p=@û )

k@p=@ûk2

" #
y,

if p(û ) � 0 and
@p

@û
y . 0

8>>>>>>>>>><
>>>>>>>>>>:

(6)

p(û ) ¼
kûk2

� r2
V

e2 þ 2erV
(7)

where e is an arbitrary positive real. From (6), if û (0) [ V,
we have the following nice property: kû (t)k � rV þ e,
8t � 0.

It is worth mentioning that when virtual control
coefficients gi are known constants or unknown constants
but with known signs of gi’s and fi (xi , t) have a linearly
parameterised structure, that is, fi (xi, t) ¼ uT

fin
(t)cfin

(�xi , t),
robust adaptive controls for systems similar to (1) have
been developed, such as that in [20, 21, 26] for the case
of gi ¼ 1, and that in [1] for gi’s being constants with
known signs. When there is no a priori knowledge about
the signs of gi’s, the control design problem becomes
much more difficult, and Nussbaum gain technique has
been seen as an effective tools to solve this problem for
certain classes of nonlinear systems [19, 27, 28]. In
particular, Lemma 1 was applied in our recent work [19]
to solve the robust adaptive tracking problem of a class of
time-varying nonlinear system with linearly parameterised
uncertainties and with completely unknown gi’s being only
explicitly time-dependent functions. In this paper, we
consider a more general and complicated class of
nonlinear uncertain systems in (1), which has nonlinearly
parameterised uncertainties and gi’s are both state-
dependent and explicitly time dependent. In addition,
disturbance terms Di also do not assume a known linearly
parameterised structure, while neural networks are
employed to approximate their unknown bounding
functions fi(xi).

2.2 Linearly parameterised neural
networks

A linearly parameterised approximator will be used to
approximate the unknown bounding functions fi(�).
Several function approximators can be applied for this
purpose, such as, RBF neural networks [14, 29], high-
order neural networks [30] and fuzzy systems [31], which
can be described as W TS(z) with input vector z [ Rn,
weight vector W [ Rl , node number l, and basis function
vector S(z) [ Rl . Universal approximation results indicate
that, if l is chosen sufficiently large, then W TS(z) can
approximate any continuous function to any desired
The Institution of Engineering and Technology 2009
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accuracy over a compact set [30]. In this paper, we use the
RBF NN to approximate a smooth function. That is, for
the unknown nonlinear functions fi(�xi), i ¼ 1, . . . , n in
(4), we have the following approximation over the compact
sets Vi

fi(�xi) ¼ W �T
i ci(�xi)þ vi(�xi), 8�xi [ Vi , Ri (8)

where W �
i [ Rli is an unknown constant parameter vector,

the NN node number li . 1, vi(�xi) is the approximation
error, and c(�xi) ¼ [ci1(�xi), . . . , cili

(�xi)]
T is the basis

function vector, with cij(�xi) being chosen as the commonly
used Gaussian functions, which have the form

cij(�xi) ¼ exp
�(�xi � mij)

T(�xi � mij)

h2
ij

" #
, j ¼ 1, 2, . . . , li

(9)

where mij ¼ [mij1, mij2, . . . , miji]
T is the centre of the

receptive field and hij is the width of the Gaussian function.

Remark 6: The optimal weight vector W �
i in (8) is an

‘artificial’ quantity required only for analytical purposes.
Typically, W �

i is chosen as the value of Wi that minimises
vi(�xi) for all �xi [ Vi, that is

W �
i :¼ arg min

W i[Rli

sup
�xi[Vi

jfi(�xi)�W T
i c(�xi)j

( )
(10)

According to the universal approximation theorem [29, 30],
approximation error vi(�xi) must be bounded upon having the
expression of (8). The following assumption on the
approximation error is thus in order.

Assumption 4: Over a compact region Vi [ Ri

jvi(�xi)j � d�i 8�xi [ Vi, i ¼ 1, . . . , n (11)

where d�i � 0 is an unknown bound.

To this end, it can be seen that, the system described by (1)
has two types of uncertainty: parametric uncertainty, which is
due to unknown parameters ufin

, ugin
, ufid

and ugid
, and the

bounding uncertainty which is due to unknown Di. In
addition, the sign of uncertain control coefficients gi(�) are
completely unknown. In this paper, we present a robust
adaptive control design for the class of uncertain nonlinear
systems (1) by adaptively updating the estimates of
unknown parameters ufin

, ugin
, ufid

, ugid
, W �

i and d�i , as will
be detailed in the following section.

3 Robust adaptive neural
control design
In this section, the robust adaptive neural control design
procedure for nonlinear system (1) and the stability analysis
IET Control Theory Appl., 2009, Vol. 3, Iss. 6, pp. 617–630
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of the closed-loop adaptive control system are presented. Our
design consists of n steps. The design of both the control law
and the adaptation laws is based on a change of coordinates

z1 ¼ x1 � yd

z2 ¼ x2 � a1(x1, _yd , Ŵa,1, ûf1n
, ûf1d

, t)

..

.

zi ¼ xi � ai�1(x1, . . . , xi�1, _yd , . . . , y(i�1)
d , Ŵa,1, . . . ,

Ŵa,i�1, ûf1n
, . . . , ûf(i�1)n

, ûf1d
, . . . , ûf(i�1)d

, ûg1n
, . . . ,

ûg(i�2)n
, ûg1d

, . . . , ûg(i�2)d
, t)

(12)

where i ¼ 2, . . . , n, the functions ai, i ¼ 1, . . . , n� 1 are
referred to as intermediate control functions, which will be
designed using backstepping, and ûfin

, ûfid
, ûgin

and ûgid

represent the estimates of unknown parameters ufin
, ufid

, ugin

and ugid
, respectively. Ŵa,i represents the estimate of

unknown parameter W �
a,i that is an augmented parameter

and consists of d�j , j ¼ 1, . . . , i � 1 and ideal neural
network weight W �

j , j ¼ 1, . . . , i as clarified later. At each
intermediate step i, we design the intermediate control
function ai using an appropriate Lyapunov function
Vi, and give the adaptation laws

_̂
Wa,i. The parameters

adaptation laws for û fin
and û gin

are given below

_̂
ufin
¼ gProj(zicfin

, ûfin
),

_̂
ugin
¼ gProj(zicgin

, ûgin
) (13)

where Proj(�) is the smooth projection algorithm as given by

Definition 1 and g . 0 is a design parameter. The estimates

û fid
and û gid

are selected such that inequalities û
T

fid
(t)cfid

. 0

and û
T

gid
(t)cgid

. 0 are satisfied. At the nth step, the actual
control u appears and the design is completed.

Remark 7: The estimates ûfin
and ûgin

for unknown
parameters ufin

and ugin
in the numerators of functions fi

and gi in (2) are updated using adaptation laws in (13).
While for unknown parameters ufin

and ugin
in the

denominators of functions fi and gi, we simply choose
their estimates ûfid

and ûgid
arbitrarily as long as inequalities

û
T

fid
(t)cfid

. 0 and û
T

gid
(t)cgid

. 0 are satisfied in order

to avoid the control singularity in the proposed virtual and
actual controls given in (18), (34) and (45). This is
generally not difficult since functions cfid

and cgid
are

known, and by analysing their properties the suitable
choices of ûfid

and ûgid
can be made to satisfy inequalities

û
T

fid
(t)cfid

. 0 and û
T

gid
(t)cgid

. 0 for all t.

For example, in the simulation, we have cg1d
¼ 1þ x2

1 and
cf1d
¼ 2þ sin(t), thus we can simply let the estimates be

constants as û g1d
(t) ¼ 1 and û f1d

(t) ¼ 2. It is worth noting
that the choice of ûfid

and ûgid
is different from that in
Control Theory Appl., 2009, Vol. 3, Iss. 6, pp. 617–630
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robust control design because this does not require to know
the exact values of bounding information c1i and c2i in (3).

Remark 8: Backstepping is employed in the proposed
control design, and this recursive design procedure
generates a virtual control (34) and the corresponding
adaptation law (35). Thus, for the given nth-order system
(1), all the functions involved in the control design are
required to be at least (n 2 1) times continuously
differentiable. Without loss of generality, we assume that
the functions involved are sufficiently smooth.

Remark 9: The results obtained in this paper are semi-
global, in the sense that they are valid as long as xi remains
in Vi, where the set Vi and bounding parameter d�i can be
arbitrarily large. In the special case that (11) holds for all
xi [ <i, the results become global.

Step 1: To start, let us study the following subsystem of (1)

_x1 ¼ g1(x1, t)x2 þ
uT

f1n
(t)cf1n

(x1, t)

uT
f1d

(t)cf1d
(x1, t)

þ D1(x, t) (14)

where x2 is taken for a virtual control input. Let
V0(z1) ¼ (1=2)z2

1. In light of Assumptions 3 and 4, the
time derivative of V0 along the solution of (14) satisfies

_V 0 ¼ z1 g1(x1, t)x2 þ
uT

f1n
(t)cf1n

(x1, t)

uT
f1d (t)cf1d

(x1, t)
� _yd

" #
þ z1D1(x, t)

� z1 g1(x1, t)x2 þ
uT

f1n
(t)cf1n

(x1, t)

uT
f1d

(t)cf1d
(x1, t)

� _yd

" #

þ jz1jW
�T

a,1 ca,1(x1) (15)

where W �
a,1 ¼ [W �T

1 , d�1]T, ca,1(x1) ¼ [cT
1 , 1]T. Consider

the Lyapunov function candidate V1

V1 ¼ V0 þ
1

2
(Ŵa,1 �W �

a,1)T
G
�1
1 (Ŵa,1 �W �

a,1) (16)

where G1 ¼ G
T
1 . 0. Then, the time derivative of V1 along

(15) is

_V 1 � z1 g1(x1, t)x2 þ
uT

f1n
(t)cf1n

(x1, t)

uT
f1d

(t)cf1d
(x1, t)

� _yd

" #

þ jz1jW
�T

a,1 ca,1(x1)þ (Ŵa,1 �W �
a,1)T

G
�1
1

_̂
W a,1 (17)
621
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Let the intermediate control function a1 be

a1(x1, _yd , Ŵa,1, ûf1n
, ûf1d

, t)

¼ N (z1)

"
k1z1 þ

û
T

f1n
cf1n

(x1, t)

û
T

f1d
cf1d

(x1, t)
þ Ŵ T

a,1 Tanh
z1ca,1

e1

 !

� ca,1(x1)� _yd � v1(x1, t)

#
(18)

with

_z1 ¼ k1z2
1 þ z1

û
T

f1n
cf1n

(x1, t)

û
T

f1d
cf1d

(x1, t)
þ z1Ŵ T

a,1 Tanh
z1ca,1

e1

 !

� ca,1(x1)� z1 _yd � z1v1(x1, t) (19)

v1 ¼ �
1

4
kz1c

T
f1n
cf1n
�

1

4
kz1c

T
f1d
cf1d

û
T

f1n
cf1n

û
T

f1d
cf1d

0
@

1
A

2

(20)

where constants k . 0 and k1 . 1=4, e1 is a small constant,
N (z1) is an even smooth Nussbaum-type function, and

Tanh
z1ca,1

e1

 !
Wdiag tanh

z1ca,11

e1

 !
, tanh

z1ca,12

e1

 !
, . . . ,

(

tanh
z1ca,1(l1þ1)

e1

 !)

with ca,1j being the jth element of ca,1.

Let the parameters adaptation law be

_̂
W a,1 ¼ G1z1Tanh

z1ca,1

e1

 !
ca,1 � G1s1(Ŵa,1 �W 0

a,1) (21)

where s1 . 0 and W 0
a,1 are design constants.

Remark 10: In order to prevent parameter drifts due to
inherent errors of neural network approximation, we
incorporate a leakage term into the adaptation law for
neural network weights based on a s-modification, which
is useful in establishing the differential inequality in terms
of Lyapunov function Vi in each step for stability proof.

Using (18), a direct substitution of x2 ¼ z2 þ a1 and (20)
into (17) gives

_V 1 � g1z1z2 þ g1z1a1 þ z1

uT
f1n
cf1n

uT
f1d
cf1d

� z1 _yd

þ jz1jW
�T

a,1 ca,1(x1)þ (Ŵa,1 �W �
a,1)T

G
�1
1

_̂
W a,1 (22)
2
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Adding and subtracting

k1z2
1 þ z1

û
T

f1n
cf1n

(x1)

û
T

f1d
cf1d

(x1)
� z1v1(x1, t)

þ z1Ŵ T
a,1 Tanh

z1ca,1

e1

 !
ca,1(x1)þ z1

û
T

f1n
cf1n

uT
f1d
cf1d

on the right hand of (22), and noting (19) and (21), we have

_V 1 � �k1z2
1 þ g1z1z2 þ g1N (z1)_z1 þ

_z1 þ z1v1

þ z1

uT
f1n
cf1n

uT
f1d
cf1d

� z1

û
T

f1n
cf1n

û
T

f1d
cf1d

þ z1

û
T

f1n
cf1n

uT
f1d
cf1d

� z1

û
T

f1n
cf1n

uT
f1d
cf1d

þ jz1jW
�T

a,1 ca,1(x1)� z1W �T
a,1 Tanh

z1ca,1

e1

 !
ca,1(x1)

� s1(Ŵ a,1 �W �
a,1)T(Ŵa,1 �W 0

a,1)

¼ �k1z2
1 þ g1z1z2 þ g1N (z1)_z1 þ

_z1 þ z1v1

þ z1

~u
T

f1n
cf1n

uT
f1d
cf1d

� z1

û
T

f1n
cf1n

~u
T

f1d
cf1d

û
T

f1d
cf1d

uT
f1d
cf1d

þ jz1jW
�T

a,1 ca,1(x1)� z1W �T
a,1 Tanh

z1ca,1

e1

 !
ca,1(x1)

� s1(Ŵ a,1 �W �
a,1)T(Ŵa,1 �W 0

a,1) (23)

where ~u� ¼ u� � û�. Noting v1 in (20) and by completing
the squares, we have

�
1

4
kz2

1c
T
f1n
cf1n
þ z1

~u
T

f1n
cf1n

uT
f1d
cf1d

�
1

k

~u
T

f1n
~uf1n

(uT
f1d
cf1d

)2

�
1

4
kz2

1c
T
f1d
cf1d

û
T

f1n
cf1n

û
T

f1d
cf1d

0
@

1
A

2

�z1

û
T

f1n
cf1n

~u
T

f1d
cf1d

û
T

f1d
cf1d

uT
f1d
cf1d

�
1

k

~u
T

f1d
~uf1d

(uT
f1d
cf1d

)2

s1(Ŵa,1�W �
a,1)T(Ŵa,1�W 0

a,1)¼
1

2
s1kŴa,1�W �

a,1k
2

þ
1

2
s1kŴa,1�W 0

a,1k
2
�

1

2
s1kW

�
a,1�W 0

a,1k
2

and using the following nice property with regard to function
tanh(.) [20]

0 � jxj � x tanh
x

e

� �
� 0:2785e, for e . 0, x [ R (24)

and noting g1z1z2 � (1=4)z2
1þ (g1z2)2, (23) can be further
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written as

_V 1 ��k10z2
1þ g1N (z1)_z1þ

_z1þ g2
1 z2

2�
1

2
s1kŴa,1�W �

a,1k
2

þ
Xl1þ1

j¼1

jW �
a,1j j0:2785e þ

1

2
s1kW

�
a,1�W 0

a,1k
2

þ
1

k

~u
T

f1n
~uf1n

(uT
f1d
cf1d

)2
þ

1

k

~u
T

f1d
~uf1d

(uT
f1d
cf1d

)2
(25)

with constant k10 ¼ k1� (1=4) . 0. This yields

_V 1 ��C11V1þC12þ g1N (z1)_z1þ
_z1þ g2

1z2
2

þ
1

k

~u
T

f1n
~uf1n

(uT
f1d
cf1d

)2
þ

1

k

~u
T

f1d
~uf1d

(uT
f1d
cf1d

)2
(26)

where

C11 W min 2k10,
s1

lmax(G
�1
1 )

( )
,

C12 W
Xl1þ1

j¼1

jW �
a,1j j0:2785e1þ

1

2
s1kW

�
a,1�W 0

a,1k
2 (27)

It follows from the integration of (26) over [0, t] that

0� V1(t)�
C12

C11

þV1(0)e�C11t

þ e�C11t

ðt

0

( g1N (z1)þ 1)_z1eC11tdt

þ

ðt

0

1

k

~u
T

f1n
~uf1n

(uT
f1d
cf1d

)2
þ

1

k

~u
T

f1d
~uf1d

(uT
f1d
cf1d

)2

2
4

3
5e�C11(t�t)dt

þ

ðt

0

g2
1 z2

2e�C11(t�t)dt (28)

Remark 11: Due to the presence of

ðt

0

1

k

~u
T

f1n
~uf1n

(uT
f1d
cf1d

)2
þ

1

k

~u
T

f1d
~uf1d

(uT
f1d
cf1d

)2

2
4

3
5e�C11(t�t)dt

and
Ð t

0 g2
1 z2

2e�C11(t�t)dt in (28), Lemma 1 cannot be applied
directly. It follows from the adaptation law (13) that
kû f1n

(t)k � r1þ e. Because kuf1n
k � r1, we obtain

k~uf1n
(t)k � 2r1þ e. On the other hand, the boundedness of
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~uf1d
is apparent due to the choice of bounded û f1d

and
boundedness of uf1d

, say, k~uf1d
k � 111 for some constant

111 . 0. Together with the assumption of c11 � uT
f1d
cf1d

, we
have

0 �

ðt

0

1

k

~u
T

f1n
~uf1n

(uT
f1d
cf1d

)2
þ

1

k

~u
T

f1d
~uf1d

(uT
f1d
cf1d

)2

2
4

3
5� e�C11(t�t)dt

�
1

kC11

(2r1þ e)2
þ 12

11

c2
11

which is bounded. Thus, if z2 can be regulated as bounded
such that

Ð t

0 g2
1z2

2e�C11(t�t)dt is bounded, then, according to
Lemma 1, no finite-time escape phenomenon may happen
for tf !1, and the uniformly ultimate boundedness of
z1(t) can be guaranteed. The effect of

Ð t

0 g2
1 z2

2e�C11(t�t)dt
will be dealt with at the following steps.

Step i (2 � i � n 2 1): A similar procedure is employed
recursively for each step i ¼ 2, . . . , n� 1. The derivative of
(1=2)z2

i is

zi _zi ¼ zi gixiþ1 þ
uT

fin
cfin

uT
fid
cfid

þ Di �
Xi�1

j¼1

@ai�1

@xj

"

�
uT

gjn
cgjn

uT
gjd
cgjd

xjþ1 þ
uT

fjn
cfjn

uT
fjd
cfjd

þ Dj

 !
þ bi

#
(29)

where

bi ¼ �
Xi�1

j¼1

@ai�1

@ûfjn

_̂
ufjn
�
Xi�1

j¼1

@ai�1

@ûgjn

_̂
ugjn
�
Xi�1

j¼1

@ai�1

@y
(j)
d

y
(jþ1)
d

�
Xi�1

j¼1

@ai�1

@Ŵa,j

_̂
Wa,j �

@ai�1

@t

In view of Assumptions 3 and 4, we have

zi Di(t, x)�
Xi�1

j¼1

@ai�1

@xj

Dj(t, x)

 !

� jzij W �T
i ciþ

Xi�1

j¼1

W �T
j

@ai�1

@xj

�����
�����cj þ d�i þ

Xi�1

j¼1

@ai�1

@xj

�����
�����d�j

" #

� jzijW
�T

a,i ca,i(xi)

(30)

where by the abuse of notation, let jW �
j jW[jW �

j1j, . . . , jW �
jlj
j]T
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with W �
jk being the kth element of W �

j for j ¼ 1, . . . , i, and

W �
a,i W jW

�
i j

T, jW �
1 j

T, . . . , jW �
i�1j

T, d�i , d�1, . . . , d�i�1

h iT

ca,i W cT
i ,

1

4

@ai�1

@x1

� �2

þ1

 !
cT

1 , . . . ,
1

4

@ai�1

@xi�1

� �2

þ1

 !"

�cT
i�1, 1,

1

4

@ai�1

@x1

� �2

þ1

 !
, . . . ,

1

4

@ai�1

@xi�1

� �2

þ1

 !#T

Thus, it follows from (29) to (30) that

zi _zi � zi gixiþ1þ
uT

fin
cfin

uT
fid
cfid

"

�
Xi�1

j¼1

@ai�1

@xj

uT
gjn
cgjn

uT
gjd
cgjd

xjþ1þ
uT

fjn
cfjn

uT
fjd
cfjd

 !
þbi

#

þjzijW
�T

a,i ca,i(xi) (31)

Consider the Lyapunov function candidate Vi

Vi ¼
1

2
z2

i þ
1

2
(Ŵa,i�W �

a,i)
T
G�1

i (Ŵa,i�W �
a,i) (32)

where Gi ¼ GT
i . 0. It then follows that the time derivative

of Vi is

_Vi � zi gixiþ1þ
uT

fin
cfin

uT
fid
cfid

"

�
Xi�1

j¼1

@ai�1

@xj

uT
gjn
cgjn

uT
gjd
cgjd

xjþ1þ
uT

fjn
cfjn

uT
fjd
cfjd

 !
þbi

#

þjzijW
�T

a,i ca,i(xi)þ (Ŵa,i�W �
a,i)

T
G�1

i
_̂

Wa,i (33)

Be choosing the intermediate control ai and parameters
adaptation law as

ai¼N (zi) kiziþ
û

T

fin
cfin

û
T

fid
cfid

�
Xi�1

j¼1

@ai�1

@xj

û
T

gjn
cgjn

û
T

gjd
cgjd

xjþ1þ
û

T

fjn
cfjn

û
T

fjd
cfjd

0
@

1
A

2
4

þbiþŴ T
a,i Tanh

zica,i

ei

 !
ca,i�vi

#
(34)
4
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with

_zi¼ kiz
2
i þzi

û
T

fin
cfin

û
T

fid
cfid

�zi

Xi�1

j¼1

@ai�1

@xj

û
T

gjn
cgjn

û
T

gjd
cgjd

xjþ1þ
û

T

fjn
cfjn

û
T

fjd
cfjd

0
@

1
A

þzibiþziŴ
T

a,i Tanh
zica,i

ei

 !
ca,i�zivi (35)

vi¼�
1

4
kzic

T
fin
cfin
�

1

4
kzic

T
fid
cfid

û
T

fin
cfin

û
T

fid
cfid

0
@

1
A

2

�
1

4
kzi

Xi�1

j¼1

@ai�1

@xj

xjþ1

 !2

cT
gjn
cgjn
�

1

4
kzi

Xi�1

j¼1

cT
gjd
cgjd

�
@ai�1

@xj

xjþ1

 !2
û

T

gjn
cgjn

û
T

gjd
cgjd

0
@

1
A

2

�
1

4
kzi

Xi�1

j¼1

@ai�1

@xj

 !2

cT
fjn
cfjn

�
1

4
kzi

Xi�1

j�1

cT
fjd
cfjd

@ai�1

@xj

 !2
û

T

fjn
cfjn

û
T

fjd
cfjd

0
@

1
A

2

(36)

and

_̂
W a,i¼Gizi Tanh

zica,i

ei

 !
ca,i�Gisi(Ŵa,i�W 0

a,i) (37)

where constant ki . 1=4, ei is a small positive constant, and
s1 . 0 and W 0

a,1 are design constants. Using the same
techniques as did in step 1, we obtain

_V i��ki0z2
i þgiN (zi)

_ziþ
_ziþg2

i z2
iþ1�

1

2
sikŴa,i�W �

a,ik
2

þ
X
j¼1

jW �
a,ij j0:2785eiþ

1

2
sikW

�
a,i�W 0

a,ik
2

þ
Xi

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2
þ
Xi�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2
(38)

with constant ki0¼ ki� (1=4) . 0. Similarly, this yields

0�Vi(t)�
Ci2

Ci1

þVi(0)e�Ci1t
þ e�Ci1t

ðt

0

(giN (zi)þ1)_zie
Ci1tdt

þ

ðt

0

Xi

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2
þ
Xi�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

2
4

3
5e�Ci1(t�t)dt

þ

ðt

0

g2
i z2

iþ1e�Ci1(t�t)dt (39)
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where

Ci1Wmin 2ki0,
si

lmax(G�1
i )

( )
,

Ci2W
X
j¼1

jW �
a,ij j0:2785eiþ

1

2
sikW

�
a,i�W 0

a,ik
2 (40)

Remark 12: Similarly, adaptation laws (13) can ensure the
boundedness of

ðt

0

Xi

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2
e�C11(t�t)dt

þ

ðt

0

Xi�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2
e�C11(t�t)dt

Thus, if ziþ1 can be regulated as bounded such
that

Ð t

0 g2
i z2

iþ1e�ci(t�t)dt is bounded at the following steps,
then, according to Lemma 1, the boundedness of zi(t) can
be guaranteed.

Step n: In this final step, the actual control u appears.
Similarly, we have

zn _zn ¼ zn gnuþ
uT

fnn
cfnn

uT
fnd
cfnd

þ Dn �
Xn�1

j¼1

@an�1

@xj

"

�
uT

gjn
cgjn

uT
gjd
cgjd

xjþ1 þ
uT

fjn
cfjn

uT
fjd
cfjd

þ Dj

 !
þ bn

#

� zn gnuþ
uT

fnn
cfnn

uT
fnd
cfnd

"
�
Xn�1

j¼1

@an�1

@xj

�
uT

gjn
cgjn

uT
gjd
cgjd

xjþ1 þ
uT

fjn
cfjn

uT
fjd
cfjd

 !
þ bn

#
þ jznjW

�T
a,n ca,n(x)

(41)

where

bn ¼ �
Xn�1

j¼1

@an�1

@ûfjn

_̂
ufjn
�
Xn�1

j¼1

@an�1

@ûgjn

_̂
ugjn
�
Xn�1

j¼1

@an�1

@y
(j)
d

y
(jþ1)
d

�
Xn�1

j¼1

@an�1

@Ŵa,j

_̂
W a,j �

@an�1

@t
(42)

W �
a,n W W �T

n , W �T
1 , . . . , W �T

n�1, d�n, d�1, . . . , d�n�1

h iT

(43)

ca,n W cT
n ,
@an�1

@x1

����
����cT

1 , . . . ,
@an�1

@xn�1

����
����cT

n�1, 1,

�

@an�1

@x1

����
����, . . . ,

@an�1

@xn�1

����
����
�T

(44)
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To this end, let the control input be designed as

u ¼ N (zn) knzn þ
û

T

fnn
cfnn

û
T

fnd
cfnd

�
Xn�1

j¼1

@an�1

@xj

2
4

�
û

T

gjn
cgjn

û
T

gjd
cgjd

xjþ1 þ
û

T

fjn
cfjn

û
T

fjd
cfjd

0
@

1
A

þbn þ Ŵ T
a,n Tanh

znca,n

en

 !
ca,n � vn

#
(45)

with

_zn ¼ knz2
n þ zn

û
T

fnn
cfnn

û
T

fnd
cfnd

� zn

Xi�1

j¼1

@an�1

@xj

û
T

gjn
cgjn

û
T

gjd
cgjd

xjþ1 þ
û

T

fjn
cfjn

û
T

fjd
cfjd

0
@

1
A

þ znbn þ znŴ T
a,n Tanh

znca,n

en

 !
ca,n � znvn (46)

vn ¼ �
1

4
kznc

T
fnn
cfnn
�

1

4
kznc

T
fnd
cfnd

û
T

fnn
cfnn

û
T

fnd
cfnd

0
@

1
A

2

�
1

4
kzn

Xn�1

j¼1

@an�1

@xj

xjþ1

 !2

cT
gjn
cgjn

�
1

4
kzn

Xn�1

j¼1

cT
gjd
cgjd

@an�1

@xj

xjþ1

 !2
û

T

gjn
cgjn

û
T

gjd
cgjd

0
@

1
A

2

�
1

4
kzn

Xn�1

j¼1

@an�1

@xj

 !2

cT
fjn
cfjn

�
1

4
kzn

Xn�1

j�1

cT
fjd
cfjd

@an�1

@xj

 !2
û

T

fjn
cfjn

û
T

fjd
cfjd

0
@

1
A

2

(47)

and let adaptation law be

_̂
Wa,n ¼ Gnzn Tanh

znca,n

en

 !
ca,n � Gnsn(Ŵa,n �W 0

a,n) (48)

where constant kn . 0, en is a small positive constant, and
sn . 0 and W 0

a,n are design constants.

Consider the Lyapunov function candidate

Vn ¼
1

2
z2

n þ
1

2
(Ŵa,n �W �

a,n)T
G
�1
n (Ŵa,n �W �

a,n)
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Its time derivative satisfies

_V n � �knz2
n þ gnN (zn)_zn þ

_zn �
1

2
snkŴa,n �W �

a,nk
2

þ
X
j¼1

jW �
a,nj j0:2785en þ

1

2
snkW

�
a,n �W 0

a,nk
2

þ
Xn

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2
þ
Xn�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2
(49)

which yields

0 � Vn(t) �
Cn2

Cn1

þ Vn(0)e�Cn1t

þ e�Cn1t

ðt

0

( gnN (zn)þ 1)_zneCn1tdt

þ

ðt

0

Xn

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2

2
4

þ
Xn�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

3
5e�Cn1(t�t)dt (50)

where

Cn1Wmin 2kn,
sn

lmax(G�1
n )

( )
,

Cn2 W
X
j¼1

jW �
a,nj j0:2785en þ

1

2
sikW

�
a,n �W 0

a,nk
2 (51)

The main results of the paper is stated as follows.

Theorem 1 (Stability): Consider uncertain nonlinear
system (1) with unknown functions fi (�) and unknown
virtual control coefficients gi(�) under Assumptions 1, 2 and
3. Given any bounded smooth reference trajectory yd (t)
with bounded time derivative y(1)

d , . . . , y(n)
d and for any

bounded initial condition x(0), û fi n
(0) [ V1i , û gin

(0) [

V2i, û fi d
(0) [ V3i, and û gid

(0) [ V4i , if we apply the

controller (45) with the parameters updating laws (13) and

the estimates û fid
and û gid

are arbitrarily chosen as long as

inequalities û
T

fid
cfid

. 0 and û
T

gid
cgid

. 0 are satisfied, then

i. The solutions of the resulting closed-loop system are
uniformly ultimately bounded.

ii. Given any constant rz .
Pn

i¼1 2[(Ci2=Ci1)þ (Ci3=Ci1)],
there exists T such that

kz(t)k [ Vz W {z [ <n : kz(t)k � rz}, 8t � T (52)

where zW [z1, z2, . . . , zn]T, Ci1 and Ci2 for i ¼ 1, . . . , n
are given by (27), (40) and (51), Ci3, i ¼ 1, . . . , n� 1 is
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the upper bound of term

[giN (zi)þ 1]_zi þ
Xi

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2

2
4

þ
Xi�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

3
5þ g2

i z2
iþ1

and Cn3 is the upper bound of term

[gnN (zn)þ 1]_zn þ
Xn

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2

2
4

þ
Xn�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

3
5

In addition, the size of compact set Vz can be reduced by an
appropriate choice of the design parameters k, ki, si, ei and
Gi

iii. The output tracking error satisfies the following property

jz1(t)j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

C12

C11

þ
C13

C11

� �
þ 2V1(0)e�C11t

s
(53)

Proof: To show item (i), let us consider (50). Due to the
utilisation of adaptation laws (13) and the choices of û fnd

and û gnd
, the boundedness of û fnn

and û gnn
and that

of ~ufnn
, ~ufnd

, ~ugnn
, ~ugnd

can be guaranteed. Together
with the assumption of c1j � uT

fjd
cfjd

and c2j � uT
gjd
cgjd

, the
boundedness of the following term

ðt

0

1

k

Xn

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

(uT
fjd
cfjd

)2
þ
Xn�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

(uT
gjd
cgjd

)2

2
4

3
5e�cn(t�t)dt

can be guaranteed. Thus, noting (50), and using Lemma 1, we
can conclude that zn(t) and Vn(t), hence zn(t) and Ŵa,n are
uniformly ultimately bounded. From the boundedness of
zn(t), the boundedness of the extra term

Ð t

0 g2
n�1z2

ne�cn�1(t�t)dt
at Step n 2 1 is readily obtained. Applying Lemma 1 n 2 1
times, it can be seen from the above design procedures that

zi(t), Vi(t), zi(t), and hence xi(t) and Ŵa,i are uniformly
ultimately bounded.

For item (ii), it follows that

kz(t)k2
�
Xn

i¼1

2Vi(t) (54)
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On the other hand, it follows from the boundedness of all
closed-loop signals that the nonlinear terms

[giN (zi)þ 1]_zi þ
Xi

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2

2
4

þ
Xi�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

3
5þ g2

i z2
iþ1

and

[gnN (zn)þ 1]_zn þ
Xn

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2

2
4

þ
Xn�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

3
5

are upper bounded by certain constants, say Ci3 and Cn3,
respectively. Thus, we have

ðt

0

(giN (zi)þ 1)_zi þ
Xi

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2

2
4

8<
:
þ
Xi�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

3
5þ g2

i z2
iþ1

9=
;e�Ci1(t�t)dt

�

ðt

0

Ci3e�Ci1(t�t)dt �
Ci3

Ci1

(55)

and

ðt

0

(gnN (zn)þ 1)_zn þ
Xn

j¼1

~u
T

fjn
~ufjn
þ ~u

T

fjd
~ufjd

k(uT
fjd
cfjd

)2

2
4

8<
:
þ
Xn�1

j¼1

~u
T

gjn
~ugjn
þ ~u

T

gjd
~ugjd

k(uT
gjd
cgjd

)2

3
5
9=
;e�Cn1(t�t)dt

�

ðt

0

Cn3e�Cn1(t�t)dt �
Cn3

Cn1

(56)

It then follows from (28), (39), (50), (54), (55) and (56) that
(52) holds.

Item (iii) follows from the definition of V1 and (28).

Remark 13: In the proof of item (i) of theorem 1, we show
that all the closed-loop system signals are uniformly
ultimately bounded. That is, there exists a sufficiently large
compact set Vi such that xi(t) [ Vi for all t. Although
the actual size of Vi is not known in advance, they can really
be made as large as deemed necessary for any given bounded
initial conditions. Accordingly, we can guarantee the hold of
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(8) by choosing neural network large enough to cover Vi for
bounded initial conditions. Theoretically speaking, the
obtained result is semi-global in the sense that bounded
initial conditions guarantee the boundedness of all the signals
in the closed-loop system provided the neural network is
chosen to cover a compact set of sufficiently large size.

Remark 14: The control performance can be improved in
the sense of reducing the size of Vz by an appropriate
choice of the design parameters k, ki, si, ei and Gi . In
particular, by increasing ki and Gi , the value of Ci1 is
increased that leads to reduction of the size of Vz.
However, large ki and Gi might result in a high-gain
control that is not desirable practically. Therefore control
parameters should be carefully adjusted for achieving
suitable transient performance and control action.

4 Simulation
In this section, the proposed robust adaptive neural control is
simulated for the following second-order nonlinear system

_x1 ¼
ug1n

(t)cg1n
(x1, t)

ug1d
(t)cg1d

(x1, t)
x2 þ

uf1n
(t)cf1n

(x1, t)

uf1d
(t)cf1d

(x1, t)
þ D1(t, x)

_x2 ¼ [1:5þ 0:5 sin(t)]uþ D2(t, x)

y ¼ x1 (57)

The system (57) is in the form of (1) with

f1(x1, t) ¼
uf1n

(t)cf1n
(x1, t)

uf1d
(t)cf1d

(x1, t)
, g1(x1, t) ¼

ug1n
(t)cg1n

(x1, t)

ug1d
(t)cg1d

(x1, t)

and

f2(x, t) ¼ 0, g2(x, t) ¼ 1:5þ 0:5 sin (t)

For the simulation purpose, we assume that

ug1n
(t) ¼ 1:5þ 0:5 sin (t), ug1d

(t) ¼ 1,

uf1n
(t) ¼ 0:2þ 0:1 sin (t), uf1d

(t) ¼ 1

cg1n
(x1, t) ¼ 1, cg1d

(x1, t) ¼ 1þ x2
1, cf1n

(x1, t) ¼ x2
1,

cf1d
(x1, t) ¼ 2þ sin (t) D1(t, x) ¼ 0:6 sin (x2), and,

D2(t, x) ¼ 0:5(x2
1 þ x2

2) sin3 t

and let the reference signal be yd (t) ¼ 0:5[ sin(t)þ sin(0:5t)].

Apparently, the bounding functions for D1(t, x) and
D2(t, x) are f1 ¼ 0:6 and f2 ¼ 0:5(x2

1 þ x2
2), respectively.

In the simulation, we apply neural networks to approximate
unknown functions f1 and f2 and use adaptation laws (13)
to estimate unknown time-varying parameters ug1n

(t) and
uf1n

(t). For the estimates of unknown time-varying
parameters ug1d

(t) and uf1d
(t), by studying the structure
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properties of known functions cg1d
¼ 1þ x2

1 and

cf1d
¼ 2þ sin (t), we can simply let û g1d

¼ 1 and û f1d
¼ 2

to satisfy the inequalities û g1d
cg1d

. 0 and û f1d
cf1d

. 0.

According to the design procedures presented in Section 3,
we have the corresponding control and adaptation laws as
follows

a1 ¼ N (z1) k1z1 þ
ûf1n

x2
1

ûf1d
[2þ sin (t)]

"

þŴ T
a,1 Tanh

z1ca,1

e1

 !
ca,1(x1)� _yd � v1

#

_z1 ¼ k1z2
1 þ z1

ûf1n
x2

1

ûf1d
[2þ sin (t)]

þ z1Ŵ T
a,1 Tanh

z1ca,1

e1

 !
ca,1(x1)� z1 _yd � z1v1

v1 ¼ �
1

4
kz1x4

1 �
1

4
kz1[2þ sin (t)]2

ûf1n
x2

1

ûf1d
(2þ sin (t))

" #2

_̂
Wa,1 ¼ G1z1 Tanh

z1ca,1

e1

 !
ca,1 � G1s1(Ŵa,1 �W 0

a,1)

u ¼ N (z2) k2z2 �
@a1

@x1

ûg1n
x2 þ

ûf1n
x2

1

ûf1d
[2þ sin (t)]

 !"

þb2 þ Ŵ T
a,2 Tanh

z2ca,2

e2

 !
ca,2 � v2

#
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_z2 ¼ k2z2
2 � z2

@a1

@x1

ûg1n
x2 þ

ûf1n
x2

1

ûf1d
[2þ sin (t)]

 !

þ z2b2 þ z2Ŵ T
a,2 Tanh

z2ca,2

e2

ca,2 � z2v2

v2 ¼ �
1

4
kz2

@a1

@x1

x2

� �2

�
1

4
kz2

@a1

@x1

� �2

x4
1

�
1

4
kz2[2þ sin (t)]2 @a1

@x1

� �2 ûfjn
x2

1

ûfjd
[2þ sin (t)]

0
@

1
A

2

_̂
Wa,2 ¼ G2z2 Tanh

z2ca,2

e2

 !
ca,2 � G2s2(Ŵa,2 �W 0

a,2)

In the simulation, RBF neural networks are applied and we
select the centres and widths as: Neural network
W �T

1 c1(x1) contains nine nodes, with centres
ml (l ¼ 1, . . . , 9) evenly spaced in [25, 5], and widths
hl ¼ 1 (l ¼ 1, . . . , 9). Neural network W �T

2 c2(x) contains
63 nodes, with centres ml (l ¼ 1, . . . , 63) evenly spaced in
[25, 5] � [27.5, 7.5], and widths hl ¼ 1 (l ¼ 1, . . . , 63).
The following initial conditions and controller design
parameters are adopted: x(0) ¼ [1, 0]T, Ŵa,1(0) ¼ 0,
Ŵa,2(0) ¼ 0, û f 1n(0) ¼ 0, û g1n(0) ¼ 0, û f 1d ¼ 0:1, and
G1 ¼ G2 ¼ 0:1, k ¼ k1 ¼ k2 ¼ 4,s1¼s2 ¼ 0:01, e1 ¼ e2 ¼

0:1 and W 0
a,1 ¼ W 0

a,2 ¼ 0. Simulation results are provided in
Figs. 1 and 2. Fig. 1a shows that the output of the system
converges to a small neighbourhood of the desired
trajectory. The boundedness of control input and the
parameter estimates is illustrated in Figs. 1b and 2.
Figure 1 System response

a Output tracking (x1: ‘solid line’ and yd: ‘dotted line’)
b Control inputs
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Figure 2 Parameters estimates

a Boundedness of parameters estimates (ûf1n: ‘solid line’; ûg1n: ‘dashed line’)
b Boundedness of weights (kŴa,1k: ‘solid line’; kŴa,2k: ‘dashed line’)
5 Conclusion
In this paper, a new robust adaptive neural control has been
presented for a class of time-varying nonlinear uncertain
systems with nonlinear fractional parameterisation. It has
been proved that the proposed robust adaptive scheme can
guarantee the semi-global uniform ultimate boundedness of
all the closed-loop system signals. The proposed design
expands the class of nonlinear systems for which robust and
adaptive controls have been studied with the aid of Lyapunov
direct method and neural network approximations.
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