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Distributed Estimation of All the Eigenvalues
and Eigenvectors of Matrices Associated

With Strongly Connected Digraphs
Azwirman Gusrialdi, Member, IEEE , and Zhihua Qu, Fellow, IEEE

Abstract—This letter considers the problem of
estimating all the eigenvalues and eigenvectors of an
irreducible matrix, corresponding to a strongly connected
digraph, in the absence of knowledge on the global network
topology. To this end, we propose a unified distributed
strategy performed by each node in the network and relies
only on the local information. The key idea is to transform
the nonlinear problem of computing both the eigenvalues
and eigenvectors of an irreducible matrix into a linear one.
Specifically, we first transform distributively the irreducible
matrix into a nonsingular irreducible matrix. Each node
in the network then estimates in a distributed fashion
the inverse of the nonsingular matrix by solving a set of
linear equations based on a consensus-type algorithm.
The eigenvalues and the corresponding eigenvectors are
finally computed by exploiting the relations between the
eigenvalues and eigenvectors of both the inverse and
the original irreducible matrices. A numerical example is
provided to demonstrate the effectiveness of the proposed
distributed strategy.

Index Terms—Estimation, distributed algorithm,
irreducible matrix, network analysis and control.

I. INTRODUCTION

THE INTERACTION between individual nodes (subsys-
tems) in a network (such as metabolic, transportation,

social, power and robotic networks) can be modeled as a
graph which can be further represented (for the purpose of
analysis) by the so-called Laplacian or adjacency matrices.
The eigenvalues and eigenvectors associated with those matri-
ces contain important information related to the network’s
performance and robustness. For example, the information on
the eigenvalues of a graph has been used in chemistry and
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quantum mechanics [1]. Moreover, the Laplacian eigenvalues
can also be used to assess the graph robustness through the
Kirchhoff index [2] or Laplacian energy [3]. One of the most
studied eigenvalue, namely the second smallest eigenvalue of
the Laplacian matrix is closely related to the convergence
speed of a consensus algorithm [4]. All the eigenvalues of
the Laplacian matrix can also be used for designing consen-
sus matrices so that average consensus can be achieved in
a finite number of steps [5]. Note that the consensus algo-
rithm has wide applications, ranging from robotics [6], smart
grids [7], to transportation systems [8], [9]. The eigenval-
ues of the adjacency matrix are also related to the natural
connectivity which is a measure of structural robustness in
complex networks [10]. Furthermore, the largest eigenvalue of
the adjacency matrix is a key to the spreading of disease under
various types of epidemic models [11]. Similarly, the eigenvec-
tors of the adjacency matrix have applications in community
discovery [12].

In practice, the global topology of a network is typically
not available or unknown. As a result, the eigenvalues and
eigenvectors corresponding to the network cannot be directly
computed. This motivates the work on estimating the eigenval-
ues of the Laplacian matrix or recovering the overall network
topology distributively, i.e., by using only local information of
each node in the network. Various distributed algorithms have
been proposed to estimate distributively all the eigenvalues
of the Laplacian matrix associated with an undirected graph
based on the Fast Fourier Transform method [13], observabil-
ity of the network [14] and by solving a constrained consensus
optimization problem [15]. Yang and Tang [16] propose a two-
step distributed algorithm to compute the eigenvalues of not
only the Laplacian matrix, but also any matrix induced by the
graph. However, the result is only limited to undirected graph.
The work [17]–[19] focus on distributed estimation of the sec-
ond smallest eigenvalue of the Laplacian matrix associated
with a strongly connected directed graph (digraph) together
with the corresponding left and right eigenvectors based on the
power iteration method. In addition, Charalambous et al. [20]
propose a distributed algorithm to compute all the eigenval-
ues of the Laplacian matrix for strongly connected digraphs in
finite-time. However, the approach in [20] is only applicable
to row stochastic matrix. Furthermore, it is not clear if the
approach can also be used to estimate distributively all the
left eigenvectors of the Laplacian matrix. To the best of our
knowledge, there still exists no work on the distributed esti-
mation of all the eigenvalues together with both the left and
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right eigenvectors of any irreducible matrix corresponding to
strongly connected digraphs, including both the Laplacian and
adjacency matrices as special cases.

The main contribution of this letter is the development of a
unified strategy to estimate all the eigenvalues and eigenvec-
tors of any irreducible matrix in a distributed manner. The key
idea is to transform the nonlinear problem of computing both
the eigenvalues and eigenvectors of a matrix into a linear one.
Specifically, we first transform distributively the irreducible
matrix into a nonsingular irreducible matrix by utilizing the
maximum consensus protocol. Each node in the network then
estimates in a distributed fashion the inverse of the nonsingular
irreducible matrix by solving a set of linear equations based
on a consensus-type algorithm proposed in [21]. The eigenval-
ues and the corresponding eigenvectors are finally computed
by exploiting the relations between both the eigenvalues and
eigenvectors of the inverse and the original irreducible matri-
ces. It is worth mentioning that, based on distributed algorithm
of solving linear equations such as [21], the proposed method
successfully solves the nonlinear problem of distributively cal-
culating eigenvalues/eigenvectors and our contribution lies in
the non-trivial idea of recasting the original nonlinear problem
into a linear one, namely the problem of solving a set of lin-
ear equations, which further facilitates us to adopt the results
in [21].

The organization of this letter is as follows: preliminary
results on graph theory and the problem formulation are
presented in Section II. After providing motivating applica-
tions of the problem in Section III, distributed algorithm to
estimate all the eigenvalues and eigenvectors of any irre-
ducible matrix is presented in Section IV. Finally, the proposed
strategy is demonstrated via a numerical example in Section V.

II. PROBLEM STATEMENT

In this section, we first provide a brief overview of graph
theory and followed by the problem formulation.

A. Notation and Preliminaries
In this letter, vectors are considered as column vectors.

Let R be the set of real numbers; vector 1n ∈ R
n denotes the

vector of all ones. Furthermore, diag(a) ∈ R
n×n represents

the diagonal matrix with the vector a ∈ R
n on its diagonal.

The identity matrix In ∈ R
n×n is given by In = diag(1n). For

a given set N , the number of its elements is denoted by |N |.
For a matrix Q = [qij] ∈ R

n×n, let [Q]i∗ and [Q]∗i represent
vectors whose elements are equal to the i-th row and column
of Q respectively. Without loss of any generality we assume
that the eigenvalues of Q, denoted by λi(Q), are ordered as

Re(λ1(Q)) ≤ Re(λ2(Q)) ≤ · · · ≤ Re(λn(Q)).

Moreover, the left and right eigenvectors corresponding
to λi(Q) are denoted by vi(Q), wi(Q) respectively. Let G =
(V, E) be a directed graph (digraph) with a set of nodes
V = {1, 2, . . . , n} and a set of edges E ⊂ V × V . An
edge (i, j) ∈ E denotes that node i can obtain information
from node j. The set of in-neighbors of node i is denoted by
N in

i = {j|(i, j) ∈ E}. The directed graph G is strongly con-
nected if every node can be reached from any other nodes
by following a set of directed edges. Matrix Q ∈ R

n×n is
irreducible if and only if its associated graph G is strongly
connected. The weighted adjacency matrix A = [aij] ∈ R

n×n

associated with digraph G is defined as

A = [aij],

{
aij > 0 if i �= j and (i, j) ∈ E,
0, otherwise.

In addition, the weighted Laplacian matrix L ∈ R
n×n is

defined as

L � D − A

where degree matrix D = diag(d) with d = [d1, . . . , dn]T and
di = ∑

j∈N in
i

aij. If the graph G is strongly connected, then
we have λ1(L) = 0 and Re(λi(L)) ≥ 0 for i = {2, . . . , n}.
Note that both the Laplacian and adjacency matrices associated
with a strongly connected digraph are the special cases of the
irreducible matrix.

B. Problem Statement
Consider a network consisting of n number of nodes whose

(communication) topology is represented by a strongly con-
nected digraph G = (V, E). Associated with the graph G,
consider an irreducible matrix Q = [qij] ∈ R

n×n (can be sin-
gular) which has a similar sparsity structure as the graph G,
i.e., qij = 0 if (i, j) /∈ E and qij �= 0 otherwise. Hence, node
i knows qii and qij with j ∈ N in

i which can be obtained via
the communication network. The problem considered in this
letter can then be formally stated as follows.

Problem 1: Given an irreducible matrix Q ∈ R
n×n, com-

pute λi(Q) for i = {1, . . . , n} together with the corresponding
eigenvectors distributively, i.e., the i-th node in the network
collaboratively determines all eigen information of the entire
network by applying its local information of the i-th row
of matrix Q. For simplicity and practicality, the informa-
tion exchange is done through the same local communication
network, i.e., graph G has similar structure to that of matrix Q,
and all the nodes of the network are numbered apriori.
Moreover, it is assumed that each node knows the size of
the network (or its upper-bound).

Note that the above settings are standard in the related lit-
erature on distributed algorithms, see [16], [20], [22]–[24]. In
practice, the overall network topology G and its associated
matrix Q are typically not available (unknown). The unavail-
ability of the global network topology may be due to (i) the
geographical constraint [25]; or (ii) the fact that the topology
might change over the time.

III. MOTIVATING APPLICATIONS

In this section, the importance of estimating distributively
the eigenvalues and eigenvectors of an irreducible matrix is
illustrated through several applications.

A. Distributed Stability Test for Interconnected System
Consider an LTI system consisting of n scalar subsystems.

The dynamics of each subsystem is given by

xi(k + 1) = qiixi(k) +
∑

j∈N in
i

qijxj(k).

where xi ∈ R denotes the state of subsystem i. The settings can
also be extended to non-scalar case where xi ∈ R

n. The overall
interconnected system can be written in a compact form as

x(k + 1) = Qx(k), (1)
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where x(k) = [x1(k), . . . , xn(k)]T and the structure of
matrix Q represents the interconnection between the individual
subsystems. We assume that matrix Q is irreducible. Recently,
there has been a growing interest to develop algorithms
to test the stability of interconnected system (1) in a dis-
tributed manner. For example, Deroo et al. [26] propose two
strategies based on distributed optimization techniques to dis-
tributively test the stability of the continuous-time version
of (1). However, the proposed approach only provides suf-
ficient conditions for the stability and in some cases can be
conservative. Moreover, there is also a restriction on the com-
munication topology in order to solve the proposed distributed
optimization. Therefore, distributed estimation of the spectrum
of matrix Q will allow us to develop a distributed stabil-
ity test which provides necessary and sufficient condition for
determining the stability of (1).

B. Natural Connectivity and Laplacian Energy
Let L and A denote the Laplacian and adjacency matrices

of an undirected graph consisting of n nodes respectively. The
natural connectivity of the graph is defined as [10]

nc = ln

⎡
⎣1

n

n∑
j=1

eλj(A)

⎤
⎦.

In addition, the Laplacian energy of the graph is given by

EL =
n∑

i=1

λ2
i (L).

Both the natural connectivity and Laplacian energy are mea-
sures of structural robustness of complex networks and have
been used, for example, as metrics to improve the robustness
of air transportation network [3]. Note that the above defini-
tions can also be extended to the case of digraphs. Hence, we
can then compute both measures distributively by estimating
the eigenvalues in a distributed manner.

C. Graph Clustering and Community Structure
Identification

Identifying community structure is important to reveal the
structure-functionality relationship in complex networks. It is
shown in [12] that communicability between a pair of ver-
tices in a complex network can be rewritten in term of the
eigenspaces corresponding to the adjacency matrix of the
networks. In other words, the eigenspaces of a network are
directly connected to the communities in complex networks.
Furthermore, it is demonstrated in [27] that the eigenvalues
and the corresponding eigenvectors of the Laplacian matrix
can be used to perform hierarchical spectral clustering for a
graph with application to power grids. The proposed method
in this letter will then allow us to identify the community
structure and cluster a network in a distributed fashion.

D. Cooperative Control of Networked Systems
Consider a network of n heterogeneous systems whose

individual dynamics is given by

xi(k + 1) = fi(xi(k)) + gi(xi(k))ui(k), yi = hi(xi(k)) (2)

where xi ∈ R
ni is the state, ui is the control input to be

designed, and yi ∈ R
m is the output. It is assumed that the

dynamics (2) is passivity short with impact coefficient κi ∈
[0, κ̄], see [28] for the details. The sensing/communication
matrix which represents the network topology is given by
matrix S defined as S = In + A where A is the adjacency
matrix. Moreover, we assume that the network topology is
given by a strongly connected digraph. The goal is to design
ui so that consensus is reached, i.e., limt→+∞ yi(t) = y for all
i = {1, . . . , n}. The cooperative control ui is given by

ui(k) = kyi

n∑
j=1

(yj − yi)sij.

It is shown in [29] that consensus is ensured if kyi ≤ ky with

ky = λ2(�L + LT�)

κ̄λmax(LT�L)

where L is the Laplacian matrix and � = diag(v1(L)). Hence,
the gain kyi can be designed distributively if we can estimate
L in a distributed manner.

E. Epidemic Propagation in a Network
Consider a network of n nodes whose interconnection is

given by a strongly connected digraph. Each node has two
possible states at each time, namely healthy and susceptible.
Initially, it is assumed that a certain percentage of nodes in
the network are infected. The infected node tries to infect its
neighbors with rate β and the infected node may be cured
with rate δ. Then, there is an epidemic threshold τc which
separates two different phases, namely if the effective infec-
tion rate τ = β

δ
is above the threshold, the epidemic will

spread through the network and become persistent. On the
other hand, if the rate τ < τc, then the infection dies out. It is
known [30] that the threshold τc is given by τc = 1

λn(A)
where

A is the adjacency matrix of the network. Hence, if λn(A) can
be estimated distributively, we can then analyze the epidemic
propagation in the network in the absence of information on
the global network topology [31].

IV. MAIN RESULT

In this section, we propose a distributed algorithm to solve
Problem 1. First, note that given an irreducible matrix Q,
computing both the eigenvalues and eigenvectors of Q is a
nonlinear problem as can be observed from

Qwi = λiwi, QTvi = λivi (3)

which is challenging to solve in a distributed manner. Hence,
the key idea of our strategy is to transform the nonlinear
problem (3) into a linear one. To this end, let us define a
matrix Q ∈ R

n×n given by

Q = Q + cIn, (4)

where the constant c ∈ R is chosen such that the matrix
Q is nonsingular. Since Q is nonsingular, we then have the
following linear problem of finding Q

−1
:

Q Q
−1 = In. (5)

The following lemma provides relations between the eigenval-
ues and eigenvectors of the matrices Q

−1
and Q.
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Lemma 1: The eigenvalues and eigenvectors of the matri-
ces Q and Q

−1
in (4), (5) for i = {1, . . . , n} satisfy

λi(Q) = 1

λi(Q
−1

)
− c,

vi(Q) = vi(Q
−1

), wi(Q) = wi(Q
−1

). (6)

Proof: First, from (4) it is known that λi(Q) = λi(Q) + c,
vi(Q) = vi(Q) and wi(Q) = wi(Q) for i = {1, . . . , n}.
Moreover, from (5), we have λi(Q) = 1

λi(Q
−1

)
and it is also

known [32] that vi(Q) = vi(Q
−1

) and wi(Q) = wi(Q
−1

).
Hence, we have (6) which completes the proof.

Therefore, if each node can compute matrix Q
−1

dis-
tributively from (5), then the eigenvalues together with the
corresponding eigenvectors of Q can be obtained by simply
computing the eigenvalues and the associated eigenvectors of
the matrix Q

−1
as shown in Lemma 1. Based on the above

discussions, the high-level distributed algorithm for solving
Problem 1 can then be summarized as follows.

1) Transform the irreducible matrix Q into a nonsingu-
lar matrix Q by computing distributively the constant
c in (4).

2) Compute Q
−1

by solving (5) distributively.
3) Given matrix Q

−1
, compute λi(Q) and the corresponding

eigenvectors using Lemma 1.
The details of each step are described below.

A. Distributed Computation of Nonsingular Matrix Q
The first step is to choose the constant c ∈ R in (4) dis-

tributively so that the matrix Q is nonsingular. Based on the
Gershgorin theorem, it is clear that the matrix Q is nonsingular
if the following condition is satisfied:

|qii| >
∑
j �=i

|qij|, i = {1, . . . , n}. (7)

The constant c can then be distributively computed to sat-
isfy (7) as follows.

1) Each node first independently computes

ci(0) = εi +
∑

j∈{i}∪N in
i

|qij| (8)

for any εi > 0.
2) Each node updates ci(k) according to the following

maximum consensus protocol

ci(k + 1) = max
j∈N in

i ∪{i}
cj(k).

It is shown in [33] that the consensus reached in finite
time (no more than n steps) is c = maxi ci(0).

We then have the following result.
Lemma 2: Let matrix Q ∈ R

n×n be irreducible and the con-
stant c = maxi ci(0) with ci(0) is defined in (8). Then, the
matrix Q in (4) is nonsingular.

Proof: For all i = {1, . . . , n} we have |qii + ci| >
∑

j �=i |qij|.
From the definition of c, we then have |qii + c| >

∑
j �=i |qij|.

Hence, it can be concluded that matrix Q is nonsingular.
Remark 1: For the following cases, the constant c in (4)

can be chosen without the need of performing the maximum
consensus protocol.

• If matrix Q is given by the Laplacian matrix and since
Re(λi(L)) ≥ 0, we can then choose c = ε > 0.

• If matrix Q is given by the unweighted adjacency matrix,
we can then simply choose c = n.

• If matrix Q is given by the weighted adjacency matrix
with each row summing to one, we can then set c = 1.

B. Distributed Computation of Matrix Q
−1

After computing matrix Q, in the following we compute its
inverse Q

−1
by solving distributively a set of linear equations

given in (5). To this end, we adopt and extend the consensus-
based approach, such as the one originally proposed in [21],
to compute Q

−1
from (5) by solving distributively the lin-

ear equations. Let us assign a state variable Zi(k) ∈ R
n×n to

each node. Each node then estimates Q
−1

according to the
following update rule:

Zi(k + 1) = Zi(k) − 1

|N in
i |Pi

⎛
⎜⎝|N in

i |Zi(k) −
∑

j∈N in
i

Zj(k)

⎞
⎟⎠ (9)

where Pi = PT
i ∈ R

n×n is the orthogonal projection on the
kernel of vector [Q]i∗, namely

Pi = In − 1

[Q]T
i∗[Q]i∗

[Q]i∗[Q]T
i∗. (10)

The following is the main result of this letter.
Theorem 1: Set Zi(0) to satisfy [Q]T

i∗Zi(0) = [In]T
i∗. Then,

under distributed algorithm (9) the state Zi(k) converges
exponentially to Q

−1
. Accordingly, we have

λi(Q) = 1

λi(Ze
i )

− c,

vi(Q) = vi(Z
e
i ), wi(Q) = wi(Z

e
i ) (11)

where Ze
i denotes the steady-state of Zi(k).

Proof: It is known [21] that under the update rule (9) with
Zi(0) satisfying [Q]T

i∗Zi(0) = [In]T
i∗, at the steady state we

have Q[Ze
i ]∗i = [In]∗i, for i = {1, . . . , n}. Putting together all

the vectors of [Ze
i ]∗i yields QZe

i = In. Since the inverse of the

matrix Q is unique, it can then be concluded that Ze
i = Q

−1
.

Finally, from Lemma 1 we obtain (11) which completes the
proof.

Recall that algorithm (9) solves distributively QZ = In
which consists of n linear equations Q[Z]∗j = [In]∗j. From (5),

each linear equation has a unique solution [Z∗]∗j = [Q
−1

]∗j.
Now, consider the j-th linear equation and define the error
vector ej(k) = [[Z1(k)]T∗j − [Z∗]T∗j, . . . , [Zn(k)]T∗j − [Z∗]T∗j]

T ,
algorithm (9) can then be compactly written as [21]

ej(k + 1) = (P(F ⊗ In)P)ej(k) = Hej(k), (12)

where block diagonal matrix P = diag(P1, . . . , Pn), and
F = D−1

g AT
g with Dg, Ag are unweighted degree and adja-

cency matrices corresponding to graph G respectively. It is
shown in [21] that the algorithm is convergent and hence
ρ(H) = max |λi(H)| < 1. Thus, we can conclude from the
classical control theory the following lemma, in which the
settling time is defined as the time needed for the error to be
of no larger than two percent.

Lemma 3: The settling time of (12) is upper bounded as

kst ≤ kst = 4 ln−1(ρ−1(H)). (13)
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Proof: The convergence rate of (12) is equal to ρ(H).
The settling time is then given by the solution to ρkst =
(e− ln(ρ−1))kst ≤ 0.02 which results in (13).

In the following we provide some discussions regarding the
proposed method.

1) Since the update rule (9) estimates matrix Q
−1 ∈ R

n×n,
each node is then required to store n2 values. Moreover,
as can be observed from (9) each node also needs
to send n2 values to its neighbors. Even though the
memory requirement is larger than the other approaches
(e.g., [16] and [20]), the proposed strategy is simple and
allows us to estimate all the eigenvalues and eigenvectors
of any irreducible matrix. Note that the storage and com-
munication costs of (9) are similar to that of the method
in [34] developed to re-construct the unweighted undi-
rected network. One may argue that if the nodes use
O(n2) memory, then why the nodes do not just flood
the rows of matrix Q across the network so that each
node knows Q. It is worth noting that the flooding strat-
egy is not locally adaptable when the topology changes
since all the nodes in the network need to be informed
(which requires a global coordinator) about the change
and update their information accordingly in order to esti-
mate the eigen information corresponding to the new
topology.

2) In comparison to (distributed) power iteration method
(see [17]) which is an alternative approach to solve, e.g.,
the problem described in Section III-E, the proposed
algorithm is able to estimate the eigenvectors even if
the corresponding eigenvalue is not simple. Note that
the power iteration method may not converge when the
associated eigenvalue is not strictly greater in magni-
tude than the rest of the eigenvalues. Moreover, update
rule (9) converges exponentially fast and its conver-
gence is guaranteed under asynchronous setting and
time-delay [35].

3) Using the proposed method, each node still needs
to compute (independently) the eigenvalues of a full
matrix. However, since each node has a copy of the
matrix Q, the proposed method allows us to compute
the eigenvalues of a matrix involving the multiplica-
tion of the Laplacian or adjacency matrix, e.g., the one
described in Section III-D.

C. Discussion on Switching Topology Case
Consider the problem where graph G together with

its associated matrix Q switches between several strongly
connected digraphs and the nodes need to distributively
estimate the eigen information of the irreducible matrix
associated with each topology. We have the following
result.

Proposition 1: Consider a sequence of time varying
strongly connected digraphs G(ksi), with G(k) = G(ksi) for
k ∈ [ksi , ksi+1), for i ∈ ℵ. Let Q(ksi) be the unweighted
Laplacian matrix corresponding to G(ksi) and let N in

j (G(ksi))

denote the set of in-neighbors of node j of the graph
G(ksi). Then, at time ksi+1 and for all i, only nodes j with
N in

j (G(ksi+1)) �= N in
j (G(ksi)) need to recompute Pj in (10)

using [Q(ksi+1)]j∗ and reset their state Zj(ksi+1) to satisfy
[Q(ksi+1)]

T
j∗Zj(ksi+1) = [In]T

j∗ when executing (9). Moreover,
as long as (ksi+1 − ksi) > kst holds for all i, each node can

Fig. 1. Strongly connected digraph for the matrix in (14).

use (9) to estimate all the eigenvalues and eigenvectors of
matrix Q(ksi).

Proof: First, observe that matrix Q(ksi) are nonsingular
for all i if c is chosen as in Remark 1. Next, for matrix
Q(ksi) and under (9) we have [Q(ksi)]

T
j∗Zj(k) = [In]T

j∗ for
k ∈ [ksi , ksi+1) if Zj(ksi) is chosen to satisfy [Q(ksi)]

T
j∗Zj(ksi) =

[In]T
j∗. Moreover, if N in

j (G(ksi+1)) = N in
j (G(ksi)), that is

[Q(ksi+1)]
T
j∗ = [Q(ksi)]

T
j∗, and [Q(ksi)]

T
j∗Zj(ksi) = [In]T

j∗, under
update law (9) we also have [Q(ksi+1)]

T
j∗Zj(k) = [In]T

j∗ for
k ∈ [ksi+1 , ksi+2). Hence, from the above observations it can be
concluded that at time ksi+1 only nodes j with N in

j (G(ksi+1)) �=
N in

j (G(ksi)) need to recompute Pj in (10) using [Q(ksi+1)]j∗
and reset Zj(ksi+1) such that [Q(ksi+1)]

T
j∗Zj(ksi+1) = [In]T

j∗ in
executing (9). Finally, if (ksi+1 − ksi) > kst for all i and kst is
given by (13), each node can use (9) to estimate all the eigen
information of matrix Q(ksi).

The above result guarantees that, for switching topologies,
algorithm (9) remains to be effective in estimating the eigen
information and their changes as long as the dwelling time
of any topology is longer than the settling time estimated
in (13). As is, estimate (13) provides a theoretical guarantee
but, since it is topology dependent, further research is needed
to determine a topology-independent estimate and its dis-
tributed computation so the result can be used in a distributed
implementation.

V. A NUMERICAL EXAMPLE

Let Q be given by the unweighted Laplacian matrix

Q = L =
⎡
⎢⎣

1 −1 0 0
0 1 0 −1

−1 −1 2 0
0 0 −1 1

⎤
⎥⎦ (14)

whose associated strongly connected digraph is depicted in
Fig. 1. The nonsingular matrix Q can then be computed
from (4) by setting the constant c to be any positive number,
for example c = 1. Next, each node estimates Q

−1
distribu-

tively according to the update rule (9) whose initial conditions
Zi(0) are chosen as

Z1(0) =
⎡
⎢⎣

0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, Z2(0) =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0

⎤
⎥⎦,

Z3(0) =
⎡
⎢⎣

0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, Z4(0) =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎤
⎥⎦.
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The state Zi(k) then exponentially converges to

Ze
i = Q

−1 =
⎡
⎢⎣

0.5238 0.2857 0.0476 0.1429
0.0476 0.5714 0.0952 0.2857
0.1905 0.2857 0.3810 0.1429
0.0952 0.1429 0.1905 0.5714

⎤
⎥⎦

and the eigenvalues λi(Q) together with the corresponding
eigenvectors can finally be computed from (11).

VI. CONCLUSION

We propose a unified strategy to estimate all the eigenval-
ues and eigenvectors of any irreducible matrix in a distributed
manner. The key idea is to transform the nonlinear problem of
computing both the eigenvalues and eigenvectors of a matrix
into a linear one. Specifically, after transforming the irre-
ducible matrix into a nonsingular one, each node estimates
distributively the inverse of the nonsingular matrix by solving a
set of linear equations. The eigenvalues and the corresponding
eigenvectors are finally computed by exploiting the relations
between the eigenvalues and eigenvectors of both the non-
singular and the original irreducible matrices. Future research
can be done to consider noisy communication channel and
to reduce the memory requirement together with the com-
munication cost of each node. The communication cost can
be potentially reduced by either developing a finite-time dis-
tributed algorithm to solve the linear equations or by adopting
the strategies presented in [36] and [37] where at each time
each node sends a block of its estimate vector to its neighbors.
It is also worth investigating if the storage and communication
costs can be reduced when one is only interested in estimating
a subset of the eigenvalues or eigenvectors.
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