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Abstract—In this paper, we present an approach to local cover-
age path (CP) planning for a circular mobile sensor. Our family
of algorithms provides completed and overlapped coverage con-
trol, curvature and path length control, localization, choice of
observer’s placement based on sensing range, and first-order dif-
ferentiable CP. Our family of algorithms begins by partitioning
the target region (TR) into several regular triangulations (RTs).
Based on the size of the RT and the sensing range, the num-
ber and location of observers are determined for all RT. All
observers found are then used as waypoints (WPs) to gener-
ate baseline CP with the Traveling Salesman Problem’s nearest
neighbor algorithm. The proposed algorithm solved the prob-
lems of how to design a differentiable and collision-free CP for
all sensing range, limited and sufficient, while providing com-
pleted coverage control, overlapped coverage control, curvature
and path length control, localization, collision avoidance, and the
choice of observer’s placement based on sensing range and the
environment. The main technical contributions of the proposed
approach is to provide a holistic solution that segments any TR,
uses triangulation to determine the observation WPs and then
compute the smooth and collision-free CP. Computer simulations
are provided to validate the effectiveness and correctness of our
algorithms.

Index Terms—Half-plane, internal and external tangent, non-
holonomic, triangulation, visible polygon (VP).

I. INTRODUCTION

COVERAGE path (CP) planning for a mobile robot
to find motion path that observe the entire work

region receive numerous interests from researchers in the
last 15 years [1]–[13]. Examples of CP planning include
automate floor scrubbing, automated wall painting, vacuum
cleaning, and security patrolling. Recent interests provide
motivation to pursue high performance and scalable algorithms
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in CP planning. Maximizing coverage performance is the
most challenging issue for robotic cleaner [3]. Reference [3]
suggested field programmable gate arrays’ and finite state
machines’ approaches to cleaning path with the cleaning CP
being spiral, zigzag, or random path. Reference [11] considers
a smooth CP for a vacuum cleaner in a rectilinear environ-
ment and the path design is geared toward minimizing human’s
energy.

Cellular decompositions are popular techniques in CP
planning [5]. All cellular decomposition techniques divide
the work area into “simple” cells. Reference [7] identified
the flexibility of CP planning with the triangular-cell-based
map technique which has more accessible direction than the
rectangular cell-based decomposition. This paper considered
all triangular cells to be of identical size yet the resulting
CP is discontinuous which is inefficient in term of energy
consumption.

Reference [13] considers approximate solutions to visibility
problem with infinite sensing range and the nearly optimal CP
is obtained in several thousand iterations.

Our technique considered all sensing ranges and it can be
applied to vacuum cleaning application by setting the sensing
range equal to the robot’s platform. When the sensing range is
greater than the robot platform, the same algorithm becomes
useful for security patrolling or search operation. Our algo-
rithm only requires a few iterations to obtain near optimal CP
based on the range of the sensor. In addition, our algorithm
does not constraint the triangular cell to be of identical size
or shape. Table I lists common acronyms that will be used
throughout this paper. Definitions for each of the terms in this
table will be given when they are first introduced.

II. PROBLEM FORMULATION

This section presents some assumptions and definitions
required to solve the problem introduced in Section I.

Assumption 1: The robot being studied is a two-wheeled
robot, enveloped by a two-dimensional circle, with the center
at O(t) = (x, y) and of radius Rr. Its motion obeys a nonholo-
nomic constraint with velocity vector expressed as vr(t). Note
that the position and velocity are a function of time because
the robot is continuously moving.

Assumption 2: The radius or range of robot’s motion sensor
is Rs. Rs is greater than Rr. Fig. 1(b) illustrates the sensor
maximum square (SMS). Since the sensor’s diameter is 2Rs,

sensor’s maximum square dimension is SMSD = √
2Rs.

Assumption 3: The static objects are denoted by the symbol
Oi, where the subscript i = 1, . . . , n represent the obstacle
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TABLE I
COMMON ABBREVIATIONS

(a) (b)

Fig. 1. Robot and its circular sensor. (a) Robot enveloped by the sensor in
green. (b) Maximum square enveloped by a circle.

number. For example, an ith object with radius Ri will be
represented by obstacles centered at point Oi.

Assumption 4: The set � to be covered is two-dimensionally
connected, with respect to a disk of the robot’s radius Rr.
For example, consider the target region (TR) in Fig. 2 with
nine disks.

A. Patrolling Control Problem

Given a TR like Fig. 2 with a finite number of static
objects, how do we design a differentiable and continuous
path for a nonholonomic mobile sensor with range, cover-
age, movement, and time constraints that can sweep the given
area without collision? Given an initial position and orienta-
tion of the robot represented by Pi and θi and the environment
under Assumptions 1–4, we find a smooth CP which the

Fig. 2. Sample TR to be covered with finite number of disks.

TABLE II
FOUR PHASES OF THE TBCPP APPROACH AND THEIR DESCRIPTIONS

robot moves collision-free, and covers all points in the set
� over time. Mathematically, the problem is to determine
a differentiable path s(t) by ensuring conditions represented
by (1) and (2) hold

min
t∈[t0,t0+T]

‖q − s(t)‖φ(q, t) ≤ Rr ∀q ∈ � (1)

where φ(q, t) is a weighting function which can be chosen at
design time. q is the point in the set. T is the time for the robot
to complete its maneuver between adjacent pair of points

‖s(t) − Oi‖t∈[t0,t0+T] ≥ Rr + Ri ∀i ∈ {1, . . . , n}. (2)

The patrolling control problem is solved with the four phases
of the triangulation-based CP planning (TBCPP) approach as
shown in Table II which consists of a set of existing and newly
developed algorithms. More detail descriptions of the newly
developed algorithms are tabulated in Table III. Table IV lists
the algorithms used in each phase.

III. PRELIMINARY

In this section, we present the organization of the TBCPP
approach and some of the existing algorithms used. For orga-
nizational simplicity, we will be presenting the algorithms in
the logical order as they appear in Table II. The six novel
algorithms contributed in this paper, as tabulated in Table III,
are used in different phases of the overall TBCPP approach.
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TABLE III
AUXILIARY ALGORITHMS USED BY THE TBCPP ALGORITHM

TABLE IV
FOUR PHASES OF TBCPP APPROACH AND THEIR SUB ALGORITHMS

In Table IV, the subalgorithms under each of the four phases
of the TBCPP approach are designated with (E) for existing
algorithms and with (D) as the new algorithms developed for
this paper which represent our new contributions. The fol-
lowing sections discuss the existing algorithms, the Big-O
notation, and the doubly linked list (DLL).

A. Delaunay Triangulation Algorithm

Delaunay triangulation (DT) algorithm is an existing algo-
rithm employed to partition the TR into several disjoined
regular triangulations (RTs). This step can be completed in
N log(N) time [15]. The sample TR in Fig. 2 with nine disks
can be partitioned into ten RTs as shown in Fig. 3. Partitioning
for N number of vertices obey Euler’s formula. This is also
true for N number of disks. While Euler’s formula equates
the relationship of the number of faces, vertices, and edges,
they are related here in terms of the number of RTs, disks,
and edges, respectively. Note that edges generated by DT are
actually line segments (LSs) in this paper because all of them
are straight. For clarity, edge in (3a) will be referred to as
LS. All other reference of edge that is not straight from here
on forth, will be referred to as curve segment (CS)

F + V − E = 1 (3a)

RT + DISK − LS = 1. (3b)

Fig. 3. RTs of the sample TR.

Fig. 3 illustrates several different types of RTs of the sample
TR. As a side note, Fig. 3 has 9 disks, 10 RTs, and 18 LSs.
This obeys (3) as formulated by Euler. An RT is very similar
to a triangle, except that an RT is formed by three disks of
varying size while a triangle is formed by three points. An RT
is nonconvex while a triangle is convex. DT algorithm is used
by the local observer planning (LOP) phase of the TBCPP
approach.

B. Nearest Neighbor Algorithm

A number of Traveling Salesman algorithms are published
in the literature. Different variant of Traveling Salesman algo-
rithms may generate different path length and may encounter
different level of complexity. The best heuristic algorithm that
guarantees a path length close to the optimal solution, but with
complicate running time is the Sanjeev Arora algorithm. To
simplify the problem, the CP in this paper is connected with
the nearest neighbor (NN) variant of the Traveling Salesman
Problem (TSP). The running time for the NN algorithm is
O(n2) [16].

C. Big-O Notation

In 1892, German mathematician introduced the big-O nota-
tion to compute the complexity of algorithms. The notation
O(N) represents the linear running time, also known as linear
complexity, of the algorithm. The big-O notation is intended
to express the qualitative behavior of the algorithm, instead
of the quantitative behavior [17]. In term of qualitative analy-
sis, the values of O(N), O(2N), and 2(O(N)) are consider the
same. The expression O(K(N2 + N)), with K being a con-
stant, is qualitatively similar to O(N2) and generally express
with the later notation [17], [18].

D. Doubly Linked List

The previous next waypoint coverage constraint (PNWCC)
algorithm in the third phase of the TBCPP approach requires
a data structure to accommodate all size of sensing radii that
observe all size of RT with the ability to delete or mod-
ify observer’s location as necessary. The PNWCC algorithm
requires a sophisticated data structure to keep track of all trans-
action. A DLL is a perfect choice for our novel PNWCC tour
replanning algorithm due to fast element access, quick mod-
ification, addition, or deletion of observers, fast update time
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for tail observer or lead observer, and quick traversal time.
A representation of a subset of the tour in a DLL will be dis-
cussed in more detail in Section IV-C. Insertion or deletion at
either head observer or tail observer is done in constant time.
Observer data structure access is done in linear time [17].

IV. TRIANGULATION-BASED COVERAGE

PATH PLANNING APPROACH

The TBCPP approach consists of four phases as seen in
Table II. The overall running time of the TBCPP approach is
quadratic which is considered fast. The slowest activity in the
TBCPP approach is the linking of all waypoints (WPs) with
the TSP’s NN algorithm. This activity can be improved with
better algorithms already exist in the literature.

A. Local Observer Planning

LOP is the first phase of the TBCPP approach and it consists
of three subalgorithms: 1) DT; 2) visible polygon (VP); and
3) row-based observer placement (RBOP). The VP algorithm
allows the planner to check if the sensing range available is
sufficiently large to observe the RT. If the sensing range is
sufficiently large, then only one observer is required for an
RT. Else, the planner has to execute the RBOP algorithm to
place sufficient number of observers for an RT. This process
is repeated until all RTs are observed.

1) Visible Polygon Algorithm: A number of definitions have
to be defined to discuss the VP algorithm. They are the extreme
point (EP), the visibility LS (VLS), the VP, and the VP’s ver-
tex (VPV). Fig. 4(a) shows RT 5 which is formed by disks
3, 5, and 7 and line segments LS(3,5), LS(3,7), and LS(5,7).
LS(3,5) have two EPs spawn by disks 3 and 5. All EPs of the
RT are computed by (4) and (5). The VP of the RT is com-
puted as a function of the 6 EPs within the RT and the LSs
forming the RT. Fig. 4 illustrated the process of computing
a VP of the RT. RT 5 is a typical RT with six EPs form by
the three disks and three LSs. The six EPs are shown in red
dots in Fig. 4(b) and they are labeled as points A, B, C, D, E,
and F. Computing the VP is easier to visualize by transforming
the RT into a triangle. This is done by reducing all disks of the
RT into points as shown in Fig. 4(c). An enclosing rectangle
is introduced in Fig. 4(d) to simplify the computation of the
VP and to determine the length of the VLS required.

The rectangle enclosing the triangle in Fig. 4(d) can be
determined with the min and max functions to find the min-
imum and maximum coordinates in the x-axis and the y-axis
of the selected triangle’s coordinates. The coordinates of the
enclosing rectangle are (xmin, ymin), (xmin, ymax), (xmax, ymin),

and (xmax, ymax). The VLS within an RT is found from the EP
and the LS that the EP is on.

Fig. 4(g) shows the VLS in green color which is spawn
by EP A and LS(3,5). VLS A is perpendicular to LS(3,5) at
EP A. Every VLS is perpendicular to the LS that spawn
them at the EP being considered. VLS B is perpendicular to
LS(3,7) because EP B is on LS(3,7). Fig. 4(h) shows the new
VP in yellow and the subarea to be removed due to EP A in
red. Every VLS due to an EP only make the initial VP getting
smaller and smaller. Since every LS of the RT has two EPs,

Fig. 4. Transition from RT to VP from left to right and from up down to
bottom. (a) RT 5. (b) RT 5 and its 6 EPs. (c) Triangle 5 (T5). (d) Rectangle
enclosing T5. (e) T5 and 6 EPs. (f) Initial VP in yellow. (g) VLS due to EP A.
(h) VP due to EP A. (i) VLSs due to A and B. (j) VP due to A and B. (k) VP
due to all 6 EPs. (l) VP due to all 6 EPs.

the VP can be found from the relative positions of the two
EPs of every LS. For example, the initial VP due to EP A is
above the VLS A because the other EP on the LS that EP A is
on is EP C which is above EP A. The overall VP of the RT
has to be determined from all six EPs and it would be smaller
than the triangle of all three disks when the three disks are
reduced to points.

Fig. 4(f) illustrates the initial VP before considering any
EP’s effect. At this point, the number of VPVs is 3 which is
the same as the triangle’s vertices. Fig. 4(i) shows the VLS
due to EP B which generate a subregion shown in blue to
be removed from the initial VP as shown in Fig. 4(j). The
subregions to be removed due to EP A and EP B would be
different in term of size and shape if the EP B were to generate
the VLS before EP A. Fig. 4(k) illustrates the case with EP
A being processed before EP B. Fig. 4(l) illustrates the case
with EP B being processed before EP A.

Once all EPs are processed, the resulting VP is the same
regardless which EP is processed first. The green convex poly-
gon in Fig. 4(k) and (l) are the resulting VP after all 6 EPs
are considered and it has 9 VPVs.
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TABLE V
RT’S VP ALGORITHM

As shown in Table V, four steps are required to compute
the VP. Step 1 of the VP algorithm can be computed from the
disk equation and the line equation in (4) and (5), respectively.
The results for RT 5 are EPs A, B, C, D, and E. xic, yic,
and Ri represent the coordinate of the disk i and its radius,
respectively.

For this particular RT, all points resulting from VLSs inter-
secting with each other and with the RT’s LSs are the VPVs.
For our application of constraining the VP to be within the
RT, the maximum number of vertices that formed the VP is
9. The minimum number of vertices is 3. Fig. 6 will show the
VP of every RT for the given TR. An existence of a single
VP within an RT guaranteed a single observer with sufficient
range to observe the whole RT as long as the observer is in
the convex VP. Fig. 6(a) illustrates all RTs and their VPs. The
VP algorithm allows the computation of the visible region and
nonvisible region of the RT to be determined. For example,
if an observer is placed inside the nonvisible region (region
inside of the RT, but outside of the VP) then the entire RT can-
not be observed, even when the sensing range is exceeding the
constraint in (8)

(x − xic)
2 + (y − yic)

2 = R2
i (4)

y − yic = m(x − xic) + b. (5)

In local planning of a single RT, without knowledge of the
entire environment, it is a good idea to compute the centroid
of the VP as the position of the observer. The position of
the observer can be moved to optimize curvature or distance
requirement through our novel PNWCC algorithm which is
employed in phase 3.

The centroid of a VP can be computed with (6), where AVP,
XC, YC, and n represent an area, the centroid’s coordinate, and
the number of VPVs for the VP, respectively [19]. (xi, yi) are
representing the coordinates of the VPV for all values of i
from 0 to n − 1

AVP = 1

2

n−1∑

i=0

(xiyi+1 − xi+1yi) (6a)

XC = 1

6AVP

n−1∑

i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (6b)

YC = 1

6AVP

n−1∑

i=0

(yi + yi+1)(xiyi+1 − xi+1yi). (6c)

Fig. 5(d) shows that in Fig. 5(d) shows that in order for
the RT to be observable by a single observer, Rs must be

(a) (b) (c) (d)

Fig. 5. Typical RT, its VP, its VP’s centroid, and length. (a) RT 5. (b) RT
5’s VP. (c) VP 5’s centroid. (d) L(EP,G).

(a) (b)

Fig. 6. RTs, VPs, and the VP’s centroid in the TR. (a) TR’s RTs and their
VPs. (b) VPs’ centroids.

larger than or equal to the maximum length expressed in (8a),
where ei represent the EPs A, B, C, D, E, and F. G represents
the centroid of the VP. Computing Rs in (8a) only required
six quantities. Equation (7) represents the Euclidean length
between any two points. Equation (8b) provides the condi-
tion that the sensor can be anywhere in the VP and able to
observe the RT. vj is representing the VPV. For Fig 5(b), there
are nine VPVs in red. Rs in (8b) is larger than Rs in (8a).
Computing the minimum Rs for observer to be anywhere in
the RT require Rs to meet the requirement in (8b) as well as
computing 54 quantities for verification because of six EPs
and nine VPVs, the maximum number of VPVs per RT. RT
1 has only three VPVs and three is the minimum number of
VPV for a VP

L(P1, P2) =
√(

P1,x − P2,x
)2 + (

P1,y − P2,y
)2 (7)

Rs ≥ max
ei∈E

L(ei, G) (8a)

Rs ≥ max
ei∈E,vj∈V

L
(
ei, vj

)
. (8b)

2) Row-Based Observers Placement Algorithm: Multiple
observers in an RT may be required for complete coverage.
In this section, sufficient conditions to observe an RT is for-
mulated, derived, and proved. The RBOP algorithm computes
necessary quantities to find the sufficient number of observers
to observe the RT.

3) Row-Based Observers Placement Theorem: Given any
RT of three disks with one VP, as shown in Fig. 7, a suf-
ficient number of circular observers needed for complete
coverage is

∑row�

n=1 rown, where rown is the number of cir-
cular observers in row n. row� is the total number of row in
the RT.
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(b)(a)

Fig. 7. Row-based approach to find sufficient number of observers. (a) Four
rows of observers. (b) Ten rows of observers.

TABLE VI
ROW-BASED OBSERVERS PLACEMENT ALGORITHM

Proof: It is easy to observe the LSs’ relation in Fig. 7(a) that
lj⊥lIK for j = 1, 2 and l1 ‖ l2. lIK is the line from centers of
disk i to disk k

row� = INT

[
max(L(l1), L(l2))√

2Rs

]
(9)

rown = INT

[
max

(
L(In, Kn), L

(
I(n+1), K(n+1)

))
√

2Rs

]
. (10)

In and Kn are points that can be found using the disk’s and
the line’s formulas. Lines lIK, lIJ, lJK, and lj can be computed
since the origin of disks i, j, and k are known. L(P1, P2) is
the Euclidean distance between points P1 and P2 as expressed
in (7). Note that L(l1) = L(C, P1IK) and L(l2) = L(D, P2IK).
C and D are the EPs of the RT as shown in Fig. 5(d). Note
that the largest rectangle that a circular sensor can envelop is
a square as shown in Fig. 1(b).

With the RBOP algorithm in Table VI, RT 5 as input results
in 11 observers in Fig. 8(a). Each of the rectangles covering
the cell area is smaller than the SMS [see Fig. 1(b)].

As a result, the number of observer in each row as express
in (10) usually result in smaller area being observe than the
SMS which is a rectangle with one of the sides equal to the
side of the SMS dimension (SMSD) and the other side is
usually smaller. With the configuration of disks i, j, and k in
Fig. 8 which correspond to disks 3, 5, and 7 as tabulated in
Table XII, l1 = 230.67 and l2 = 228.04. If Rs = 50, then the
SMSD is 70.71. The total number of row of observer is then

(b) (c)(a)

Fig. 8. RBOP in RT 5 with Rs = 50. Observers are ordered from left to right
and from bottom to up. (a) RBOP in RT 5. (b) RT 5’s observers. (c) Three
sensors on.

(b)(a)

Fig. 9. TR’s CP due to TSP’s NN algorithm. (a) TR’s centroidal CP. (b) CP
with collision correction.

row� = 4. The number of observers in row 1 is row1 = 4.
Likewise, the number of observers in row 2 is row2 = 4.
Rows 3 and 4 only require two observers and one observer,
respectively. Note that observing region in each row may be
of different size or shape due to the configuration of the row
in an RT.

B. Baseline Path Planning

Once the TR with known number of disks has been
partitioned, depending on the radius of the sensing range,
a sufficient number of observers can be computed to observe
the TR. For sufficient sensing range example shown in
Fig. 6(b), only one observer is required per RT. Each and
every observer within the RT can be connected to form a base-
line CP. Many algorithms may be implemented to connect all
observer points (OPs). Since a TSP’s NN algorithm is imple-
mented, many potential CP is obtained. The shortest CP may
be selected without consideration of collision as it can be fixed
later. Equation (11) is the TSP’s equation that determines the
length of the CP with m number of WPs. At this point, all
WPs are OPs. Fig. 9(a) illustrates the CP resulting from con-
necting all OPs in Fig. 6(b). The CP in clockwise direction is
WPs 1, 2, 4, 5, 7, 8, 10, 9, 6, 3, and 1. Since the algorithm is
constructing a tour, the trip starts and ends at the same point

s(x) = L
(
pπ(m), pπ(1)

) +
m−1∑

i=1

L
(
pπ(i), pπ(i+1)

)
. (11)

Every LS of the CP has to be tested for collision with the
obstacle or disk. It is obvious that LS(5,7) is colliding with
disk 5. A simple method to avoid collision with any known
static disk is the static collision avoidance (SCA) algorithm.
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TABLE VII
SCA ALGORITHM

1) Static Collision Avoidance Algorithm: The SCA algo-
rithm finds an equation of the line that is perpendicular to the
LS that involve in collision and that also passes through the
center of the disk [see Fig. 9(b)]. Any collision involved with
a disk will have two possible solutions. The goal is to pick
the intermediate point on the disk that provides the shorter dis-
tance. Fig. 9(b) illustrates two points in gray dots that provide
the solution and they are on the enlarged disk 5. For example,
collision in Fig. 9(b), the point with the shorter distance is
to the right of the original LS that encounter collision. Note
that all disks in Fig. 9(b) are enlarged by the size of the robot.
Fig. 9(a) illustrated the robot as a point, no disk enlargement is
required. As illustrated with Fig. 9’s example, a collision cor-
rection required an insertion of a WP into the CP. This means
that two LSs are replacing a colliding LS by inserting a new
WP to detour the collision. This new WP is not an observer
waypoint (OW). Additional details of the SCA algorithm can
be found in Table VII.

C. Path and Observers Replanning

In a PNWCC algorithm, the current OP also known as OW
or simply as WP is consider to improve the CP while the
previous and the next WPs are used as a constraint to measure
improvement and to manage positional change of the current
WP. Improvements of the CP include reducing the distance as
well as the angle. Each and every WP on the CP may move
to a different position or delete.

As a result, the number of OPs may also be reduced which
mean energy saving, computational reduction, and time effi-
cient. There are two variant of PNWCC algorithms: RBOP
PNWCC and VP PNWCC, also referred to as PNWCC
Algorithms 1 and 2. Fig. 10 illustrated the RBOP PNWCC
algorithm which is tabulated in Table VIII. In Fig. 10(b), four
hole vertices (HVs) surface as a result of turning on WPs 5
and 7 and turning off WP 6. The goal is to modify the location
of WP 6 to minimize path length while maintaining complete
coverage of the regions that were originally covered by the
three WPs. Fig. 11(c) shows that the new OW covers all HVs.

The three regions are represented by regions 5, 6, and 7 in
Fig. 8(b). WP 8 in region 8 is irrelevant at this point because
it is not part of the previous–current–next WPs as presented
in the CP in Fig. 10(a). WPs 9, 10, 1, 2, and 3 are also not
considered at this point because of the complexity of keeping
up with all HVs.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Coverage of an RT prior to and post PNWCC algorithm. (a) Selected
CP with TSP’s NN algorithm. (b) Row 2 coverage with OWs 5 and 7 turned
on. (c) Potential placement of OW 5. (d) Potential placement of OW 5. (e) Old
and new observers in the RT. (f) Modified CP due to new observers.

(a) (b) (c)

Fig. 11. WP 6’s hole and the new WP 6 to cover the hole. (a) Hole 6.
(b) Hole 6’s vertices. (c) New OW.

Fig. 10(c) and (d) presented two potential locations of the
modified WP 6 when only WPs 5, 6, and 7 are considered.
Fig. 10(d) shows the new location of WP 6, also shown in
Fig. 11(c), because it results in the shortest distance among
all possibilities and constraints due to the hole. This dis-
tance improvement is formulated in (12). Once the new WP
6 is found, the algorithm continues to select the next WP
in the CP’s queue until it ends at the very first WP that it
begin with. That is, when the algorithm stops running until
the next iteration. The next WP in the CP’s queue after WP
6 is WP 2 according to the selected CP which is shown in
Fig. 10(a) and the convention that the algorithm executes in
clockwise ordering. For example, clockwise ordering of the
CP in Fig. 10(a) is WP 6, 2, 1, 5, 9, 11, 10, 8, 4, 3, 7, and
6. In this case, the CP may also be equivalently referred to
as tour.

The PNWCC algorithm moved WP 6 slightly to the right
to improve the path length from WP 7 to WP 6 and then to
WP 2. The k, l, and m in (12) correspond to WPs 7, 6, and
2, respectively, in this case. While many WPs were moved to
a different position to improve the path length and the sharp-
ness of the path, the last WP in the CP was deleted as it is no
longer necessary. All of this is done in a single iteration of the
PNWCC algorithm. The PNWCC algorithm may be running
in several iterations to get the best result. Fig. 10(e) shows the
new WP, WP modified by the PNWCC algorithm, in blue and
the original WP, WP in the baseline CP in red. The yellow WP
is the new WP 11. Note that the original WP 11 is colliding
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(a) (b) (c)

Fig. 12. Coverage of an RT after one iteration of PNWCC algorithm.
(a) Observed row 1. (b) Observed row 2. (c) Observed rows 3 and 4.

(a) (b)

Fig. 13. Example of VPV maintaining visibility. (a) Straightline is not
observable. (b) Shortest observable path.

with disk 5 if the robot is not a point and has a radius larger
than 5 units. When the observers were found with the RBOP
algorithm, it is assumed that the sensor or the robot is a point
and in this case collision did not happen

L(Pk, Pl, Pm) = L(Pk, Pl) + L(Pl, Pm) (12a)

L(Pk, Pl, Pm) = L(Pk, Pm) if Pl is collinear with Pk, Pm

(12b)

L
(
Pk, P′

l
) + L

(
P′

l, Pm
)

< L(Pk, Pl) + L(Pl, Pm). (12c)

One complete iteration of the PNWCC algorithm shows
drastic improvement as compare with Fig. 10(a) and (f).
Fig. 12 also shows that all rows are still observable with the set
of new WPs. If the sensing range Rs is equal to or greater than
the constraint in (8b), then a straight line test may be checked
to see if (12a), LS(Pk, Pm), intersect with the current VP as in
Fig. 13(a), k = 9 and m = 3 and Fig. 14(a), k = 8 and m = 9.
If no intersection occurs, as is the case in Fig. 13(a), then
the minimum distance solution for this previous–current–next
WPs does not exist. Alternate solutions may be found with the
vertices of the VP as is the case in Fig. 13(b). Originally, the
algorithm does not know which of the three VP’s vertices is
shortest. All three vertices will be compared and the shortest
is considered.

The example in Fig. 10 is found in step 4 of the PNWCC
Algorithm 1. The examples in Figs. 13 and 14 are found in
step 5 of the PNWCC Algorithm 2. Note that PNWCC for
RBOP and VP have slightly different inputs. After running
1 iteration of the PNWCC Algorithm 1, the number of WP
may be reduced from m to m′, m′ < m. As seen in Fig. 10(a)
and (f), the length s(x) is reduced to s′(x). Situation like
Fig. 10 provides optimization of coverage path length (CPL)
and curvature as well as reduction of the number of observers.
The CP in Fig. 15 is the improved version of the CP in
Fig. 9 due to PNWCC algorithm 2. Because WP5 and WP7 do
not change position, the LS(5,7) still collide with disk 5 the
same way it did prior to PNWCC algorithm. Fig. 15(b) shows

TABLE VIII
PREVIOUS–NEXT WPS COVERAGE CONSTRAINT ALGORITHM 1

(a) (b)

Fig. 14. Example of straight line maintaining visibility. (a) Straight
line, P8P9, is observable. (b) Observable points between two blue dots
inclusive.

the version without collision due to the SCA algorithm. The
CP’s clockwise order in Fig. 15(b) is WPs 1, 2, 4, 5, 11, 7,
8, 10, 9, 6, and 1

s′(x) = L
(
pπ(m′), pπ(1)

) +
m′−1∑

i=1

L
(
pπ(i), pπ(i+1)

)
. (13)

The colliding link is break into two LSs. Because there were
10 WPs before considering the collision, the WP to avoid the
collision is named number 11 since it is the next number after
10. Of the 11 WPs, 10 WPs are OW while 1 WP is not an OW.
WP 11 is a collision avoidance WP. In Fig. 15, the original
OWs are colored gray to denote deletion from the CP. Gray
and yellow WPs are not OWs. Blue OWs are new WP. Red
OWs are unchanged.
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TABLE IX
PREVIOUS–NEXT WPS COVERAGE CONSTRAINT ALGORITHM 2

(a) (b)

Fig. 15. One iteration of tour reduction, PNWCC algorithm. (a) Colliding
PNWCC CP. (b) Collision-free PNWCC CP.

Fig. 16. DLL for PNWCC algorithm.

The DLL presents in Fig. 16 illustrate some control
elements of the WP’s data structures. CoverFullRg and
CoverFullRT represent full coverage of the region and an RT,

TABLE X
AC ALGORITHM

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 17. ACC for input tour. (a) Two LSs. (b) Triangle of 3 WPs.
(c) Enclosing rectangle. (d) HLS spawn by WP1. (e) AC versus HLS. (f) AC.
(g) Tangent circle. (h) Desired CS.

respectively. CoverSomeRg and CoverSomeRT represent some
coverage of the region and an RT, respectively. These optional
parameters are not covered in this paper. They are present to
illustrate the capability of DLL data structure. State and CPL
are Boolean parameters to indicate that the location of the WP
can be moved to improve CPL.

D. Smooth Path Replanning

Applying adaptive curvature control (ACC) algorithm on
all LSs of the CP, the smooth CP for the TR can be found.
Fig. 17 illustrates the process of adaptive circle (AC) algo-
rithm, one of two components of the ACC algorithm, which
begin with the OP being considered and the two LSs connect-
ing to it, LS(1,2) and LS(1,3). Fig. 17(a) is a segment of the
CP shown in Fig. 15.

To find an AC which is proportional to the 2 LSs, LS(1,2)
and LS(1,3), the segment is first transformed into a triangle by
connecting the open endpoints in Fig. 17(a) to get Fig. 17(b).
Then find the minimum enclosing rectangle to wrap around the
triangle. The third base of the triangle, LS(2,3), is always the
opposite length to the WP under consideration. After finding
the triangle as shown in Fig. 17(b), the minimum enclosing
rectangle maybe found with the three vertices of the trian-
gle. The process of finding the MER is identical to that in
Fig. 4(d). The vertical line test (VLT) and the horizontal line
test (HLT) at WP1 will help determine the center of the detour
AC which is required to be on the VLT or the HLT that inter-
sect the boundary of the rectangle and the third base of the
triangle. Fig. 17(d) illustrated the case that the HLT intersect
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(a) (b)

(c) (d)

Fig. 18. ACs and their reference LSs. (a) AC and the CP. (b) AC and the
PNWCC CP. (c) ACs and reference LSs. (d) ACs and reference LSs.

the boundary rectangle as well as the third base of the triangle

ACD = 1

2
min(L(P1, P2), L(P1, P3), (P2, P3)). (14)

This can be visualize with the leftmost side of the rectan-
gle that pass through WP1; it did not intersect the third base.
Fig. 17(e) shows that the center of an AC is on the HLT as
required. There may be two ACs to consider when both the
HLT and the VLT meet the condition in step 3 of the AC
algorithm. Either one may be used. Adaptive circle’s diame-
ter is equate in (14). It may also be set to a certain size for
optimal condition depending on the vehicle and its operational
requirements rather than with adaptive size.

Fig. 18(a) and (b) illustrates the piecewise continuous CP of
the sample TR given in Fig. 2. They are the same as the CP in
Figs. 9(b) and 15(b), respectively, except that the actual disks
of the TR are not shown; only the CP and ACs are shown for
clarity. The number of AC is equal to the number of WP, ini-
tially. Most of the WPs in Fig. 18 are OWs, except for the WP
between WPs 5 and 7 which are collision avoidance WP. In
Fig. 18(a), it is the WP closest to the enlarged disk 5 which
is labeled as 5E. At this point, it should be clear that the CP
obtain after the PNWCC algorithm reduced the CPL, reduce
the number of observers, and also reduce the number of turns.
LS(2,4) in Fig. 18(a) will be replaced with external tangent LS
because it does not intersect with LS(AC2, AC4) as shown in
Fig. 18(c). If the two were to be intersected, then LS(2,4) will
be replaced with internal tangent LS. Fig. 19 illustrates the
process of replacing the piecewise continuous LS for smooth-
ness. Note that OWs are not replaced, they remain at the same
location. Only the CP’s LS leading to the OWs are replaced
and linked to OW by a CS of the AC. See Fig. 20 for the
complete transformation from piecewise continuous CP to the
smooth CP and the preservation of the OWs.

Fig. 19. Transition from ACs to desire tangent LS. (a) ACs. (b) WPs.
(c) WP LS. (d) I2 and J2. (e) LS. (f) Two LSs. (g) I3 and J3. (h) Ib and Ig.
(i) LP(It, Jt). (j) LS(It, Jt).

Fig. 19 provided illustration for discontinuous to continu-
ous (DC) transformation algorithm shown in Table XI. ACs
7 and 8 in Fig. 19(a) may be referred to as ACs I and J,
respectively, in the DC algorithm. In this example, as well as
in all of the WPs in Fig. 18, LS(7,8) presents the LS from
points 7 to 8. LP(7,8) is a line passing through both points
7 and 8. LP(7,8) is longer than LS(7,8) and it contains all
elements of LS(7,8). The concept of LP is required to gener-
alize an LS that is not long enough to intersect a circle at two
points when it could if it were longer. For example, LS(7,8) of
Fig. 18(c) intersect AC 7 at two points and intersect AC 8 at
only 1 point due to its length. The extension of LS(7,8) to
LP(7,8) will intersected AC 7 at two points and AC 8 at two
points. The LS(7,8) of Fig. 18(d) does not need to be extended
to LP(7,8) as it is already intersecting AC 7 at two points and
AC 8 at two points. The extension is necessary for some LSs
to find a true tangent LS for smooth CP. Obvious LSs that
required extension include LS(7,8), LS(7,5E), and LS(5, 5E)
of Fig. 19(c).

A piecewise continuous CP is not desirable for nonholo-
nomic robot. Before the CP can be transformed into a smooth
and continuous CP with AC, the relationship between the two
ACs and the piecewise continuous CP’s LS must be known
so that an internal or external tangent LS can be found.
Fig. 18(a) and (b) must be transformed into Fig. 18(c) and (d),
respectively. The difference between Fig. 18(a) and (c) is that
Fig. 18(c) also connected an LS from center of two ACs that
was connected with an LS of two WPs on the two ACs. The
LS that connect two ACs’ centers is called a reference LS. For
example, WPs 1 and 2 are connected on two ACs, now both
ACs are connected center to center to form a reference LS.

The relationship between LS(1,2) and LS(AC1, AC2) will
require an external tangent LS modification and the tangent
line is to the left of the reference LS. The relationship between
LS(4,5) and the reference LS(AC4, AC5) will required an
internal tangent LS modification. The PNWCC algorithm may
alter the relationship between a WP LS and a reference LS.
For example, LS(7,8) in Fig. 18(c) will require an internal
tangent LS modification, but its counterpart in Fig. 18(d) will
require an external tangent LS modification. After finding the
WP’s LS and reference LS relationship for all LSs, the smooth
CP can be obtained as shown in Fig. 20 with the DC process
illustrated in Fig. 19. While Fig. 19 shows only one iteration
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TABLE XI
DC ALGORITHM

(a) (b)

Fig. 20. First order differentiable CP due to AC’s CS. (a) Smooth PNWCC
CP. (b) Final smooth CP.

of DC transformation, some ACs and LSs in

s′(x) = L
(
pπ(m′), pπ(1)

) +
m′−1∑

i=1

L
(
pπ(i), pπ(i+1)

) +
m′∑

i=1

arc(i).

(15)

Fig. 18 may take up to three iterations to find the smooth CSs,
but no more than three iterations. Each CS in Fig. 20(b) has
three WPs. CSs 1, 4, 5, 7, 8, 10, 9, and 6 have 2 WPs and
1 OW. CS that detours around disk 5 has three WPs with no
OW. The length of the CP shown in Fig. 20(b) can be found
from (15). Note the fundamental difference between (11)

TABLE XII
STATIC WORKSPACE CONFIGURATION IN ASSUMPTION 4

(b)(a)

Fig. 21. Differentiable CP of the TR. (a) Centroid CP (blue) and PNWCC
CP (red). (b) Centroid (blue) and PNWCC CPs (red).

and (15). All WPs in (11) are OWs, but not all WPs in (15)
are OWs. Once all ACs and their WPs are found for a piece-
wise continuous CP, their desirable CSs as illustrated in
Fig. 17(h) can be found by drawing an LS to connect the two
tangent WPs, It and Jt, and then keep the CS that contains
all three WPs. The smooth CP are obtained as in Fig. 21 by
connecting all CSs and all tangential LSs.

V. SIMULATION

We simulate the data in Table XII with CGAL [15]. As
seen throughout this paper, our algorithm works for both lim-
ited sensing range and infinite sensing range. Fig. 8 showed
a limited sensing range in a single RT in the LOP’s phase.
Fig. 10 showed the baseline path planning (BPP)’s and path
and observer replanning (POR)’s phases of a limited sens-
ing range. For sufficient sensing range, Fig. 9 showed the
LOP’s phase, Fig. 15 showed the BPP’s and POR’s phases,
and Fig. 20 showed the smooth path replanning’s phase. All
results are obtained in quadratic time due to the TSP’s run-
ning time which is the slowest in all activities of the TBCPP
approach.

A. Path Comparison

Fig. 21 shows two smooth CPs for the TR given in Fig. 2.
The smooth CP in blue is the CP result from sufficient sensing
range in each and every RT with their OWs being the centroid
of the VPs of all RTs as shown in Fig. 6(b). WP 11 is the only
collision avoidance WP. The smooth CP in red is the CP from
Fig. 20(b). The red CP is much shorter than the blue CP. It is
the result of the PNWCC Algorithm 2.
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TABLE XIII
RUNNING TIME OF TRIANGULATION-BASED CP PLANNING

B. Performance Comparison

It is obvious that the red CP has only eight observers
while the blue CP has ten observers as shown in Fig. 21(b).
For small sensing range as in Fig. 8, the initial number of
observer is 11 while the improve CP has only 10 observers
with reduced CPL.

C. Running Time and Convergence

A number of data structures are required to compute the
running time of the TBCPP approach. They include the RT’s
and LS’ data structures. Table XIII shows the running time
of all four phases of our TBCPP approach with N number of
disks and M number of RTs. The relationship between N and
M can be found in (3), and M is generally slightly larger than N
when there are more than three interior disks in the TR. For
example, disks 3, 5, and 7 are interior disks for the given
TR in Fig. 3. Due to these three interior disks, the number
of RT is greater than the number of disks. In their absence,
the number of RT is smaller than the number of disk. The
number of LS as represents by E in (3) is related to N and M.
ki is a constant number greater than 1 for all values of i from
1 to M, but it may be set to 1 in complexity analysis in term
of big-O notation [18]. ACC combines the AC algorithm and
the DC algorithm to transform piecewise continuous CP into
first-order differentiable CP and it accomplished this in linear
time.

Visually, using RBOP algorithm to fill the necessary num-
ber of observers in each and every RT due to relatively smaller
sensing range as compare to the size of the RT does not
increase the running time of the algorithm due to the con-
vention of the big-O notation. Applying the RBOP algorithm
like Fig. 8 for all RTs in Fig. 3, the number of observers can
be expressed as

k1 + k2 + k3 + · · · + kM ≤ KM (16)

where K is a constant much larger than 1, but much less than M
for a very large geographic region. Then the running time for
the overall TBCPP can be tabulated in Table XIII as quadratic.

VI. CONCLUSION

Our TBCPP approach provides a smooth CP with many
desirable traits such as complete and overlapped coverage con-
trol, curvature and path length control, localization, and choice

of observer’s placement based on sensing range. In addition,
the algorithm also provides collision avoidance with static
disks in the TR. Our family of algorithm begins by partitioning
the TR into several RTs. Based on the size of the RT and the
sensing range, the number and location of observers are deter-
mined for all RT. All observers found are then used as WPs
to generate baseline CP with TSP’s NN algorithm. Finally,
the last algorithm of our approach process all segment of the
CP to find smooth curvature that preserve the location of the
observers. The overall CPL is very easy to compute as it con-
sists of LSs and circles’ CSs. Our result can be integrated with
recent results [22]–[25] to obtain optimal, robust, and low cost
system and products that improve our quality of life.
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