
2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2813426, IEEE
Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1
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Abstract—This paper considers the problem of network structure manipulation in the absence of information on the global network
topology. In particular, the problem of removing some of links is investigated in order to slow or stop the spread of disease in a network
while preserving its connectivity. Existing methods solve this combinatorial problem in a centralized manner and they require the global
information of network structure. In this paper, we propose a distributed design algorithm to compute a suboptimal solution to this
problem efficiently by mimicking gradient based method, namely by iteratively removing one or multiple links at a time from the
network. Specifically, using matrix perturbation analysis we formulate an optimization problem involving the eigenvector associated with
the largest eigenvalue of the adjacency matrix and whose solution is equal to a suboptimal solution to the original problem. This
strategy also enables us to overcome the combinatorial issue of the problem. Distributed algorithms to estimate the eigenvector and to
verify network’s connectivity are then proposed which facilitate us to solve the new optimization problem. In addition, topological
insights into the proposed algorithm and optimality of its solution are also discussed. Finally, the proposed distributed design method is
demonstrated and evaluated via several numerical examples.

Index Terms—Link removal, largest eigenvalue minimization, distributed algorithm, matrix perturbation.

F

1 INTRODUCTION

Complex networks as an interaction between individual en-
tities can be found in many real world examples, not only in
critical infrastructures such as telecommunication networks, power
grids, transportation networks, water distribution networks but
also in social networks and biological networks. One important
feature in complex networks is its topology which captures the
interaction between subsystems/components in a network via
sensing, control, communication or physical interconnection. The
research on network topology manipulation, including link addi-
tion/removal/rewiring, has attracted much interest in recent years,
see e.g., [1], [2], [3], [4], [5], [6]. In this paper, we consider the
problem of removing a fraction of links from a network such that
the largest eigenvalue of the adjacency matrix is minimized while
guaranteeing the network connectivity.

As a motivating application, it is known that the disease
infecting node in a network can spread through the whole network
and may cause outbreak whose speed is related to the network
topology and characterized by the largest eigenvalue of its adja-
cency matrix [7]. Note that the term disease is quite general and is
applicable to various applications such that the spread of viruses
in networked computer system, cascading failures in networked
power grid [8] or attacks in cyber-physical systems. One way
to slow the spread of disease or contain its dissemination, other
than by immunizing certain individual nodes [9], is by removing
a fraction of existing links from the network until the largest
eigenvalue of its adjacency matrix is below a certain threshold.
This means that we do not need to immunize the individual
nodes but rather control their interactions and the disease’s path
of spreading [3], [10]. Note that removing links in a network
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are equivalent to ”unfriending” people in social network such as
Facebook or disconnecting the physical lines via switches in power
network.

In general the problem of link removals of complex network
to minimize the largest eigenvalue of the adjacency matrix is
NP-hard [1]. Therefore, most of the work focuses on heuristics
and approximations of this problem. Although the authors in [3]
propose a relaxation method based on semi-definite programming
(SDP) to solve this problem, the approach does not scale to large-
size networks and is not applicable for weighted networks. The
works [1], [10] propose various heuristics such as the one based
on eigenvalue sensitivity and number of hop walks of the graph to
solve approximately the original problem. However, the authors do
not consider connectivity preservation of the network. It is worth
noting that minimization of the largest eigenvalue of a symmetric
matrix has received a lot of attention since the seventies and sev-
eral algorithms have been proposed, e.g. [11], [12]. Nonetheless,
in this existing work the decision variable is continuous while,
in this paper, the decision variable is discrete. Note that extending
such a result from continuous variables to discrete ones is far from
trivial, because mixed integer optimization problems are often too
challenging and could only be solved in special cases. For exam-
ple, even though it may be possible to apply a relaxation method
in combination with a threshold operation to decide which links to
be removed, how to optimally choose the threshold is not a trivial
problem, especially when taking into account the constraint on the
network connectivity. More importantly, all the work mentioned
above assumes that the global network structure is known and
available to the designer. However, in practice the global network
structure information may not be available or may be difficult
to accumulate in a centralized fashion because of geographical
constraints such as in power grid [13]. Another reason is due to
privacy concerns [14], [15], namely each individual node may not
be willing to share its set of neighbors to the individuals who are
not his/her friend as motivated from social network. This limitation
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on the network structure information prevents applicability of the
existing (centralized) approaches. On the other hand, a node in real
world normally knows to whom it is connected in the network.
Hence, a natural way to solve the link removal problem in the
absence of global network structure information is by solving it
distributively, namely based on the local information available
to each node. Moreover, distributed algorithm also allows each
node to make its own decision in responding to the changes in
the network without the need of a centralized decision maker.
Distributed algorithm for link removals is proposed in [16] where
it is assumed that the healthy node can assess the state of its
neighbors and based on this information, it will remove a link to a
neighboring infected node with a certain probability. However,
for certain scenarios it may not always be possible to assess
the current state of other nodes in a network. In addition, the
results in [16] is tailored to SIS epidemic model and the links
being removed may destroy the connectivity of the network. The
probability of removing a link is also chosen heuristically and
there is no optimality discussion on solution obtained from the
proposed algorithm. Recently, there has been a growing interest
in reconstructing network topology. One of the most recent results
which reconstructs the topology in a fully distributed fashion is
presented in [17]. One might then ask whether it is possible to
apply such distributed network reconstruction strategy to deter-
mine global network structure. We should mention that distributed
reconstruction strategy proposed in [17] has several limitations
such as it is only suitable for small size network and is limited
to unweighted graph. More importantly, the algorithms require
cooperation between the nodes, which may not be possible when
the nodes do not want to reveal their neighboring information to
others due to privacy reasons and thus decline to cooperate.

In this paper, we consider link removal problem for an undi-
rected network in the absence of global network structure in order
to control the spread of disease while guaranteeing the network
connectivity. The problem is motivated by numerous applications
such as: (i) diminishing the propagation of frequency oscillation or
cascading failure in power grid while guaranteeing that each load
can still be served by the generators; (ii) reducing distribution of
malware in social network while ensuring important information
can still be received by each person; (iii) removing virus from a
computer network while guaranteeing e-mail or message can still
be sent from/to any member in the network. The problem is for-
mulated as to minimize the largest eigenvalue of adjacency matrix
by removing a given number of links from the existing network.
Since this problem is combinatorial in nature, we aim to compute
one of its suboptimal solutions under the unavailability of global
network topology information. Specifically, the contributions of
this paper are fourfold.

(i) We present a unified distributed strategy to compute a subop-
timal solution to link removal with connectivity preservation
problem. The main idea is to mimic gradient based approach
by removing the links iteratively. Specifically, using matrix
perturbation analysis we formulate an optimization prob-
lem involving the eigenvector associated with the largest
eigenvalue and whose solution is equal to a suboptimal
solution to the original problem. We provide an explicit rule
on choosing the stopping threshold for distributed power
iteration to estimate the eigenvector so that the stability of
the overall system due to the estimation error is guaranteed.
Moreover, we present a simple distributed algorithm based

on max-consensus protocol to verify the connectivity of a
graph as a result of link removal. It is worth noting that
distributed strategy proposed in this paper also has broad
applications such as for computing a suboptimal solution to
link addition problem whose goal is either to improve the
network connectivity or maximize the spread of information
in a network. Even though perturbation analysis has been
used in topology design problem, it is still not clear how
to implement it distributively while also taking into account
network connectivity.

(ii) We provide analysis on optimality of the proposed approach
in comparison to brute force search in the presence of global
network topology information. Specifically, we present the
gap between global optimal solution and solution to the
distributed strategy for network with a large spectral gap.

(iii) We investigate topological properties on solution to the pro-
posed distributed algorithm. It is shown from both analysis
on complete graphs and simulations on random networks that
the proposed strategy tends to balance degree distribution by
reducing the gap between maximum and minimum degrees
of the network. This topological insight may be used to
reduce search space when solving the combinatorial problem
in the presence of global network topology information.

(iv) We compare performance of the proposed distributed design
method, the brute-force search and random removal strategy
for different number of link removals via simulations on
several random networks.

The organization of this paper is as follows: basic notions from
graph theory and well-known results which will be used to develop
the algorithm are presented in Section 2. After formally stating
the problem in Section 3, the proposed connectivity-preserving
distributed algorithms to remove some links from a network are
described in Section 4. Moreover, its optimality and topological
insights are discussed in Section 5. Finally, the proposed strategy
is demonstrated and its performance is evaluated via several
numerical examples in Section 6.

2 NOTATION AND PRELIMINARIES

In this section, we recall some basic notions from graph theory
and well-known results which will be used for the development of
distributed link removal strategy.

2.1 Notation

Let R be the set of real numbers and vector 1n ∈ Rn denote the
column vector of all ones. Furthermore, diag(a)∈Rn×n represents
the diagonal matrix with the elements of vector a ∈ Rn on its
diagonal. For a given set N , |N | denotes the number of the
elements in this set. For a symmetric matrix C, let λi(C) denote its
eigenvalues which without loss of any generality is ordered as

λ1(C)≤ λ2(C)≤ . . .≤ λn(C) = λmax(C)

and its spectral radius is defined as ρ(C)
∆
= maxi (|λi(C)|).

Let G = (V ,E ) be an undirected graph with a set of ver-
tices V = {1,2, . . . ,n} and a set of edges (links) E ⊆ V ×V .
Hence, if (i, j)∈ E , then ( j, i)∈ E and nodes i and j are neighbors.
The neighborhood set of node i is given by Ni ⊆ V . The degree
matrix of a graph, D(G ) ∈ Rn×n, is given by D(G ) , diag(d),
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where d = [d1, . . . ,dn]
T and di = |Ni|. The adjacency matrix of a

graph, A (G ) ∈ Rn×n, is defined as

[A (G )]i j ,

{
1, if (i, j) ∈ E ,
0, otherwise.

The Laplacian matrix of graph G , L (G ) ∈ Rn×n is then given by

L (G ), D(G )−A (G ). (1)

A graph is connected if there is a path between any pair of
distinct nodes. When a graph G is connected, the eigenvalues
of its Laplacian satisfy λ1(L (G )) = 0 and λ2(L (G )) > 0. For
graph G , we denote lG ∈ {1, . . . , |E |} the index of the edges in G .

Matrix C is nonnegative if all its elements are nonnegative.
Nonnegative symmetric matrix C is irreducible if and only if its
associated graph G is connected. Nonnegative matrix C is said to
be primitive if there exists a positive integer k such that Ck > 0.
A sufficient condition for matrix C to be primitive is that it is
irreducible and has at least one positive diagonal element [18].
For a primitive matrix C, its largest eigenvalue λmax(C) satisfies
λmax(C)> |λi(C)| for i 6= n and thus we have ρ(C) = λmax(C) [19].

2.2 Max-Consensus Algorithm
Consider an undirected graph G with n nodes and let us assign
state xi(t) ∈ R to each node of G . The max-consensus algorithm
allows all nodes to compute distributively the maximum among
the initial conditions xi(0) for i = {1, · · · ,n}. Specifically, each
node executes the following update rule [20]

xi(t +1) = max
j∈Ni∪{i}

x j(t). (2)

Algorithm (2) can also be modified in a straightforward manner
to compute the minimum among the initial conditions xi(0), i.e.,
min-consensus protocol. It is known that update rule (2) makes all
states xi(t) converge to maxi xi(0) in no more than n steps, i.e., its
computational complexity is equal to O(n). It will be demonstrated
throughout the paper that max-consensus algorithm serves as a
unified framework to solve our problem.

2.3 Matrix Perturbation
In this paper we will utilize the following result on matrix
perturbation [21, p.183].

Lemma 1. Consider a symmetric matrix A. Let λ be a simple
eigenvalue of A with eigenvector equal to ν and let A = A+∆A
be a perturbation of A. Then, there is a unique eigenvalue λ of A
such that

λ = λ +
νT ∆Aν

νT ν
+O

(
‖∆A‖2). (3)

2.4 Distributed Power Iteration Method
Consider a primitive symmetric matrix P ∈ Rn×n. Its eigenvector
νn = [νn,1, · · · ,νn,n]

T corresponding to the simple largest eigen-
value λmax(P) can be estimated using power method by perform-
ing the following iterations [22]

ν̂n(t +1) =
Pν̂n(t)
‖Pν̂n(t)‖∞

(4)

where ν̂n(t) is the estimate of νn at the t-th iteration. Since νn > 0,
any choice of initial condition ν̂n(0) > 0 satisfies ν̂n(0) · νn 6= 0
guarantees that ν̂n will asymptotically converge to νn with rate
of convergence equal to |λ ∗(P)/λmax(P)|2 where λ ∗ denotes the

second largest eigenvalue of P in magnitude. Since the graph
G associated with P is connected, the norm ‖Pν̂n(t)‖∞ can
be computed distributively via max-consensus algorithm (2) by
setting xi(0) = ∑ j∈Ni∪{i}[P]i jν̂n, j(t). Hence the iteration (4) can
be performed in a distributed fashion. In this paper, we adopt the
following distributed stopping condition for iteration (4) [23]

√
n‖r(t)‖∞ ≤ ε

(
min
i∈V

h̄i(t)
)
, (5)

for a given threshold ε ∈ [0,1) where

r(t),
(

max
i∈V

h̄i(t)
)

ν̂n(t)−Pν̂n(t),

h̄i(t),
1

ν̂n,i(t)
∑

j∈Ni∪i
[P]i jν̂n, j(t).

Similarly, condition (5) can also be checked via max/min-
consensus protocol (2). At the end of distributed estimation
process, node i will have the estimate of νn,i. At each iteration t,
each node requires at least 4n steps to compute ν̂n,i since n steps
are required to compute ‖Pν̂n(t)‖∞ and a total of 3n steps are
necessary to check stopping condition (5). Given threshold ε , the
estimation error of νn is bounded by [23]

‖νn− ν̂n(t)‖∞ ≤ 2ε

(
1+

ε

1− ε

)
λn(P)

λn(P)−λn−1(P)
. (6)

Remark 1. In general the (distributed) power iteration method,
e.g. [24], [25], [26] converges asymptotically. The work [27]
presents distributed algorithm to estimate in finite-time the eigen-
vector corresponding to the spectral radius of a matrix. However,
the result is only limited to matrix whose spectral radius is equal
to one and thus is not applicable to our problem.

Remark 2. The reason we perform normalization in (4) is to
overcome the overflow problem as the iteration numbers increase.
Specifically, the nonzero components in the iteration vector may
become extremely large values if |λmax|> 1 or can approach zero
if |λmax|< 1. Since normalization has no effect on the convergence
property of the power method [28, sec. 7.4.1], it can then be done
intermittently.

3 PROBLEM FORMULATION

Consider an n node network whose connections can be represented
by an (unweighted) undirected graph G0 = {V ,E0}. In addition,
let us assume that the graph G0 is connected and our goal is
to remove at most me number of links ∆E − from E0 such that
the largest eigenvalue of adjacency matrix of the resulting graph
Ḡme = {V ,E0 \∆E −} is minimized. As a motivating application,
it is well-known that the largest eigenvalue λmax is the key to
spreading of disease under various types of epidemic models [7],
[29], [30]. Specifically, the epidemics die out if λmax ≤ βc where
βc is a threshold that depends on the epidemic models. Hence,
one method to control the epidemic is by removing some links
from a network to reduce its largest eigenvalue. The problem in
general can then be mathematically formulated as the following
optimization problem:

min
∆E−

λmax(A (Ḡme)),

s.t. |∆E −| ≤ me,

∆E − ⊆ E0,

λ2(L (Ḡme))> 0,

(P1a)
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where the last constraint implies that the resulting topology is
connected. Using the labeling lG0 ∈ {1, . . . , |E0|} on graph G0
introduced in the previous subsection, the optimization problem
(P1a) can then be restated as:

min
ȳ

λmax(A (G0)−∆A−),

s.t. ∆A− =
|E0|

∑
lG0=1

ȳlG0
AlG0

,

λ2(L (Ḡme))> 0,

1T
|E0|ȳ≤ me,

ȳ ∈ {0,1}|E0|,

(P1b)

where AlG0
is a matrix with all zeros entries except for the i j-th

and ji-th entries corresponding to the edge of label lG0 which are
equal to 1, and the vector ȳ = [ȳ1, . . . , ȳ|E0|]

T is a Boolean vector,
i.e., ȳlG0

∈ {0,1} where ȳlG0
= 1 means that the edge lG0 in E0 is

removed.

Remark 3. The formulation in (P1b) can also be modified to
take into account the degradation of the convergence speed to
consensus as will be shown later in this paper. Note that the
optimization (P1b) can be solved before the network is employed
or after the employment since its topology may change.

The optimization problem (P1b) is a combinatorial one whose
global solution can be computed using brute-force search. How-
ever, the complexity increases exponentially with the network
size. In addition, one common issue in solving (P1b), including
its relaxation, for example in [3], is that the global knowledge
on network topology G0 is required or assumed to be known.
However, in reality such information is often not available due
to, e.g., privacy reasons and geographical constraint or hard to
obtain due to the size of the network. Hence, in this paper we
impose the following constraint.

Constraint 1. The overall network topology G0 is not available
and each node i only knows the information on Ni.

The absence of information on global network topology makes
it impossible to solve (P1b) in a centralized manner. Therefore,
in this paper we propose a distributed strategy performed by each
node to solve (P1b) using only its local information on the network
structure given by Ni.

Problem 1. Assume that G0 is connected. Find a suboptimal
solution or an upper bound to the solution to optimization (P1b)
under constraint 1 and by solely using local information on Ni.

In this paper, for the sake of simplicity it is assumed that the nodes
know an upper bound on the size of the network, denoted by n.
Otherwise, the value can be estimated distributively using existing
methods such as the ones presented in [31], [32].

4 DISTRIBUTED LINK REMOVAL ALGORITHM WITH
CONNECTIVITY PRESERVATION

In this section, we formulate an optimization problem whose
solution is equal to a suboptimal solution to (P1b) and describe
a method to solve it in a distributed manner.

4.1 A Suboptimal Solution to Link Removal Problem
Based on the matrix perturbation analysis presented in Section 2.3,
the matrix ∆A− in (P1b) can be treated as a perturbation added to

the matrix A (G0). It is worth to note that perturbation analysis
has also been used to study link addition [33] and node removal
problems [34]. First, observe that since G0 is connected, then
matrix A (G0) is nonnegative and irreducible. This implies that
eigenvalue λmax(A (G0)) is simple [18, Theorem 8.4.4]. Using
Lemma 1 and considering the matrix A = A (G0) + ∆A with
∆A = ∆A−, the following lemma and corollary, whose proofs can
be found in the appendices, provide condition so that

λ max = λmax(A (G0))+
νT

n ∆Aνn

νT
n νn

+O
(
‖∆A‖2) (7)

where λ max is the largest eigenvalue of A and νn is the eigenvector
associated with λmax(A (G0)).

Lemma 2. For a given number of link removals me, assume that
the following condition on graph G0 is satisfied:

|λmax(A (G0))−λn−1(A (G0))|> 2
√

2me. (8)

Then, Equation (7) holds.

For a single link removal, i.e. me = 1, we can compute ‖∆A−‖2 =
‖AlG0

‖2 explicitly and thus improve the bound in (8).

Corollary 1. For me = 1, the condition (8) is given by

|λmax(A (G0))−λn−1(A (G0))|> 2.

Note that the higher order term in (7) depends on the eigenvalues
and eigenvectors of adjacency matrix A (G0) as can be seen
in Section 5.1 and can be estimated/computed in a distributed
manner, for example using the method proposed in [35]. In the
rest of the paper, for simplicity we neglect the higher order term
in (7). Under assumption (8), from (7) with ∆A =−∆A− and since
deleting a link will always decrease λmax [36, Proposition 1.3.10]
we then have

λ max ≤ λmax(A (G0))+∆λmax

where ∆λmax =
νT

n (−∆A−)νn
νT

n νn
and can be computed as

∆λmax =
νT

n

(
−∑

|E0|
lG0=1 ȳlG0

AlG0

)
νn

νT
n νn

=− 2
νT

n νn

|E0|

∑
lG0=1

ȳlG0
νn,iνn, j =−∆λ̄max.

Note that since A (G0) is non-negative and irreducible matrix, we
have νn,i > 0, ∀i which yields ∆λ̄max > 0. Therefore we can write

min
ȳ

λ max ≤ λmax(A (G0))+min
ȳ
(−∆λ̄max)

≤ λmax(A (G0))−max
ȳ

∆λ̄max.

Hence, a suboptimal solution to (P1b) can be obtained by solving
the following optimization problem

max
ȳ

∆λ̄max

s.t. λ2(L (Ḡme))> 0,

1T
|E0|ȳ≤ me,

ȳ ∈ {0,1}|E0|

(P1c)

where

∆λ̄max =
2

νT
n νn

|E0|

∑
lG0=1

ȳlG0
νn,iνn, j, (9)



2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2813426, IEEE
Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 5

!"#$%$&'#$()*"+(,-.%

/01,2

!"#$%$&'#$()*"+(,-.%

/0132

4+..56*'-7(+$#8%

9(+*:(-;$)7*/01,2

!"#$%$&'#$()*"+(,-.%

/0132*<$#8*!"=1

".+#>+,'#$()*,':.5

'""+(?$%'#$()

'""+(?$%'#$()

".+#>+,'#$()*,':.5

'""+(?$%'#$()

%>-#$"-.*-$)@*

+.%(;'-:*

".+*$#.+'#$()

using perturbation 
analysis

using perturbation 
analysis

computing 
a suboptimal solution

multiple link
removals

per iteration

Fig. 1: Methods for computing a suboptimal solution to (P1b)
using iterative and simultaneous link removal strategies

and νn,i denote the i-th element of the eigenvector νn.

Remark 4. Condition (8) can be checked in a distributed manner
using the method in [37] or [35]. Note that network with a large
spectral gap has been studied in the literature, see e.g., [38]. It is
known that good expander graphs have large spectral gap [39, p.
182]. For example, the spectral gap of a complete graph with n
nodes is equal to n. As can be seen from the previous discussion,
when condition (8) is satisfied, it is sufficient to focus only on the
movement of λmax in order to predict or estimate λ max. In addition,
large spectral gap also allows us to neglect the high order term
in (7) [21, p.185] while obtaining a suboptimal solution close
to the global one as also indicated by the simulation results in
Section 6.1.

When condition (8) is not satisfied or the spectral gap
(λmax−λn−1) is small, distributed strategy proposed in the paper
can still be used to compute a suboptimal solution and the solution
can be improved by iteratively removing one (or some) link at
a time from the graph G0 for a total maximum me iterations as
shown in Section 6.1. This iterative strategy can also be seen
as a greedy algorithm for solving optimization problem (P1b)
as illustrated in Fig. 1. In addition, by iteratively removing one
link at a time, the error introduced by the matrix perturbation
will be minimized at each iteration. The iterative strategy is also
suitable for some classes of network with νn,i = νn, j for all i 6= j
such as in regular graph, where the first-order perturbation cannot
predict the movement of eigenvalue λmax. Another strategy is by
incrementally reducing the weight of the link, namely the matrix
∆A in (7) is given by ε∆A− as shown in Section 6.1. By choosing
ε� 1, equation (7) will still hold since the perturbation matrix ∆A
is sufficiently small.

4.2 Choosing Threshold ε for Distributed Power Itera-
tion Method

In order to solve optimization problem (P1c) distributively, we
utilize distributed power method in Section 2.4 to distributively
estimate νn. To this end, we define the primitive matrix P in (4) as

P = In +A (G0). (10)

It is clear that the eigenvalues of P and A (G0) satisfy λi(P) =
1+λi(A (G0)) and they share the same set of eigenvectors. Since
matrix P is primitive, we have ρ(P) = λmax(P) and thus ρ(P) =
1+λmax(A (G0)). Moreover, since G0 is connected, the eigenvalue
λmax(P) is simple and its corresponding eigenvector has positive
elements.

Since power iteration method converges asymptotically, in the
following we provide a guideline for choosing threshold ε in (5)
which guarantees the solution to (P1c) based on the estimated
eigenvector ν̂n, are equal to the one using the true eigenvector νn.

Lemma 3. For connected graph G0 and a maximum number of
links to be removed m, let the threshold ε in (5) be chosen as

ε <
γ(λn(A (G0))−λn−1(A (G0)))

(2+ γ)(dmax +1)
(11)

where dmax is the maximum degree of G0,

γ =

√
b2−4c−b

2
,

b =
1
2
(ν̂n,i + ν̂n, j + ν̂n,s + ν̂n,q), c =

1
2
(ν̂n,sν̂n,q− ν̂n,iν̂n, j)

(12)

and the pairs (i, j) ∈ E0 and (s,q) ∈ E0 are given by

argmin (ν̂n,iν̂n, j− ν̂n,sν̂n,q)

s.t. (i, j) ∈ E m+1
0 ,(s,q) ∈ E m+1

0 ,

ν̂n,iν̂n, j > ν̂n,sν̂n,q

(13)

with E m+1
0 ⊂ E0 is the set of links with (m+1) largest ν̂n,iν̂n, j. We

then have

argmax
|E0|

∑
lG0=1

ȳlG0
ν̂n,iν̂n, j = argmax

|E0|

∑
lG0=1

ȳlG0
νn,iνn, j

with 1T
|E0|ȳ≤ m.

Proof. See Appendix C.

In order to compute (11), the nodes start with a sufficiently
small ε to obtain ν̂n and then improve the estimates by reducing
ε such that condition in (11) is satisfied. While dmax can be
computed distributively using max-consensus protocol in (2) with
xi(0) = di, we only need information on the lower bound of
the spectral gap for checking condition (11). If the spectral gap
is known to be sufficiently large, we can replace λn(A (G0))−
λn−1(A (G0)) in (11) with a sufficiently small value, e.g., 0.0001.
The set E m+1

0 ∈ E0 in (13) can be computed either by iteratively
performing maximum consensus protocol, distributed sorting [40],
or distributively propagating the local computation ν̂n,iν̂n, j with
(i, j) ∈ E0 to the rest of the network [37], [41]. Furthermore, If
m = 1, the pairs (i, j) and (s,q) in (12) are then given by the ones
with the largest and second largest values of ν̂n,iν̂n, j respectively.

4.3 Distributed Connectivity Verification
Let the link (i∗, j∗) be given by the solution to

(i∗, j∗) = argmax
(i, j)∈G0

ν̂n,iν̂n, j. (14)

In the following we utilize the max-consensus protocol (2) to
check distributively connectivity of graph Ḡe = (V ,E0 \ (i∗, j∗)).
To this end, we first set initial values in (2) as xi(0) = 0,∀i ∈ V .
After computing the candidate link to be removed (i∗, j∗), either
node i∗ or j∗ modifies its initial value to xi∗(0) = 1 or x j∗(0) = 1
(nodes i∗, j∗ can either locally negotiate, e.g. based on the estimate
ν̂n,i, or randomly choose, e.g. by flipping a coin, among themselves
to decide which one modifies its initial value to one), while the
remaining nodes keep their initial values unchanged. Without loss
of generality, assume that xi∗(0) = 1 and x j = 0,∀ j 6= i∗. All nodes
then execute (2) on graph Ḡe = (V ,E0 \(i∗, j∗)), which means that
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Algorithm 1 Distributed connectivity verification for Ḡe =
(V ,E0 \ (i∗, j∗))

Require: G0 = (V ,E0) is connected and a candidate link to be
removed (i∗, j∗) ∈ E0 given in (14)

1: set xi∗(0) = 1 and x j(0) = 0 for all j 6= i∗

2: initialize f lagi(0) = 0 for all nodes
3: set Ḡe = (V ,E0 \ (i∗, j∗))
4: execute max-consensus (2) for n iterations on graph G = Ḡe
5: if xi∗(n) 6= x j∗(n) then
6: Ḡe is disconnected
7: f lagi∗(0)← 1 and f lag j∗(0)← 1
8: else
9: Ḡe is connected

10: end if
11: execute max-consensus protocol (2) for n iterations with initial

conditions equal to f lagi(0) for i = {1, · · · ,n}
12: if f lagi(n) = 1 then
13: node i knows that the graph Ḡe is disconnected
14: else
15: node i knows that the graph Ḡe is connected
16: end if

node i∗ does not use the information it received from node j∗ in
its consensus protocol and vice versa. If the resulting graph Ḡe is
connected, then after n steps we have xi(n) = 1,∀i ∈ V . However,
when the removal of link (i∗, j∗) results in disconnected graph Ḡe,
then x j∗(n) = 0. To be more precise, the nodes are partitioned into
two groups denoted by V1 and V2 where, with no loss of generality,
i∗ ∈ V1 and j∗ ∈ V2 whose states are equal to xi(n) = 1, i∈ V1 and
x j(n) = 0, j ∈ V2 respectively. Hence, the pair of nodes (i∗, j∗)
can estimate connectivity of the resulting network by checking
whether xi∗(n) = x j∗(n) and broadcast the result to the remaining
nodes in the network using maximum consensus protocol. The
pseudo-code for distributed connectivity detection is shown in
Algorithm 1.

Algorithm 1 can also be used to check connectivity of the
resulting graph when multiple links are being removed simultane-
ously. To be more precise, let the set of links to be removed be
given by E c ⊂ E0 with |E c| = me > 1. The initial states of nodes
are chosen similar to the case of a single link removal (i.e., only
one node (in the set E c) with initial value equal to one while the
rest are zero) and all nodes execute max-consensus protocol (2)
on graph Ḡme = (V ,E0 \ E c). If there exists at least one pair of
nodes (i∗, j∗) ∈ E c that after n steps xi∗(n) 6= x j∗(n) 6= 1, which
can be checked locally, it can then be concluded that the resulting
graph Ḡme is disconnected.

4.4 The Complete Distributed Link Removal Algorithm

The pseudo-code of the distributed algorithms to compute a
suboptimal solution to (P1b) by removing a single link (resp.
multiple links) iteratively is summarized in Algorithm 2 (resp.
Algorithm 3). Note that removing multiple links may result in
faster computation since the number of iterations in Algorithm 2
is less than me. However, the performance may degrade in com-
parison to the removal of one link at a time as will be shown in
Section 6. Furthermore, by setting m = me, Algorithm 3 can also
be applied to remove me links simultaneously. Both Algorithms 2
and 3 utilize (distributed) power iteration and max-consensus
algorithms. As discussed in Section 2, the convergence rate of

Algorithm 2 Iteratively removing one link at a time from G0

Require: G0 is connected, threshold ε satisifes (11) and node i
knows Ni, me

1: set ȳ = [0, . . . ,0]T ∈ R|E0|

2: initialize e = 1
3: while e≤ me do
4: estimate νn distributively using (4), (5) whose estimation is

given by ν̂n
5: node i computes l∗Ge−1,i

= argmaxȳlGe−1
ν̂n,iν̂n, j for j ∈Ni

6: compute l∗Ge−1
= argmax ν̂n,iν̂n, j with (i, j) ∈ l∗Ge−1,i

using
max-consensus (2) with xi(0) = ν̂n,iν̂n, j, (i, j)∼ l∗Ge−1,i

7: check connectivity of Ḡe−1 = (V ,Ee−1 \ (i∗, j∗)) using Al-
gorithm 1

8: if Ḡe−1 is disconnected then
9: back to steps 5-7 with Ni∗ ← {Ni∗\ j∗} and N j∗ ←

{N j∗\i∗}
10: if Ni = /0 for all i then
11: break
12: end if
13: else
14: continue to step 16
15: end if
16: ȳl∗Ge−1

← 1

17: update Ge← Ḡe−1
18: e← e+1
19: end while
20: solution to (P1c) is given by ȳ

Algorithm 3 Removing m links at a time from the network Gk

Require: graph Gk is connected, threshold ε satisfies (11) and
node i knows Ni, m

1: set ȳ = [0, . . . ,0]T ∈ R|E0|

2: estimate νn corresponding to λmax(A (Gk)) distributively
3: for e = 1, . . . ,m do
4: execute steps 5–16 in Algorithm 2
5: update Ni∗ ← {Ni∗\ j∗} and N j∗ ← {N j∗\i∗} where

(i∗, j∗)∼ l∗Gk
6: end for
7: the set of links to be removed is given by ȳ

power iteration is equal to |λ ∗(P)/λmax(P)|2 where P is given
in (10) while the complexity of max-consensus algorithm is O(n).
Moreover, note that the max-consensus protocol (2) is used at each
iteration of the power method (namely for computing ‖Pν̂n(t)‖∞

and checking stopping condition (5)) and also for computing (9)
and checking the connectivity (Algorithm 1).

In the following we provide some remarks on the proposed
distributed algorithms.

(i) It is worth noting that initial values used to estimate the
eigenvector and to check the connectivity are not the true
initial values of the nodes and thus do not contain any
physical meaning. Therefore, the proposed algorithm pre-
serves privacy of nodes in a network in terms of their true
initial values and does not collide with the privacy preserving
consensus , e.g., the one proposed in [42].

(ii) The set of links that disconnect the resulting network ob-
tained at each iteration in Algorithm 2 can be saved and
those links will be excluded in the next iteration to shorten
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the time required for checking the connectivity of the re-
sulting network. In addition, for a large size network, in
many situations its eigenvector does not change much by
a small perturbation (i.e., single link removal) [43]. Hence,
the estimated eigenvector at the current iteration t can be
used as an initial value ν̂n(0) for the next iteration t + 1 to
speed up the convergence of power method.

(iii) When the initial network G0 is disconnected, then algo-
rithms 2 or 3 can be applied in parallel to all subnetworks.

(iv) As shown in Algorithms 2 and 3, the proposed approach
is not only able to find a suboptimal solution to (P1b) dis-
tributively but also to avoid the combinatorial issue without
applying any relaxation to the Boolean variable.

(v) When graph G0 is given by a weighted undirected graph,
Equation (9) can then be written as

∆λ̄max =
2

νT
n νn

|E0|

∑
lG0=1

ȳlG0
wi jνn,iνn, j (15)

where wi j denote the weight of link (i, j). Hence, the algo-
rithms 2 and 3 can be extended in a straightforward manner
to solve (P1c) in a distributed manner with ∆λ̄max is defined
in (15) and provided that each node i knows wi j for j ∈Ni.

(vi) The proposed distributed algorithm can also be extended
when desired critical value β ∗c is given and the following
additional constraint in (P1b) is required to be satisfied [3]

λmax(A (Ḡme))< β
∗
c .

(vii) The link removal implies that the speed of convergence to
consensus, defined by λ2(L ) be reduced. In order to study
the trade-off between the speed for reducing the spread of
disease and the convergence speed to consensus, we can
formulate and solve the following optimization problem:

min
∆E−

(1−ζ )λmax(A (Ḡme))−ζ λ2(L (Ḡme))

s.t. |∆E −| ≤ me, ∆E − ⊆ E0,

λ2(L (Ḡme))> 0,

where ζ ∈ [0,1] is a constant representing the trade-off
between the two metrics. Similarly, the value of λ2(L (Ḡme))
can be expressed as λ2(L (Ḡme)) = λ2(L (Ḡ0))+∆λ2. Note
that λ2 can also be approximated similarly in a distributed
manner [2], [41].

(viii) The proposed distributed strategy can also be applied to
link addition problem whose goal is to maximize λmax(A )
(e.g., maximizing the spread of information in a network).
Similary, by using perturbation analysis as presented in
Section 4.1 the problem can be approximated as to maximize
∆λmax and thus, the strategy described in Section 4.2 can be
utilized to compute a suboptimal solution. Another possible
objective is to maximize the algebraic connectivity, i.e.,
λ2(L ) as discussed in [41].

5 OPTIMALITY AND TOPOLOGICAL INSIGHT

This section discusses the optimality of the proposed approach
in comparison to the brute-force search in the presence of global
network topology information. Moreover, the topological insight
of the proposed algorithm is also investigated.

5.1 Optimality of the Solution

In the following, we analyze the error between the solutions
to (P1b) and (P1c). First, we discuss the optimality gap between
the solution to (P1c) based on the simultaneous link removal
strategy and the global solution to (P1b). Assume that condi-
tion (8) is satisfied and let the solution to optimization (P1c) for
the simultaneous removal of me links be given by E ∗. The exact
largest eigenvalue of the perturbed matrix by removing the links
E ∗ can be computed as [21]

λ̄
E ∗
max =λmax− ∑

(i∗, j∗)∈E ∗
2νn,i∗νn, j∗

+
n−1

∑
j=1

[
∑(i∗, j∗)∈E ∗ (ν j,i∗νn, j∗ +ν j, j∗νn,i∗)

]2
λmax−λ j

+O
(
‖∆A−‖3).

(16)
Similarly, let the solution to the original optimization prob-
lem (P1b) be given by the set E . The exact largest eigenvalue
of the perturbed matrix by removing the links E is then given by

λ̄
E
max =λmax− ∑

(ī, j̄∈E )

2νn,īνn, j̄

+
n−1

∑
j=1

[
∑(ī, j̄∈E )

(
ν j,īνn, j̄ +ν j, j̄νn,ī

)]2

λmax−λ j
+O

(
‖∆A−‖3).

(17)
Therefore, the optimality gap between the solutions to (P1b)
and (P1c), i.e., |λ̄E

max− λ̄E ∗
max| is equal to the difference between (17)

and (16). As can be observed, the gap depends on all eigenvalues
together with the associated eigenvectors of adjacency matrix
A (G0). Note that for a network with large spectral gap (λmax−λ j)
and j 6= n, the second and higher terms in (16) and (17) become
small and thus can be neglected. Hence, in this case the gap
depends solely on the eigenvector associated with λmax. This also
indicates that the gap between (P1c) and (P1b) is small.

Next, we discuss the gap between the solution obtained from
Algorithm 2 and the global solution to (P1b). As can be seen
from Fig. 1, the gap is equal to the summation of the error from
the greedy algorithm and the perturbation based approximation. It
is unknown if there is a bound on the error between the solution
to (P1b) and the one based on greedy algorithm unless the function
λmax(A (G0)) shares a similar property to supermodular function
of the edges, which to the best of the authors’ knowledge, is still
an open problem. The gap between the greedy based algorithm
and its perturbation based approximation is given by the differ-
ences between (16) and (17). From the simulations presented in
Section 6.1, it is observed that when the spectral gap (λmax−λn−1)
is large, the gap between the solutions is quite small. In addition,
it is worth noting that the value of[

λ̄
E ∗
max− (λmax− ∑

(i∗, j∗)∈E ∗
2νn,i∗νn, j∗)

]

for the simultaneous multiple link removal strategy is larger
than single link removal strategy, meaning that the first-order
approximation poorly approximates the exact eigenvalue of the
perturbed matrix for the simultaneous multiple link removal case.
This is one of the reasons why in general removing iteratively one
link at at time yields a better solution compared to simultaneous
link removal strategy as mentioned in Section 4.1.
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Fig. 2: Average degree gap for link removals of regular graph,
which are randomly generated for 100 times, with network size of
50 nodes and node degree equal to 20. The number of links being
removed varies between 1 and 150 and a single link is removed
iteratively. As can be seen, the proposed strategy tends to balance
the degree distribution of the network

5.2 Topological Insights into the Proposed Strategy
In the following we provide topological insights into Algorithm 2.
We start by introducing the degree’s gap δ of a network which is
defined as

δ = max
i

di−min
j

d j. (18)

We then have the following as a result of applying Algorithm 2 to
a complete graph whose proof can be found in Appendix D.

Lemma 4. Consider a complete n-node network of degree (n−1)
with δ = 0 and assume that me ≤ b n

2c. Then, the degree’s gap
of the resulting network after removing me links by applying
algorithm 2 satisfies δ ≤ 1.

In addition, we perform simulations on 100 randomly gener-
ated regular graphs with size of 50 nodes and degree equal to 20.
For each graph, we apply Algorithm 2 where the number links
to be removed me is varied between 1 and 150. Figure 2 shows
the average degree’s gap δ for each me. As can be observed, the
degree’s gap of the resulting graph is bounded by two, i.e. δ ≤ 2.
It is shown from Lemma 4 and simulations results in Fig. 2 that
algorithm 2 tends to reduce the degree’s gap or balance the degree
distribution of a network, i.e., to make the resulting network to be
as regular as possible, which supports the claim in [1]. We will also
show later in Section 6 that a similar observation can also be found
in several random networks and also real network such as power
grid. Note that it is shown in [44] that the difference between the
eigenvector νn of a graph and its degree vector to be the smallest
(i.e., qT q = 0 with q = νn− d√

dT d
) when λmax =W2/W1 where Wk

denotes the total number of k hop walks between any two nodes
which can be the same. In other words, for this type of graph the
element of the eigenvector νn,i is ”proportional” to the degree of
node. Therefore, for network with λmax =W2/W1 (e.g., large size
Erdös-Rényi random graphs), the proposed strategy in Algorithm 2
is equivalent to removing links whose corresponding nodes have
the largest degree which is similar to the strategy presented in [16].

The observation in Lemma 4 does not always hold when
multiple links are removed at a time as given by algorithm 3 which
will be shown later in Section 6. The observation that Algorithm 2
tends to reduce the degree’s gap may be used for reducing the
search space of the original optimization problem (P1b).

node 1
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8

Fig. 3: A network G0 consisting of 8 nodes. The dashed and dash-
dot lines are the global and suboptimal solutions from Algorithm 2
respectively for me = 6
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Fig. 4: Comparison between the proposed distributed design
method for different number of links removed at each iteration
and brute-force search for a network given in Fig. 3

6 NUMERICAL EXAMPLES

In this section, we demonstrate and evaluate the proposed dis-
tributed strategy via several numerical examples.

6.1 Demonstration and Comparison with Centralized
Approach
First, we demonstrate the distributed design procedure and com-
pare it with the centralized approach in the present of global
network topology information. We consider a network of 8 nodes
whose initial structure G0 is shown in Fig. 3. We choose a small
size network so that the comparison with the centralized approach,
which in general is NP-hard, becomes possible. The number of
links to be removed me is varied between 1 and 6. We apply
algorithm 2 in order to remove iteratively a single link at a
time. At each iteration i = {1, . . . ,me}, the nodes first estimate
νn distributively. The estimate of νn for graph G0 is given by

ν̂n = [0.799,0.857,0.786,0.83,0.67,1,0.779,0.399]T .

In addition, we also apply Algorithm 3 and modify the number
of links removed at each iteration to 2, 3 and 6 links. As a
comparison we also solve the original optimization problem (P1b)
by performing a brute-force search. Solutions to (P1c) using
Algorithms 2, 3 and the optimal solution to (P1b) are shown in
Fig. 4. First, it can be observed from Fig. 4 that the Algorithm 2
results in a better performance in comparison to the simultaneous
link removal strategy for me = 6. Next, for the iterative single link
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Algorithm 4 Iterative link removals based on continuous pertur-
bation matrix
Require: graph G0 is connected, me, ε � 1

1: set ȳ = [0, . . . ,0]T ∈ R|E0|

2: initialize A = A (G0)
3: while ‖A‖0 > 2(|E0|−me) do
4: compute the optimal link (pair of nodes) (i∗, j∗)∼ l∗G0

using
algorithm 2 for the matrix A

5: A← A− εAl∗G0
6: end while
7: if [A]i j > 0 then
8: [A]i j = 1
9: end if

10: if [AG0 −A]i j = 1 then
11: ylG0

← 1 where lG0 ∼ (i, j)
12: end if
13: the set of links to be removed is given by ȳ

removal strategy and me = 1,2,3, the solutions to (P1c) are nearly
optimal, and in fact equivalent to that of (P1b), i.e., there is no
performance loss in spite of the absence of the global network
topology. Note that, the value |λmax(A (Gi))−λn−1(A (Gi))| are
equal to 2.6291, 2.2516, 2.0540 for i = 0,1,2 respectively which
satisfy (8). However, as me increases, the gap between the values
of λmax and the solutions to (P1c) and (P1b) becomes larger
as the spectral gap becomes smaller. Note that, it can still be
seen that the resulting λmax in (P1c) is still close to the one in
(P1b). Next, we look at the results for removing multiple links
at each iteration (Algorithm 3). When me = 4, removing a single
link at each iteration yields a better performance when compared
to removing 2 links. However, for me = 6 removing 2 links at
each iteration results in a better performance than the single link
removal. Hence, it can be observed that in general removing a
small number of links (a single link or 2 links) at each iteration
yields a better performance than removing 3 links or more links
simultaneously. The question on what is the optimal number of
links to be removed at each iteration is subject to our future work.
The degree’s gap δ of the original network is equal to three and
the degree’s gap from both the global and suboptimal solutions are
equal to one.

Finally, we compare the performance of Algorithm 2 with the
one where ∆A in (3) is replaced by a ”continuous” perturbation
matrix ε(∆A−) with ε � 1 and ∆A− = ȳlG0

AlG0
. Specifically, we

modify Algorithm 2 and apply a simple threshold operation as
described in Algorithm 4 to compute a set of links to be removed.
The results are summarized in Table 1 in which Algorithm 2 yields
a better result compared to Algorithm 4 for me = 1, · · · ,4.

TABLE 1: Comparison of λmax(A (Gme)) obtained from Algo-
rithms 2 and 4 for the network depicted in Fig. 3

me ∆A− ε(∆A−)
ε = 0.0001 ε = 0.00001

1 3.624 3.657 3.657
2 3.348 3.497 3.398
3 3.068 3.244 3.214
4 2.812 2.948 2.954
5 2.593 2.659 2.592
6 2.355 2.302 2.355

Note that the solutions from both Algorithms 2 and 4 are
close to the global optimal ones as confirmed from Fig. 4. The

computational time required by Algorithm 2 is much less than the
one needed by Algorithm 4 in terms of the number of estimation
of νn. In addition, it can be observed that a smaller ε does
not necessarily result in a better performance, e.g., for the case
of me = 4,6. This may also indicate that choosing the optimal
threshold for Algorithm 4 is not a trivial problem. However, this
issue is beyond the scope of the current paper.

6.2 Evaluation on Random Networks

In the following we evaluate the proposed strategy on random
networks, namely Barabási-Albert Scale Free model, Gilbert
stochastic and Watts-Strogatz models consisting of 200 nodes and
with number of links |E0| equal to 570, 574 and 639 respectively.
These random networks share special properties such as their
degree distribution as illustrated in Fig. 5 which may help us to
gain insights on the proposed strategy as will be shown later. For
each type of random network we first remove a single link using
Algorithm 2 where the value me is varied between a single link
and 30% of |E0|. In addition, we compare the proposed strategy
with random link removal, while preserving the connectivity of
the resulting network, as the simplest alternative of distributed
strategy. It is clear from Fig. 6 that Algorithm 2 outperforms
the random link removal strategy. Moreover, in order to obtain
a desired λmax, more links are required to be removed when using
the random strategy which is undesired since it can deteriorate
significantly the speed of the consensus algorithm.

Next, we apply Algorithm 3 by removing 5 links and 20 links
at each iteration. As can be observed from Figs. 6a and 6b, for
Barabási-Albert Scale Free and Gilbert stochastic network models
the resulting value of λmax from removing 5 and 20 links at
each iteration are close to the case of a single link removal.
This means that for these network models, we can reduce the
total computational effort of the proposed distributed strategy in
terms of the number of iterations without harming the quality
of its solutions. However, as can be seen from Fig. 6c, the gap
of λmax between a single and multiple link removals at each
iteration for the Watts-Strogats model is quite large. Specifically,
the performance of Algorithm 2 for 20 link removals at each
iteration turns out to be worse than the random link removal
strategy. In order to get a hint of the cause for this performance
degradation, we investigate the topological property, namely the
degree distribution of the resulting network given by Algorithms 2
and 3. To this end, we compute the degree’s gap δ defined in (18)
and the total difference of the degree in the network given by
∑i6= j |di − d j|. As can be seen from Figs. 7 and 8, in general
lower values of δ and ∑i6= j |di− d j| yields lower values of λmax,
i.e., results in a better performance. Furthermore, the solutions
given by algorithm 2, i.e., by iteratively removing one link at a
time, for all three random networks tend to reduce the degree’s
gap δ which support our analysis in Section 5.2. It is worth noting
that for the case of Watts-Strogats network, removing 20 links at
each iteration in general yields a larger degree’s gap δ and total
difference of the degree in comparison to the one obtained by
the random link removals strategy as depicted in Figs. 7c and 8c.
This is one of the reasons why removing 20 links at each iteration
results in a worse performance compared to random link removal
strategy. Hence, the simulation results suggest and we conjecture
that when a network has similar degree distribution to that of
regular graph, it is recommended to remove one or small number
of links at a time in order to yield good quality of solutions. Note
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Fig. 5: Degree distribution of Random networks model of 200 nodes considered in the numerical example
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Fig. 6: Proposed approach vs. random link removal strategy for random network of 200 nodes. The proposed distributed algorithm
outperforms the random link removal strategy for all three random networks. For (a) and (b), multiple link removals at each step yields
a performance near the single link removal at each step. On the other hand, for case (c) multiple link removals results in much worse
performance compared to the single link removal and may be worse than the random link removal strategy
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Fig. 7: Degree’s gap for different link removals strategies. As can be observed, algorithm 2 tends to reduce the degree gap of the three
random networks. On the other hand, algorithm 3 does not always reduce the degree’s gap, especially for case (c)

that the observations on the degree’s gap and the total difference
of the degree might be used as a hint to decide whether a given
number of links to be removed at each iteration is a good choice.
In addition, this insight may also be combined with the proposed
strategy to improve the quality of solutions obtained by removing
multiple links at a time for Watts-Strogatz network.

Finally, let us assume that at each iteration m number of
links are going to be removed from the networks in Fig. 5 while
preserving their connectivity. Fig. 9 shows the number of links
involved in the connectivity verification at each iteration for the

proposed strategy (with different values of m), which are not less
than m as can be observed from Algorithm 3. It can be seen
that for the case of m = 1,5 the number of links involved in the
connectivity verification for all the networks considered in Fig. 9
are equal to m. However, for the case of m= 20 and Watts-Strogatz
network model the number of links involved in the connectivity
verification are slightly larger than m while for the scale-free and
Gilbert stochastic network models the number are equal to m.
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(b) Gilbert stochastic model
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Fig. 8: Total degree difference over all nodes in the network for different link removals strategies. Lower values reflect the balance of
degree distribution of the network
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7 CONCLUSION

This paper proposes distributed strategy for removing links from a
network in the absence of global network structure information.
The strategy is first to formulate a new optimization problem
involving eigenvector corresponding to the largest eigenvalue and
whose solution is equal to the original optimization problem.
Distributed algorithm to estimate the eigenvector is then proposed
which facilitates us to compute a suboptimal solution distribu-
tively. Even though in this paper we focus on link removal, the
proposed distributed strategy is also applicable for computing
suboptimal solution to link addition problem whose goal is to
improve the network connectivity or maximize the spread of
information in a network. Hence, the proposed distributed strategy
has broad applications. Possible future work include solving link
removal problem by considering the state of the nodes and also
exploring alternative distributed strategy, e.g., by relaxing the
binary decision variables (similar to the idea discussed in [45])
in combination with development of optimal threshold operation
to recover the binary variables.
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