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Abstract—It is well known that a nonlinear optimal control
requires the solution to a two-point boundary value problem or to
a nonlinear partial differential equation and that such a solution
can only be obtained off line by numerical iteration. In this paper,
a new and near-optimal control design framework is proposed for
controlling any nonholonomic system in the chained form. The
proposed design is based upon thorough study of uniform complete
controllability of the corresponding linear time varying nominal
system. It is shown that, no matter whether the first component
1 ( ) of reference input vector is uniformly nonvanishing or

simply nonconvergent to zero or vanishing or identically zero,
uniform complete controllability of the (nominal) system can
be recovered by employing the proposed time-folding/unfolding
technique. Upon establishing the common property of uniform
complete controllability, the proposed framework can be used
to design both trajectory tracking control and regulation con-
trol in a systematic and unified manner. Using duality, uniform
complete observability can also be established, a closed-form and
exponentially convergent observer can be synthesized, and the
controls designed using the proposed framework can be either
state-feedback or output-feedback. The tracking controls are
designed using the same three-step process. That is, design of the
proposed controls starts with optimal control solutions to two
linear nominal subsystems, one time-invariant and the other time
varying. The two solutions combined together render a globally
stabilizing suboptimal control for the overall system. Then, the
optimality condition is invoked to determine the distance between
the suboptimal control and the optimal one. Consequently, an im-
proved control can be obtained by introducing a nonlinear additive
control term in such a way that the distance aforementioned is
minimized as much as possible in closed form. An example is used
to show that regulation control can be designed similarly. All the
controls designed are in simple closed forms and hence real-time
implementable, they are time varying and smooth, globally and
exponentially/asymptotically stabilizing, and they are near optimal
since their closeness to the optimal control (attainable only offline)
can be measured, monitored on line, and has been minimized.

Index Terms—Near-optimal control, nonholonomic chained sys-
tems, output feedback, state feedback, tracking control.

I. INTRODUCTION

CONTROL of nonholonomic systems has received a great
deal of attention [1], and many designs have been pro-

posed. It has been shown in [2] that mechanical systems with
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nonholonomic constraints can be either locally or globally con-
verted to the so-called chained form under a coordinate transfor-
mation and a control mapping. As a result, the chained form has
been used as a canonical form in analysis and control design
for nonholonomic systems. The chained form is also equiva-
lent to the so-called power canonical form [3] and skew-sym-
metric chained form [4], and their dynamic extension has been
explored in [5].

One of the main reasons of continuing research interests is
that, by Brockett’s theorem [6], nonholonomic systems cannot
be asymptotically stabilized around a fixed point under any
smooth (or even continuous) time-independent state feedback
control law. Consequently, there has been a divide between the
control design of making the system track a desired trajectory
and the design of stabilizing the system around a point, and
different approaches have been used to tackle each of the two
problems or their combination.

The problem of regulation control (or posture stabilization) is
to stabilize a constrained system at any given point in the state
space. One line of the research efforts is to devise time-implicit
but discontinuous feedback control laws, and the most notable
among them is the time-invariant coordinates and control trans-
formations (also known as the -process) proposed in [7]. In [8],
the switching control law is redesigned using an algebraic Ric-
cati equation related to the time-invariant linear system after the
transformations.Toavoidexcessively largevalue in theneighbor-
hood of the singularity hyperplane, the control law is revised in
[9] to be explicitly bounded, and the resulting stability becomes
semi-global. Instead of using the -process, discontinuous sta-
bilizing control can also be designed using invariant manifold
and sliding mode techniques, with acceleration feedback [10],
for a third order system [11], and for high-order systems [12].

Posture stabilization can also be achieved under time-varying
continuous controls. In particular, time-varying center mani-
fold, averaging transformation, and control saturation are used
in [3]; skew-symmetric chained form, Barbalat lemma and Lya-
punov-like argument are employed in [4]; periodic systems and
its Lyapunov argument are utilized in [13]; and a system ar-
gumentation and a modified transformation are developed in
[14]; all to achieve global asymptotic stabilization. It is shown
in [15], [16] that asymptotic stabilizing control can be made
to be so-called -exponentially stabilizing. A stabilizing con-
trol is also developed for a third-order model of wheeled robots
in [17]. In addition, hybrid designs of combining time-varying
and switching control laws are pursued in [18], [5], [19]. Re-
cently, a robust control design is proposed in [20] to ensure
practical stability for perturbed systems whose nominal sys-
tems are driftless. Besides its ability of dealing with perturba-

0018-9286/$20.00 © 2006 IEEE



QU et al.: GLOBAL-STABILIZING NEAR-OPTIMAL CONTROL DESIGN FOR NONHOLONOMIC CHAINED SYSTEMS 1441

tion terms, the design in [20] is novel and interesting because
controllability is used to select the so-called bounded transverse
functions whose trajectories lie in a neighborhood of the origin
and to which the system trajectory converges. In essence, the
result in [20] bridges tracking and stabilization problems by
exploring controllability and by choosing transverse functions
(while adopting the requirement of practical stability), and the
general ideas of exploring controllability and trajectory and of
bridging the design problems are very relevant to this paper.

The problem of trajectory tracking is generally different from
the regulation problem as the reference input vector (in partic-
ular, its first element ) is not or does not converge to zero
in general. Most of the existing results explore this property to
avoid the loss of linear controllability at the origin, and hence
control design for the tracking problem is somewhat less chal-
lenging than that for regulation. In [21], a locally exponentially
stabilizing control is proposed for trajectory tracking using
the standard linearization technique and under the assumption
that the linearized system is uniformly completely controllable
along the desired trajectory. Using the backstepping method
[22], trajectory tracking control can be designed to ensure
semiglobal asymptotic stability by employing a high-gain
feedback [23], and stability can made global for a third-order
model of wheeled robot [24] or for line tracking [23]. Recently,
tracking control designed using the backstepping method is
shown to also ensure global asymptotic stability [25], whereas
exponential stability is established only for slowly-changing
reference trajectories. It is also shown in [26] that a linear time
varying control can ensure global exponential stability if
is continuously differentiable, non-vanishing, and Lipschitz
with respect to time. For a third-order model of wheeled robot,
local stability is shown under persistent reference motion in
both and directions [27]; global exponential stability is
established under the assumption that the reference trajectory
satisfies a persistent excitation like condition [28]; and global
asymptotic stability is obtained under three conditions on
reference linear and angular velocities [29].

In practice, output feedback control is preferred to state feed-
back control, and there have been a few results available so far.
In [26], a linear time varying output feedback tracking control
is proposed to ensure global exponential stability again under
the conditions that reference input is continuously dif-
ferentiable, non-vanishing, and Lipschitz with respect to time.
In [30], [25], an output feedback tracking control is designed
under the conditions that satisfies a persistent excitation
condition and is differentiable up to order, the control
becomes a switch control if changes its sign, and the sta-
bility is claimed to be almost everywhere. There is no result
available on time-varying smooth output-feedback control for
regulation.

The results aforementioned present significant advances,
but there are several fundamental issues that have not been
adequately addressed. First, several sufficient conditions have
been proposed for tracking control design, but there has not
been any report on thorough study of (uniform complete)
controllability for chained systems along a desired trajectory
or a system trajectory. It is necessary to determine whether
uniform complete controllability can be ensured for various

types of trajectories. The issue becomes much more acute
for the regulation control problem as it is well known that
chained systems are nonlinearly controllable but not linearly
controllable at the origin. The interesting question is whether
the intrinsic nonlinear controllability of chained systems can
be explicitly revealed and retained somehow in terms of linear
controllability (through transformation) in order to make regu-
lation control design parallel to tracking control design. Second,
for observer-based output feedback control designs, uniform
complete observability is required, and little has been done to
analyze the property for chained systems. Third, for both the-
oretical and practical reasons, it is desirable to obtain controls
that are smooth, have simple closed-form expressions, and
ensure best performance possible. It follows from Brockett’s
theorem [6] that time varying smooth control laws would be
the only type of choices. Thus, it is fundamentally interesting
to study whether closed-form time varying smooth controls can
be designed for chained systems to yield the best performance
achievable real time for both tracking and regulation, which
is the main thrust of the proposed near optimal control design
framework.

In this paper, a unifying design framework is proposed
based on both Lyapunov direct method and nonlinear op-
timal control theory. In order to find an appropriate Lyapunov
function for both state and output feedback designs, uniform
complete controllability of chained systems along a desired
trajectory is investigated, and the simple condition of
being uniformly nonvanishing (which by itself is already less
restrictive than those in the existing results such as [26]) is
found. More importantly, it is shown that, using the so-called
time-folding/unfolding technique, uniform complete control-
lability can be retained by transformation if is merely
nonconvergent to zero or even vanishing. For the tracking
problem, uniform complete controllability can always be
ensured, and hence a Lyapunov function is found in terms
of a differential Riccati equation and for both cases of state
feedback and output feedback. For the stabilization problem,
while uniform complete controllability is inherently absent
for the original (linear time varying nominal) system, intrinsic
controllability of chained systems is exposed by judiciously
designing the input component and by applying time/state
transforms so that the transformed system becomes uniformly
completely controllable in order to proceed with control design.
This innovative transformation makes the proposed design
framework applicable in a systematic and parallel way to both
tracking and stabilization problems. On the other hand, the
proposed design framework is to generate time-varying smooth
controls in simple closed forms and to guarantee the so-called
near optimal performance in addition to global and asymp-
totic/exponential stability. The basic idea of near-optimality
is that, although optimal control for nonlinear systems such
as those in the chained form can only be solved iteratively
and offline, many suboptimal controls can be found, that the
standard optimality condition can be restated as a distance
measure (called the optimality residue) between the suboptimal
control and the (unattainable) optimal one, and that the residue
can be minimized. In short, the proposed framework can be
used to design asymptotically stabilizing controls for tracking
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(as well as for stabilization) and for the cases of state feedback
and output feedback, and the resulting controls are in simple
closed forms, time varying and smooth, globally asymptotically
stabilizing, and of near-optimal performance.

The paper is organized as follows. In Section II, the problems
of tracking and regulation are formulated together, the basic
idea of near optimal control is motivated, necessary properties
such as structural property of chained systems, uniform com-
plete controllability, and uniform complete observability are
discussed and established, and design steps of the proposed near
optimal framework are provided. An example is used to show
that, by designing first and then applying appropriate
transformation to recover uniform complete controllability, sta-
bilization control design becomes parallel to trajectory tracking
control design. In Section III, the framework is illustrated by
the design of a state feedback near optimal tracking control. In
Section IV, the framework is applied to synthesize an output
feedback near optimal control by incorporating a closed-form
exponentially convergent observer. In Section V, simulation
results of a car-like mobile robot are presented to illustrate the
proposed near optimal controls, and their superior performance
is validated through comparisons. In Section VI, brief conclu-
sions are drawn.

II. PROBLEM FORMULATION

The class of nonholonomic chained systems studied in this
paper are of form

(1)

where is the state,
is the control input, and is the output. For
trajectory tracking, the desired trajectory to be followed is given
by

... (2)

where
is the time-varying reference

input (i.e., open-loop steering control) that is assumed to be
uniformly bounded. In the tracking control design, property of

is explored and utilized. For regulation/stabilization, ref-
erence input is identically zero, and the corresponding anal-
ysis and design can be done directly in terms of (as will
be shown by Example 4 in Section II-F).

Chained system (1) has the nice property that its vector fields
are left-invariant with respect to a Lie group operation. It is given
in [20] that, for any vectors , their operation of Lie
group product is , where

and, for

It is elementary to verify that the identity element in the Lie

group is in the sense that holds for

all . Accordingly, the group inverse of , denoted by
and defined by ,

is found to be

and, for

Using the group operation, we can define the state tracking

error between (1) and (2) as , that is,
,

and for

In addition, let us denote the output tracking error by
and the feedback control (to be designed) by

. Then, it is straightforward to verify that the
corresponding error system is

(3)

where

...
...

. . .
...

...

and

... (4)

In the paper, two types of controls will explicitly be con-
structed: state-feedback trajectory tracking control and output-
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feedback tracking control. In addition, the design process of reg-
ulation/stabilization control is outlined by an example. The de-
sign objective is that, for system (3), all three control strategies
are in closed-form for real-time implementation, achieve near
optimality (the best achievable real-time), and ensure global
asymptotic stability of . In short, a new near-optimal control
design framework is developed.

A. Models of Nonholonomic Systems and Their Tracking
Error Dynamics

It is well known that many nonholonomic systems can be
transformed into the chained form by coordinate transforma-
tions [2]. In order to ensure wide applicability of our proposed
control design, we choose to demonstrate the proposed control
design framework using the chained form in (1). It is
straightforward to see that all the results apply directly to the
class of chained systems

where with
are sub-states for , and

is the input vector. The only difference
is that, analogous to the decomposition into two subsystems to
be developed in Subsection II-C, the resulting error system (3)
of the above chained model contains subsystems.

Alternative models equivalent to the chained form can be em-
ployed for nonholonomic systems. For instance, it is shown that
chained form (1) is equivalent to the so-called power form [3]
and its dynamic extension [5].

If the definition of tracking error is properly modified, the re-
sulting error dynamics are different but retain all the important
properties so that the proposed design can be applied success-

fully. Should the conventional choice of tracking error
is made, the error system would be the same as (3) ex-

cept that and

Since the above matrix explicitly depends on up to ,
the subsequent control design and stability analysis would re-
quire their uniform boundedness. The use of Lie group opera-
tion removes this requirement.

Another advantage of using the group operation is that, for
left-invariant control systems, tracking error dynamics of form
(3) can be derived directly from their original equations and that
transformation to the chained form is not necessary [20]. This
means that the proposed design is not confined to the chained
form and can be applied directly to nonholonomic systems of
left-invariant vector fields. Nonetheless, a transformation is gen-
erally needed to render error system (3) and, by using the inverse
of the transformation, performance measures used in the control
design (such as index (5) in Subsection II-B) can be expressed
in terms of physical variables and, hence, have explicit physical
meanings.

In applications to robotic vehicles, both kinematic constraints
and robotic dynamics need to be considered in the control de-
sign. It is straightforward to show that, upon taking care of non-
holonomic constraints, dynamic equations can be transferred
into a reduced-order vector differential equation of and .
Then, the proposed near optimal design for can be extended
to a torque-level control by using standard methods such as
backstepping design. Since those standard designs are avail-
able and effective for dealing with unconstrained dynamic equa-
tions as shown in [31] and the references therein, we choose in
this paper to focus upon the kinematic control problem of con-
strained systems.

B. Necessity of Near-Optimal Control

To synthesize a performance-oriented control for chained
system (3), we can begin with the nonlinear optimal control
theory [32], [33]. Consider the following cost functional:

(5)

where matrices and can be freely chosen by the de-
signer as long as they are uniformly bounded as

and . Then, conditions for
optimality can be found using the calculus of variations. That
is, given Hamiltonian as

where is the Lagrangian multiplier, necessary condi-
tions for optimality are [32]

and

It follows that condition is always satisfied and
that condition is guaranteed by the optimal control
candidate

(6)

where function is a matrix parameterization of the op-
timal Lagrangian multiplier as . Thus, control
(6) meets all first-order necessary conditions if matrix
is selected according to

or simply

(7)
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where , and is given as follows:

(8)

Consequently, (7) is often referred to as the optimality condi-
tion, and will be called residue from the optimality
condition. Since the optimal value of residue is zero (i.e.,

), the optimal control design can be interpreted as
the problem of minimizing the residue.

If optimal control (6) were pursued, matrix would
have to be solved from (nonlinear) differential (7) with boundary
conditions and , which could be done
only offline through numerical iterations. Thus, the resulting op-
timal control (6) is not solvable in real time or practical for most
applications. To overcome this fundamental limitation of op-
timal control and to achieve better performance, we propose a
near-optimal control design which, according to the aforemen-
tioned discussion on (7), can be characterized as the problem of
finding a closed-form control similar to (6) such that its associ-
ated residue is minimized. Steps of the proposed near-optimal
control design will be presented in Section II-C by exploiting
properties of the error system.

C. Structural Properties of the Error System

Error dynamics in (3) can be partitioned into the following
two subsystems:

(9)

and

(10)

where . The
decomposition into subsystems (9) and (10) yields two useful
properties. First, subsystem (9) is of first order, linear, time-in-
variant, and independent of subsystem (10). Subsystem (10) is
nonlinear but has a linear time varying nominal system defined
by

(11)

Second, coupling from subsystems (9) to (10) is through
, the nonlinear terms in the

system. Utilizing these structural properties, the proposed near-
optimal control design will be carried out by the following
three steps.

Step 1) Determine closed-form optimal controls and
for linear subsystem (9) and linear time varying

nominal system (11), respectively.
Step 2) Design a suboptimal control to ensure exponen-

tial stability of the overall system (3). Specifically,
and are shown to be the

proper choices.
Step 3) Synthesize a near-optimal control of form

, where and are closed-
form, nonlinear additive control terms chosen to
minimize the corresponding residue from the opti-
mality condition and to ensure exponential stability
of the overall system.

In essence, the proposed near-optimal control design starts with
a linear optimal control for linear dynamics and then chooses
a nonlinear additive control to compensate for nonlinear dy-
namics, to minimize the optimality residue, and to ensure expo-
nential stability. A design of linear optimal control calls for
controllability and observability of linear time varying nominal
system (11), and these two fundamental issues are the topics of
Subsections II-D and II-E, respectively.

D. Controllability of Linear Time-Varying Nominal Subsystem

In order to solve an infinite-time state-feedback optimal
control problem for linear time-varying system (11), uniform
complete controllability of pair needs to be
established. What follows is the standard definition adopted
from [34].

Definition 1 [34]: Let and denote con-
trollability Grammian and open-loop state transition matrix of
system (11), i.e.,

(12)

Then, system (11) is uniformly completely controllable if the
following two inequalities hold for all

where is a fixed constant, and are fixed positively
valued functions.

The following simple assumption is introduced to establish
all of the properties needed in the tracking control designs (in-
cluding controllability and observability properties, solution of
Lyapunov function, and global exponential stability). It should
be noted that, for the trajectory tracking problem in general, the
assumption can be made without loss of any generality and that,
if vanishes over time, the tracking problem reduces to the
regulation problem for which a smooth time varying control can
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be designed without any assumption (as will be illustrated by an
example in Section II.F). Should an open-loop reference input

be selected to be discontinuous, right continuous steering
time functions are typical choices. It is straightforward to see
that Lemma 1 also holds if right continuity in Assumption 1
is replaced by either left continuity or semi-continuity (either
upper or lower). However, Lemma 1 no longer holds if is
piecewise continuous, uniformly bounded, and uniformly non-
vanishing. For example, consider ,
where is a constant, at , and

at . In this case, it follows from the proof
of Lemma 1 that is singular.

Definition 2: A time function is said to
be uniformly right continuous if, for every , there exists

such that implies for
all .

Definition 3: A time function is said
to be uniformly nonvanishing if there exist constants
and such that, for any value of holds
somewhere within the interval .

Assumption 1: Desired reference control input,
, is uniformly right continuous, uniformly

bounded, and uniformly nonvanishing.
Lemma 1: Under Assumption 1, system (11) is uniformly

completely controllable (i.e., there exists a constant such
that Definition 1 holds for all choices of constant satisfying

).
Proof: It is straightforward to show that the state transition

matrix is

(13)

where . In deriving the last equation of
(13), the property that is used.

It follows from Assumption 1 that there exists constant
such that for all . Thus, we know from (13) that

Similarly, we have that, for any unit vector

On the other hand, according to Assumption 1, there
exist constants and such that, for any

holds for some . In addition,

by uniform right continuity and uniform boundedness,
is uniformly bounded in magnitude, has a fixed sign, and is
uniformly bounded away from zero within the subintervals

, where function is
independent of . It follows from (13) that, for any unit vector

(14)

Now, let for . It
follows from that function is strictly
monotonically increasing over and uniformly for
all , that

if

if

and that, since , function has a well defined
inverse with

Therefore, we know that there exists a positive constant such
that

if

if

(15)

In (15), the property of both time invariant pairs
being controllable is used. The proof is completed by combining
(14) and (15).

E. Observability of Linear Time Varying Nominal Subsystem

For the ease of applying the proposed near-optimal frame-
work to both state-feedback and output-feedback designs,
output matrix has already been embedded into performance
index (5). As a result, observability property of system (11) is
required for design and stability analysis in both cases.

Definition 4 [34]: System (11) is uniformly completely ob-
servable if its observability Grammian

(16)
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and state transition matrix satisfy the following two inequalities:
For all

where is a fixed constant, are fixed positively
valued functions.

Comparing Definitions 1 and 4, we know that uniform com-
plete observability of pair is equivalent to uniform
complete controllability of pair . In other words,
system (11) is uniformly completely observable if and only if
its dual system

(17)

is uniformly completely controllable. Under state transforma-

tion , system (17) is
transformed into . Invoking Lemma
1, we have the following result.

Lemma 2: Under Assumption 1, system (11) is uniformly
completely observable (that is, there exists a constant
such that Definition 4 holds for all choices of constant satis-
fying ).

F. Relaxation and Removal of Assumption 1

As summarized in the introduction, existing results on
tracking control design all require certain non-vanishing condi-
tions. It is clear from the Proof of Lemma 1 that, for uniform
complete controllability, being both uniformly bounded
and uniformly nonvanishing is necessary and that certain uni-
form continuity (such as uniform right continuity, or uniform
left continuity, or uniform semi-continuity) is also necessary.
In fact, closest to Assumption 1 is [26, Ass. 2.12], but that
assumption requires that is continuously differentiable
and global Lipschitz with respect to . Thus, Assumption 1
provides the least restrictive condition for uniform complete
controllability of system (11).

Nonetheless, it is necessary to show that the proposed design
framework is not confined to systems satisfying Assumption 1.
In what follows, three classes of are considered: it is con-
vergent to zero (that is, vanishing); it is nonvanishing but not
uniformly nonvanishing; and it is zero. Under those choices,
system (11) may not be uniformly completely controllable. Ex-
amples are used to illustrate that Assumption 1 can be relaxed
or even removed by using the so-called time folding/unfolding
technique. The basic idea here is to ensure Assumption 1 in a
transformed domain/space. Hence, despite of the loss of uni-
form complete controllability in the original domain/space, the
proposed control design framework can be readily applied.

Example 1: Consider nominal system (11) with

for any finite time , and
but . Obviously, signal is vanishing,

and Assumption 1 is not satisfied.
Let us introduce the following time and control transforma-

tions:

and

The first transformation unfolds the time and is differentiable,
and both transformations are one-to-one and onto. Under the
transformations, nominal system (11) is mapped into

(18)

where with being replaced by the inverse
of the previous time transformation (which can be found once

is specified). Clearly, in system (18) satisfies As-
sumption 1 in the transformed time domain of .

As will be shown in the subsequent sections, several types
of controls can be designed (for ) to exponentially stabilize
system (18) (and its corresponding nonlinear systems) in the
domain of . Once is found, is found and it is well defined.
For the class of considered in this example, the resulting
stability in the domain of is at least asymptotic stability, and
additional stability claim may be drawn based on the property
of . For instance, if , the result in the domain
of is only asymptotic (but not uniform asymptotic) stability;
and if , the result in the domain of is uniform
asymptotic (but not exponential) stability.

Example 2: Consider nominal system (11) with

where , and is the set
of non-negative integers. It is apparent that is unvanishing
but not uniformly unvanishing to satisfy Assumption 1.

Now, let us define the time-folding transformation:

which is one-to-one and onto and has right-continuous first-
order derivative. Under the transformation, nominal system (11)
can be transformed into (18), where double-column ex-
pression in (19), as shown at the bottom of the page. It is obvious

(19)
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that, no matter whether or not, is uniformly un-
vanishing (as defined in Assumption 1) in the domain of . The
rest of developments can be carried out as did in Example 1.

Example 3: In the event that in nominal system (11)
is vanishing and , simple time folding/unfolding
mappings from to definedinExamples1and2wouldnolonger
be adequate. In this case, our technique calls for a time-dependent
state transformation through which time folding/unfolding is ac-
complished and Assumption 1 is satisfied in the transformed
state space. For instance, consider nominal system (11) with

and

Now, let us define the time-unfolding state and control transfor-
mations

and

under which nominal system (11) is transformed into
and . This transformed system is time-invariant

and obviously satisfies Assumption 1, and control could be
designed and calculated.

All the above examples deal with nominal system (11) natu-
rally arising from the trajectory tracking problem. For the sta-
bilization (or regulation) problem, the conventional choice is

, in which case the above discussion can be applied
directly to , as illustrated by the following example.

Example 4: To make system (1) globally asymptotically
stable, we can recursively design two dynamic feedback control
components and . First, let dynamic feedback control
be of form

(20)

where is a design parameter whose value is arbitrary,
, and is also a design parameter arbi-

trarily chosen by the designer so long as whenever
. It follows from (20) and equation in (1)

that the closed loop subsystem is

It is not difficult to verify that closed-loop solutions are

It is obvious that signal satisfies
Assumption 1 unless . On the other hand, the rest
of system dynamics in (1) can be expressed as

(21)

where , matrices and are
those defined in (4). Letting and

, we know from (21) that

(22)

which is uniformly completely controllable. Hence, as will be
shown in Sections III and IV, control (and in turn ) can be
designed to make asymptotically stable (and solution
is already asymptotically stable).

Summarizing the aforementioned results, we know that As-
sumption 1 does not pose any limitation to the proposed control
design framework, and an important consequence is that uni-
form complete controllability can be recovered for stabilization
of nonholonomic systems. Upon fully recovering uniform com-
plete controllability and utilizing it, the proposed control design
framework becomes applicable to not only trajectory tracking
but also regulation and stabilization.

III. DESIGN OF STATE-FEEDBACK NEAR-OPTIMAL CONTROL

In this section, state-feedback near-optimal control will
be synthesized by following the design steps outlined in Sec-
tion II-C. The design will then be extended in Section IV to the
case of output feedback.

A. Optimal Controls for Individual Linear Subsystems

In this subsection, optimal controls are individually designed
for linear subsystem (9) and linear time-varying nominal system
(11). Since linear optimal control design is well known, the
focus is placed upon finding an appropriate Lyapunov function
that will be used in the near-optimal control framework (in the
cases of both state feedback and output feedback but not regu-
lation) for nonlinear error system (3). To this end, choose

and

(23)

It follows from (5) that performance index can be rewritten as
where

(24)

Now, consider the Lyapunov function

(25)

where matrix is the solution to the time-varying state-inde-
pendent Riccati equation:

(26)
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It follows from block property of matrices , and
that

(27)

and matrix is the solution to the following reduced-order
differential Riccati equation: For some

(28)

It should be noted that can be precomputed by integrating
backwards and off line and then stored with an adequate sampling
period. If is periodic (and so are the choices of and

), solution (hence, ) is also periodic. Finding so-
lution of requires that the history of be known. In some
applications such as the target-tracking and leader–follower
problems, the goal point for the tracker/follower need to be up-
dated periodically and according to observation of target/leader’s
current position and velocity. In this case, it would be better to
treat the problem not as a tracking problem but as the set point
regulation problem with the set point being updated periodically.

It should be noted that, in the seminal paper of [34], op-
timal control [such as the ones in (29)] is derived and uniform
asymptotic stability of the closed-loop system is shown. It is also
shown in [35] that, for linear systems with uniformly bounded
matrices, uniform asymptotic stability is equivalent to exponen-
tial stability. The following lemma summarizes all the useful
and relevant results, and its proof can be found in [36].

Lemma 3: Consider subsystems (9) and (11) under perfor-
mance indices in (24), respectively. Then, under Assumption 1,
the linear optimal control vector is

(29)

or, equivalently

where is given by that in (27) and is defined by (28).
Moreover, the closed-loop system is globally exponentially
stable, and Lyapunov function in (25) satisfies the following
two inequalities:

(30)

where (for ) are some positive constants, and
is the closed-loop state transition matrix defined by

.

B. Designs of Suboptimal and Near-Optimal Controls

In this subsection, we first show that linear optimal control (29)
is globally exponentially stabilizing and suboptimal for system
(3) and that its performance can be quantified [against the optimal
performance under the unattainable nonlinear optimal control in

(6)] by the residue from the optimality condition, as summarized
by the following theorem. This result leads naturally to the pro-
posed design of near-optimal control which, to be stated shortly,
selectively minimizes the optimality residue.

Theorem 1: Consider nonlinear tracking error system
(3) under Assumption 1 and under the control

, where

(31)

denotes the so-called state-feedback suboptimal (sfso) control,
and is defined by (29). Then, the closed loop system
is globally and exponentially stable. Furthermore, under perfor-
mance index (5) with the choices of weighting matrices in (23),
control (31) is suboptimal and its closeness to optimality can be
measured by , where

(32)

, and
.

Proof: As shown in Section II-B, performance of control
(31) can be quantified against optimal performance by checking
optimality condition (7). That is, it follows from

with that, under control (29),

(33)

Substituting both Riccati equation (26) and control (29) into
(33) yields

Thus, expression (32) can be obtained directly from the above
equation by utilizing the special structures and functional de-
pendence of matrices and .

Exponential stability of the closed-loop system can be

established using Lyapunov function de-
fined in (25). Although system (3) under control (31) is
nonlinear, its closed-loop dynamics can be rewritten as

or, equivalently



QU et al.: GLOBAL-STABILIZING NEAR-OPTIMAL CONTROL DESIGN FOR NONHOLONOMIC CHAINED SYSTEMS 1449

Hence, we have the expression of as follows:

(34)

It follows from the second inequality in (30) that the time deriva-
tive of along any trajectory of system (3) under control (31)
can be expressed as

(35)

It follows from (32) that inequality (35) can be rewritten as

(36)

which will be referenced in the analysis of near optimal control
to be designed.

Substituting (32) again into (36) yields1

(37)

Recalling the structures of functions and in non-
linear tracking error system (3) as well as the structural of sfso
control (31), we know that solution of is

(38)

and that

(39)

Hence, it follows from boundedness of reference input that
the following inequality holds for some constant :

(40)

Therefore, using solution (38) and inequalities (39) and (40), we
can rewrite inequality (37) as

(41)

1Without the need of expression (36), one can obtain (37) directly from (35).

where
, and

. The solution to inequality (41) is given by

from which exponential stability is obvious.
Theorem 1 provides not only closed-loop exponential sta-

bility but also a quantitative measure on the closeness of con-
trol (31) to nonlinear optimal control (6). One of the objectives
of the proposed near optimal control design methodology is to
find a closed-form control that minimizes the optimality residue.
Clearly, control (31) is a good candidate to begin our search for
the best among all the candidates that are both analytical and
globally exponentially stabilizing. To this end, let the proposed
state-feedback near-optimal (sfno) control be of form

(42)

where is given by (31), and
is a state-feedback nonlinear additive (sfna)

control component to be determined. Given the residue of
in (32), the residue corresponding to near optimal

control (42) can be similarly derived from the optimality con-
dition (7) under the constraint that . The constraint
is necessary since matrix from both Lyapunov function
(25) and Riccati equation (26) is the best among available
solutions. Therefore, it follows from optimality condition (7),
from Riccati equation (26), and from the derivation of (32) that

(43)
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(44)

Symbol in expression (44) is used to denote a
lumped sum of terms, and it is also good for intuitive compar-
ison. Strictly speaking, while (43) is the expression for calcu-
lation and design, and is related by
(44) only at the initial instant of time (when the state assumes
the same value) after which the system trajectory becomes dif-
ferent under two different controls.

It is clear from (44) that the nonlinear additive con-
trol should be designed to selectively minimizes the
residue . The following lemma pro-
vides the design of , and is solved analytically
using the least-square minimization under the selection of

(which will be explained after Theorem 2).
Lemma 4: Suppose that nonlinear tracking error system (3)

satisfies Assumption 1 and is under the state feedback near op-
timal control in (42). Given performance index (5)
with the choices of weighting matrices in (23), the following
choice of is near optimal under the selection of

(45)

where is a pseudoinverse
of matrix , and

(46)

Specifically, under the selection of
is minimized by control in

(45), and inequality

(47)

holds for all but those at which
(and, hence, as

).
Proof: The proof is to show that, given ,

function is minimized by the corresponding
least square solution in (45). It follows that, upon
setting

and that, for all choices of

(48)

Hence, inequality (47) can be readily concluded from (48). That
is, the choice of in (45) minimizes
under the choice of .

To justify the proposed design of nonlinear additive control,
we must also show that the performance improvement quan-
tified in Lemma 4 is achieved uniformly over time by a com-
parative study of closed-loop stability. The following theorem
shows an improvement of global exponential stability of the
closed-loop system under near-optimal control (42).

Theorem 2: Consider system (3) that satisfies Assumption 1.
Then, under the near-optimal control (42) (which is in turn de-
fined by (31) and (45)), the closed-loop system has a conver-
gence rate of global exponential stability no less than that under
suboptimal control (31).

Proof: To proceed with a comparative study of global and
exponential stability, consider again Lyapunov function defined
in (25). It follows from the discussion leading to (35) that, under
control (42) (in terms of (31) and (29)) and along its resulting
trajectory of (3)

(49)

It follows from and from (43) that inequality
(49) can be rewritten to be

(50)

Under control (45), inequality (47) holds. Consequently, the
statement of the theorem can now be concluded by comparing
(36) and (50) and by applying the comparison theorem in [33].

It is important to note that minimization of the optimality
residue is first performed in Lemma 4 for a given instant
of time and is then shown to be uniform over time in the
proof of Theorem 2. Any further instantaneous reduction
of making less than its value in (47) has
to be done by minimizing not only but
also . Such a minimization is impossible
unless control is redesigned such that . So,
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why is selected? There are two reasons. First,
as shown by (36), stability and convergence of the closed
loop system is impacted not by but only by

. Thus, it is from stability argument that mini-
mizing is sufficient. Second, if the uncondi-
tional instantaneous least square minimum of
is solved from (44), being made pointwise
smaller than that in (47) holds only for a very short period
during the initial transient. Afterwards, the near-optimal per-
formance is determined by whether the optimality condition is
not only minimized instantaneously but also forced to diminish
quickly and uniformly over time. In fact, it can be shown
analytically that, under the least square solution with nonzero
control term , the closed loop exponential convergence
rate will become much slower and consequently the value of
optimality residue actually becomes larger soon after . For
this reason, in the proposed framework, nonlinear additive
control (42) is designed under the choice of , and
such a control is indeed near-optimal.

IV. DESIGN OF OUTPUT-FEEDBACK NEAR-OPTIMAL CONTROL

In this section, the framework of near-optimal tracking con-
trol design is extended to output feedback. In tracking error dy-
namics in (9) and (10), output tracking error is .
The following time-varying observer is to asymptotically esti-
mate the unmeasured error state variables (i.e., up to in
subsystem (10)) from input–output information of and : for
any initial condition

(51)

where is a time-varying gain vector to be selected,
is defined in (29), and is the observer-based

control to be synthesized later. It follows from (10) and (51)

that dynamics of estimation error are described by

(52)

where , and is the matrix given
in (4). The following lemma provides a closed-form design of
observer (51).

Lemma 5: Under Assumption 1, estimation error of (52) is
globally and exponentially stable if gain vector is set to be

that in the double-column expression of (53), as shown at the

bottom of the page, where is
a given constant, and is the value of resulting from the
application of Lemma 1 to pair .

Proof: It follows that, under control ,
the solution to subsystem (9) and given in (38) is exponentially
convergent, and so is . Hence, we know from Assumption
1 that time function also satisfies As-
sumption 1. Now, consider the time varying “nominal system”
of error dynamics (52): and . For
this fictitious system, let and denote
its state transition matrix and observability Grammian, respec-
tively. That is, , and

(54)

Therefore, we know from Lemmas 2 and 1 that, since the pair
is uniformly completely observable, inequalities

(55)

hold for all , where are some positively valued
functions.

To show global and exponential stability of estimation error
dynamics (52), consider the following Lyapunov function can-
didate: , where , and

(56)

It follows from (56) and (55) that

(57)

which shows that Lyapunov function is positive defi-
nite, decrescent, and radially unbounded.

...
...

...

(53)
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It follows that the time derivative of along the trajec-
tory of (52) is

(58)

under the choice of feedback gain

(59)

It is elementary to show that combining (54), (56), and (59) ren-
ders the closed form solution in (53) for observer gain . Fur-
thermore, according to (57), gain matrix has the property
that, for any

(60)

Integrating expression (58) of over an interval for
any and , we have

(61)

where , and is the state tran-
sition matrix for close-loop estimation dynamics of (52).
Recalling that is uniformly completely ob-
servable and that satisfies inequality (60), we know
by invoking [37, Th. 4] that pair
is uniformly completely observable. Hence, there exists
constants and such that, for any

.
Substituting this inequality and (57) into (61) yields

Exponential stability of and in turn of can be
shown by duplicating that proof of being exponentially
convergent in the proof of Lemma 3 (as shown in [36]).

Upon having the exponentially convergent observer (51), we
can convert the state-feedback near-optimal control in (42) into
an input–output near optimal control, as shown in the following
theorem. Since the development of the input–output design is
parallel to that of the state-feedback design, the proof of the
theorem will focus upon providing key expressions and refer to
the corresponding parts in the proofs of Theorem 1, Lemma 4,
and Theorem 2.

Theorem 3: Consider tracking error system consisting of
(9) and (10) which satisfies Assumption 1. Given performance
index (5) with the choices of weighting matrices in (23), choose
the output feedback near optimal (ofno) control to be

(62)

(63)

where is given by (27), is defined by
(51), is the so-called output feedback sub-optimal
(ofso) control, and is the so-called output feedback
nonlinear additive (ofna) control term. Then, the following hold.

a) The closed-loop system is globally exponentially stable,
and is suboptimal if .

b) The closed-loop system is also globally exponentially
stable if

(64)

where

(65)

Moreover, control (62) together with (64) is near
optimal in the sense that the optimality residue

is minimized not only at any
fixed time instant under the selection of but
also uniformly over time.

Proof: The proof consists of three parts. In the first part,
control (62) together with (64) is shown to be instantaneously
near optimal under performance index (5) and under the selec-
tion of . In the second part, exponential stability of
the output feedback suboptimal control (63) is established for
system (9) and (10). Finally, in the third part, the closed-loop
system under control (62) and (64) is shown to be exponentially
stable and uniformly near optimal over time.

Part I: It follows from (9), (10), and (51) that

(66)
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It follows from the optimality condition that, under control (62)
and by using in (26) and setting , the optimality
residue is

where and . By noting and by
utilizing the special structures and functional dependence of ma-
trices , and , one can show that,
parallel to (43)

(67)

(68)

where is defined by (65),
and

are the optimal residues of
output feedback near-optimal control and output feedback
sub-optimal control , respectively. It is straightforward
to show as did Lemma 4 that, upon fixing

is minimized by in (64), that is,

(69)

Part II: To show that control
is globally exponentially stabi-

lizing, we note that , where

is given by (29), and .
Consider again the Lyapunov function in (25). It follows from

the discussion leading to (35) that the time derivative of along
any trajectory of (3) under control is given by

(70)

It follows from (67) that inequality (70) can be expressed as

(71)

The remaining proof of part II parallels that of Theorem 1. In
essence, can be shown to be of the same form as inequality
(41) and hence exponential stability can be concluded by sub-
stituting in (67) into inequality (71), by properly
taking bounds, and then by using solution (38) and invoking
Lemma 5 on being exponentially stable.

Part III: By following the same steps as those in the Proof
of Theorem 2, Lyapunov function in (25) can again be used to
show that control (62) together with in (64) is globally
exponential stabilizing and uniformly near optimal over time.
Detailed expressions and their derivations of part III (as well as
some of part II) are omitted here for briefness but can be found
in [36].

V. APPLICATION TO CONTROL OF A MOBILE ROBOT

In this section, the proposed framework of near-optimal con-
trol design is applied to a car-like mobile robot. As shown in
[38] and [39], the kinematic model of car-like robot can be
mapped into chained form (1) with . It follows from
the Lie group operation that the tracking errors are defined as

,
and . In what follows, time varying smooth laws
synthesized for tracking and regulation control are simulated for
the car-like mobile robot.

For trajectory tracking controls, let the reference trajectory
be generated with zero initial conditions

and under the two sinusoidal steering
inputs:

where , and .
Over the interval , the desired trajectory moves from the
initial position to the position , and
the segment is shown by the solid curve in Fig. 1(d). Since the
steering inputs are of period , the reference trajectory for

will continue its motion by repeating the same pattern
of the segment defined in the interval .

In the simulation of state feedback near-optimal control, the
following choices are made: a) Initial conditions are set to be

, and ; and b)
control design parameters are chosen to be and

. In Figs. 1(b) and (a), state-feedback near-optimal
control (42) (consisting of (31) and (45)), and its corresponding
closed loop tracking error state variables are provided, respec-
tively. In Fig. 1(c), histories of the optimality residual values
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Fig. 1. Simulation results of state-feedback controls. (a) Tracking errors under state-feedback near-optimal control. (b) State-feedback near-optimal control.
(c) History of optimality residual value. (d) Phase portraits (x versus y ).

under the two state-feedback controls are plotted. In Fig. 1(d),
phase portraits in the Cartesian space are plotted. It is obvious
that the proposed state-feedback near-optimal control (42) to-
gether with (45) achieves better performance than that under
suboptimal control (31).

For output-feedback near-optimal tracking control (62), the
same choices are made as those for the near optimal state-
feedback tracking control, and the additional choices made for
observer (51) include: Initial condition

, observer gain vector in (53) and with

. In Fig. 2,
simulation results under the control are provided, including a
comparison [Fig. 2(c)] against to output-feedback suboptimal
control (63). In Fig. 2(d), convergence of state estimation by
the proposed observer is shown.

VI. CONCLUSION

In this paper, a new unifying design framework is proposed
for controlling nonholonomic chained systems by investigating
uniform complete controllability of time varying systems, by
presenting a time-folding/unfolding technique, and by de-
veloping the concept of near optimal control. It is explicitly
shown that, for both trajectory tracking and regulation of
nonholonomic systems, uniform complete controllability can
be retained by transformations no matter whether is
uniformly nonvanishing or merely nonconvergent to zero or
vanishing or identically zero (in the last case, is directly
analyzed). As a result of the common controllability property,
tracking control and stabilizing control can be designed in
a unified manner. In addition, near-optimal state and output
tracking controls can be designed in three steps: two optimal
control solutions are obtained first for two linear nominal
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Fig. 2. Simulation results of output-feedback controls. (a) Tracking errors under output-feedback near-optimal control. (b) Output-feedback near optimal control.
(c) History of optimality residual value. (d) Convergence of state estimation error.

subsystems, their combination is used to generate a stabilizing
but suboptimal for the overall system, and a nonlinear additive
control term is calculated using the optimality condition to
minimize the distance between the suboptimal control and the
unattainable optimal control. It is shown that all the proposed
controls are globally asymptotically stabilizing, in simple
closed forms, time varying and smooth, and near-optimal.
Simulation study of a car-like robot shows effectiveness of the
proposed methodology.
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