
A

r
t
a
s
a
©

K
a

1

h
o
a
n
t
i
c
d
o

c
e
F
t

(

0
d

Available online at www.sciencedirect.com

Electric Power Systems Research 78 (2008) 849–860

Impact of saturation nonlinearities/disturbances on the small-signal
stability of power systems: An analytical approach

H. Xin a,∗, D. Gan a,1, Z. Qu b, J. Qiu a

a College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
b School of EECS, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2450, USA

Received 30 January 2007; received in revised form 6 June 2007; accepted 8 June 2007
Available online 6 August 2007

bstract

In this paper, a multi-objective optimization model is presented to estimate the practical stability region and maximum endurable disturbance
ejection for a small-signal power system dynamic model with saturation nonlinearities and disturbance rejection. Iterative algorithms are developed
o solve for Pareto optimized solutions (POS) of this optimization. Furthermore, as an application of this approach to power systems, a method to
nalyze the impact of saturation nonlinearities and disturbance rejection on power system small-signal stability is introduced based on the estimated

tability region and maximum endurable disturbance rejection. Numerical results of a test power system with detailed saturated PSS controllers
re described, indicating the reliability and simplicity of the method.

2007 Elsevier B.V. All rights reserved.
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. Introduction

To improve the small-signal stability of power systems, much
as relied on power system stabilizers (PSS) [1]. Thus, the issues
f PSS parameter optimization [2,3] and control law design [4,5]
re of interest. However, more often than not, the saturation
onlinearities, either intentionally designed or resulting from
he limitations of equipments, are ubiquitous in the engineer-
ng fields [6], such as the power systems [7,8]. In general, PSS
ontrollers are also subject to the saturation nonlinearities and
isturbance rejection, which unavoidably affect the performance
f PSS [9] and even can lead to loss of stability [6].

Therefore, if the saturation exists, the performance of the PSS
ontrol systems designed without considering saturation nonlin-

arities and disturbance rejection may seriously deteriorate [9].
urthermore, the disturbance rejection may lead to the inexis-

ence of stability region [10,11]. Utility engineers did look at
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he issue, mainly relying on extensive simulation studies [7,8].
ittle attention has been paid to investigate the impact of such

actors on system stability from analytical perspective.
The aim of this paper is to provide analytical methods to

nalyze the impact of saturation nonlinearities on power system
mall-signal stability when disturbance rejection exists, based on
ur recent work [9], where saturation nonlinearities are consid-
red but the disturbance rejection is ignored. PSS performance
tudy is taken as an example. The key is to characterize the
tability region and maximum endurable disturbance rejection.

However, it is very difficult to handle the above-mentioned
ask today [6,10], since saturation nonlinearities make a sim-
le linear system become a complex nonlinear system [10–12].
herefore, many researches focus on the study of estimating
tability region in recent years, e.g. [6,12] and the references
herein, in which Hu derives a promising method to obtain an
llipsoid inside stability region by a quadratic Lyapunov func-
ion based on a convex LMI optimization [6]. This idea has been
sed in our recent work [9], and good results are obtained. Nev-

rtheless, the disturbance rejection issue is not considered. In
rder to conquer this limitation, in some references, say [6,13],
n invariant ellipse is derived as the practical stability region
stimation, but an efficient algorithm is still lacking. In fact, in
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hese papers, an auxiliary parameter is searched by a grid search
echanism, and the maximum endurable disturbance rejection

s obtained by enumeration, so it unavoidably requires extensive
omputation burden.

To overcome this problem, we propose a multi-objective opti-
ization model [14] to estimate the practical stability region and

he maximum endurable disturbance rejection on the basis of
6,13]. Iterative algorithms are provided to solve for Pareto opti-
ized solutions (POS) of this optimization, and some properties

f these algorithms are proved also. Moreover, the procedures
f the iterative algorithms are very simple and can be handled
fficiently by the toolbox in Matlab.

The structure of the paper is as follows. In Section 2,
he model of power systems with saturation nonlinearities
nd disturbance rejection is presented. Section 3 provides a
ulti-objective optimization model for estimating the practical

tability region and maximum endurable disturbance rejection.
he algorithms for solving for POS of the multi-object opti-
ization problem are developed in Section 4. Based on the
OS, a method to analyze the performance of PSS in power
ystems is provided in Section 5. In Section 6, a numerical exam-
le is described, indicating the reliability and simplicity of this
pproach. Section 7 draws the main conclusions of this work.

. Power system model with saturation nonlinearities
nd disturbance rejection

Within a neighborhood around a given operating point, the
deal linear state space model of a power system can be expressed
s [1,11]:

˙ (t) = A′x(t) + Bu(t) + Ew(t); x0 ∈ X0, w(t) ∈ W (1)

here x ∈ Rn is the state; u ∈ Rm is the control; A′ ∈ Rn×n is the
ystem matrix; x0 denotes the initial states; X0 is the set of all
nitial states under consideration, w(t) denotes the disturbance
ejection; W ⊂ Rl is the set of all disturbance rejection under
onsideration and matrix E is the corresponding disturbance
ejection matrix, respectively.

Due to actuator saturation which is considered to be a anti-
indup function in this paper, a more realistic model is [6]:

˙ = A′x + Bsat(u) + Ew (2)

here sat(·) is a saturation function which is symmetric with
espect to the origin, i.e.:

sat(u) = [sat1(u1), sat2(u2), . . . , satm(um)]T,

sati(ui) =
{

ūi|ui| > ūi

ui|ui| ≤ ūi

(3)

Thus, under a linear feedback control of form u = Gx, the
losed loop system becomes
˙ = A′x + Bsat(Gx) + Ew (4)

here pair {A′,B} is assumed to be controllable [11], G ∈ Rm×n

s the feedback gain matrix such that Re(λi) < 0 for all eigen-

F

w
F

o
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alues λi of matrix A′ + BG, and Re(λi) denotes the real part of
i.

In our recent work [9], we did not consider the impact of
isturbance rejection w(t) on the dynamic behaviors of the sat-
rated system. In system (4), should disturbance rejection w be
ersistent, the origin is no longer an equilibrium point nor is
t Lyapunov stable [10]. In this case, robust stability concepts
uch as uniform ultimate boundedness [10,15], also referred to
s practical stability [11,16], can be applied to system (4). In
articular, system (4) is said to be uniformly ultimately bounded
UUB) with respect to X0 and W if, for all x0 ∈ X0 and for every
∈ W , solution x(t) to Eq. (9) converges to a specified neigh-

orhood around the origin. As such, the following region of
ractical stability is introduced for the subsequent investigation
f system (4):

= {x0 ∈ X0|ϕt(x0, w) is UUB for every choice of w ∈ W}
(5)

here ϕt(x0, w) denotes the trajectory of system (4) starting
rom the initial state x0. For simplicity, we make no differ-
nce between the terms “practical stability region” and “stability
egion” later.

From the definition of the stability region, the saturation non-
inearities result in that only the states in Ω can be considered to
e stable. Furthermore, in order to analyze the impact of distur-
ance rejection on the dynamic behaviors of (4), we introduce
parameter, say α, for measuring the magnitude of disturbance

ejection, i.e., we suppose that the disturbance rejection set W
an be expressed as

= {w ∈ Rl|wTw ≤ α} (6)

Clearly, the relationship between W and α is

= max
w ∈ W

{wTw} (7)

To analyze the dynamic performance of system (4) later,
e further consider set X0 of expected initial states is a high-
imension ellipse defined as

0 = {x ∈ Rn|xTP0x ≤ β2} (8)

here β > 0 is a variable to be decided later and P0 ∈ Rn×n is a
iven and nonnegative definite symmetric matrix which is con-
idered to be an identify matrix in the simulation. Namely, we
ssume that the expected initial states can be contained by an
llipse with fixed shape and variable size.

So from the previous analysis, the closed loop and asymptot-
cally stable linear model:

˙ = (A′ + BG)x + Ew:=Ax + Ew (9)

s valid only for the states inside the polyhedron F, defined in
he state space as

n
= {x ∈ R | − ū ≤ Gx ≤ ū} (10)

here the inequalities are based on “elements by elements”, i.e.,
= {x| − ūi ≤ gix ≤ ūi, i = 1, 2, ..., m} and gi is the ith line

f feedback gain matrix G.
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Outside set F in which a power system of form (4) behaves
s a linear system, however, the dynamic behaviors of system
4) are difficult to analyze directly. Thus, a power system of
orm (4) is not globally UUB usually. Clearly, practical sta-
ility region Ω depends upon property of matrix pair {A′,B},
aturation threshold ū, and disturbance rejection set W. In par-
icular, once magnitude of the disturbance rejection is allowed
o exceed certain value, the maximum endurable value and
enoted by αmax, the saturated control can no longer compen-
ate for its destabilizing effort. Therefore, both the stability
egion and the maximum endurable disturbance rejection should
e determined for power system applications and, since they
re mutually dependent, their solutions can be found through
multiple-objective optimization to be formulated in the next

ection.

. Estimation of stability region and maximum
isturbance rejection set

In this section, an algorithm is proposed to estimate both
tability region Ω and maximum endurable disturbance rejection
et W under the following assumption.

ssumption 1. In system (4), matrix A = A′ + BG is a Hurwitz
atrix, i.e., all the eigenvalues of A satisfy Re(λi) < 0; set W is

niformly bounded, and the threshold values ūi > 0 for all i = 1,
, . . ., m.

emark 1. Matrix A being Hurwitz can always be ensured
f pair {A′,B} is controllable. If any of the threshold values
¯ i is zero, there will be no control through the corresponding
hannel, and equivalently matrix B is degenerate. It is obvious
hat Assumption 1 is necessary for stabilization of system (1)
nd its robustness against disturbance rejection.

For system (2), if the expected initial states and expected dis-
urbance rejection can be stabilized by control u = Gx, then the
ontrol is called to be effective [11]. Clearly, the analysis of the
mpact of saturation nonlinearities on the stability of system (4)
s equal to the analysis of the saturated control performance,
hus we will provide a method in Section 5 for analyze the
ffectiveness of saturated controls by the analysis of the system
tability.

Assumption 1 implies that the trajectory ϕt(x0, w) of system
4) is UUB globally if we ignore the saturation nonlinearities,
nd control u = Gx is effective consequently. However, the input
aturations in general reduce the stability region to a bounded
et, and only the initial states in the stability region can be sta-
ilized from the definition of the stability region in expression
5). Therefore, to analyze the effectiveness of the saturated con-
rol or to analyze the impact of the saturation nonlinearities on

he performance of system (4), one only needs to calculate the
tability region and the corresponding disturbance rejection set

of system (4). Unfortunately, it is very difficult to handle the
ork mentioned above since system (4) becomes nonlinear due

o saturation function sat(·). In this paper, Ω and W are estimated
y the Lyapunov direct method.

i
a
d
s
B
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.1. Theoretical results for stability region and disturbance
ejection set

To introduce the theories for estimating the stability (Ω)
nd the maximum endurable value of W, we first introduce the
ollowing two lemmas.

emma 1. Consider system (4). If its trajectory remains within
for all t ≥ 0 and for all initial states in set Ω̃, that is,

t(x0, w) ∈ F for all (t, x0) ∈ [0, +∞) × Ω̃ and all w ∈ W , then
et Ω̃ is a subset of stability region Ω for system (4).

roof. Since ϕt(x0, w) remains within F for any x0 ∈ Ω̃, system
4) operates without the saturation nonlinearity. By Assumption
, the corresponding linear system matrix is Hurtiwz, thus from
11] its trajectory is UUB with respect to disturbance rejection
et W, i.e., ϕt(x0, w) ∈ Ω. In other words, if x0 ∈ Ω̃, then x0 ∈ Ω.
n short, Ω̃ ⊂ Ω is proved. �
emma 2. [6]. Let Ω0 be the set defined by

0 = {x ∈ Rn|V (x) = xTPx ≤ c} (11)

here P is a given positive definite matrix, c = min
x ∈ ∂F

(V (x)) and

F represents the boundary of F.
Then, Ω0 ⊂ F.

The following theorem can be stated based on Lemmas 1 and
.

heorem 1. Consider system (4) in which the disturbance
ejection set W is defined as in (6). If there exist a positive con-
tant η and a positive definite symmetric matrix P ∈ Rn×n, such
hat

TP + PA + 1

η
PEETP + ηα

c
P < 0 (12)

s satisfied, then Ω0 ⊂ Ω holds. Here, A = A′ + BG; c, V(x) and
0 are defined in (11); α is the disturbance rejection magnitude

efined in (7).

roof. The time derivative of V(x) = xTPx along system (9) is

˙ (x) = xT(ATP + PA)x + 2xTPEw (13)

Since 2ab ≤ ηaTa + η−1bTb is satisfied for all a,b ∈ Rn and
> 0, 2xTPEw ≤ η−1xTPEETPx + ηwTw holds. Thus, from

12)–(13) and the definition of α in (7), it follows that

V̇ (x) < xT(ATP + PA + η−1PEETP)x

+ ηwTw ≤ −ηαc−1xTPx + ηα (14)

s satisfied when x 	= 0 [6]. Since x ∈ Ω0 implies
(x) = xTPx ≤ c, from (14) it follows that

˙ (x) < −ηαc−1xTPx + ηα ≤ −ηαc−1c + ηα = 0 (15)

s satisfied for all x ∈ Ω0 − {0}. Thus, from (15) Ω0 is an invari-

nt set of (9). By Lemma 2, Ω0 ⊂ F is satisfied, and system (4)
egenerates into system (9) in set F, so Ω0 is also an invariant
et of system (4), i.e., ϕt(x, w) ∈ Ω0 ⊂ F holds for all x ∈ Ω0.
y Lemma 1, the conclusion of Ω0 ⊂ Ω is drawn. �
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Obviously, once some variables, such as P, α and η, etc.,
re derived, Ω0 can be obtained directly from expression (11).
ence Theorem 1 provides a method to estimate the stability

egion of system (4) and the stability region is a subset of F.
o further apply this method to power systems conveniently, we
xtend system (4) with polyhedron F to more general constrained
ystem as follows:

˙ = Ax + Ew, − ū ≤ Gx ≤ ū, w ∈ W, x0 ∈ X0 (16)

o which Theorem 1 can be applied. Although Ω0 concluded
n Theorem 1 is a conservative estimate of Ω, determination of

0 is quite involved but can be done according to the following
rocess:

Step 1: Verify Assumption 1. If it holds, continue; otherwise,
Ω0 cannot be found.
Step 2: Calculate set F according to (10).
Step 3: Determine solutions P, η and α to Riccati equation
(12).
Step 4: Calculate Ω0, the estimate of stability region, accord-
ing to (12).

As mentioned previously, to analyze the performance of a
ontrol or to analyze the impact of the saturation nonlinearities
n the performance of a dynamic system, the key is to estimate
he stability region and disturbance rejection set, and this can be
one via the above process. However, the most critical step in the
bove process is to find solutions P, η and α, and arbitrary choose
f them will lead to extremely conservative results unavoidably.
n particular, the larger the set X0 which can be contained by

0, the less conservative the results are; similarly, the larger the
ndurable disturbance rejection set W, the less conservative the
esults are. Hence, for applications, it would be very useful to
btain the maximum endurable disturbance rejection set W and
0 which can be contained by the estimated stability region Ω0
s large as possible (characterized by αmax and βmax, respec-
ively). This leads to a multi-objective optimization problem to
e formulated in the next subsection.

.2. An optimization approach for stability region and
isturbance rejection

The numerical process introduced in the last section needs to
e made less conservative by finding the best (i.e., largest) val-
es of β and α to ensure stability of the closed-loop system (16).
ccordingly, from Theorem 1, the following multi-objective
ptimization problem is formulated:

(α∗, β∗) = max
P>0,η>0

(α, β)

s.t. (a) X0 = {x ∈ Rn|xTP0x ≤ β2} ⊂ Ω0 = {x ∈ Rn|V (x)=xTPx ≤ c}
(b) c = min

x ∈ ∂F
(V (x))
(c) ATP + PA + η−1PEETP + ηαc−1P ≤ 0
(17)

here superscript “*” denotes the optimal value of the argument;
onstraint (a) means that the set X0 of expected initial states is in

R

w

s Research 78 (2008) 849–860

he estimated stability region Ω0, i.e., the trajectories of system
4) starting from Ω0 is stable (UUB); constraint (b) means the
ondition that Theorem 1 requires, i.e., Ω0 resides within set F;
onstraint (c) is another condition that Theorem 1 requires, i.e.,
xpression (12) is satisfied.

Clearly, (17) is a multi-objective, multi-variable, nonlinear
roblem. A global optimal solution to such a problem may
ot exist, hence the so-called Pareto optimal solution (POS) is
ften sought instead [14]. We will first outline POS and their
lgorithms/properties in Section 4, while what heuristics and
ngineering application background/knowledge needed will be
iscussed in Section 5.

. Algorithms for multi-objective optimization

The concept of Pareto, as described below, is standard.

efinition 1 ((Deb [14])). Consider the multi-object optimiza-
ion problem as follows:

ax
∈ X

f (x) = (f1(x), f2(x), . . . , fn(x)) (18)

For two points, say x1 and x2, in feasible set X, if
i(x1) ≥ fi(x2) holds for all 1 ≤ i ≤ n, and the equalities do not
old simultaneously, then we call that x2 is worse than x1
denoted by f(x1) > f(x2)). If x is not worse than any other points
n X, then x is termed as a Pareto optimal solution (POS) of (18).

From this definition, the property on the POS of problem (17)
an be derived immediately.

heorem 2. β* is decreasing strictly with respect to the
ncrease of α*, where (α*,β*) denotes the POR of problem (17).

roof. Arbitrarily choose two POS of (17), say (α1,β1) and
α2,β2), and suppose α1 > α2 without loss of generality. To prove
he theorem, we only need to prove β1 < β2. We use a contradic-
ion argument.

Suppose that β1 < β2 is not satisfied, i.e., β1 ≥ β2, so
α1,β1) ≥ (α2,β2) is satisfied. But α1 > α2 implies the equalities
o not hold simultaneously, thus, (α2,β2) is worse than (α1,β1)
rom Definition 1, i.e., (α2,β2) is not a POS of problem (17) from
e Definition 1 of POS. It is a contradictory conclusion. �

This theorem shows that the elements of POS, β* and α*, are
f inverse proportion. As discussed in the simulation section, this
mportant property can help us choose a practical POS when the

ethod is applied to power systems. Next, we will discuss how
o obtain the POS of (17).

.1. Transformation of the constraints

Constraints (a), (b) and (c) are nonlinear in optimization prob-
em (17). The standard tool that can simplify such constraints is
chur complements. Namely, suppose that Q > 0, then[ ]

− SQ−1ST ≥ 0 ⇔ R S

ST Q
≥ 0 (19)

here symbol “⇔” means if and only if.
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Let

= β−2, R = cP−1, zi = giR,

i = 1, 2, . . . , m, η1 = c(ηα)−1 (20)

By (19), we can derive the following transformation, which
lso can be found in [6,9].

Constraint (a) is equivalent to

X0 ⊂ Ω0 ⇔ β−2P0 − c−1P ≥ 0 ⇔ γP0 − R−1 ≥ 0

⇔
[

γP0 I

I R

]
≥ 0 (21)

In the power systems, the set of initial states is composed of
he unpredictable states of post-fault, so it is reasonable that X0
s considered to be a hyper-ball in the following analysis without
oss of generality, i.e., P0 = I, then the (21) can be rewritten as

γI I

I R

]
≥ 0 (22)

Constraint (b) is equivalent to

ū2
i − gi(cP

−1)gT
i ≥ 0 ⇔ ū2

i − giRgT
i ≥ 0 ⇔

[
u2

i gi

gT
i R−1

]

≥ 0 ⇔
[

1 0

0 R

] [
u2

i gi

gT
i R−1

] [
1 0

0 R

]T

≥ 0 ⇔
[

u2
i zi

zT
i R

]

≥ 0, i = 1, 2, . . . , m (23)

Constraint (c) can be transformed to

ATP + PA + η−1PEETP + ηαc−1P ≤ 0 ⇔ RAT + AR

+ η1αEET + η−1
1 R ≤ 0 (24)

Since both η and η1 are free variables, η1 can be replaced by
for simplicity in (24), i.e., constraint (c) can be rewritten as

AT + AR + ηαEET + η−1R ≤ 0 (25)

.2. Iterative algorithms for the optimization problem

From (21)–(25), problem (17) can be changed to the equiva-
ent optimization problem as follows:

(−α∗, γ∗) = min
R>0,η>0

(−α, γ)

s.t. (a)

[
γI I

I R

]
≥ 0[ ] (26)
(b)
u2

i zi

zT
i R

≥ 0, i = 1, 2, . . . , m

(c) RAT + AR + ηαEET + η−1R ≤ 0

•
•

s Research 78 (2008) 849–860 853

emma 3. (−α*,γ*) is the POS of (26) if and only if (α*,β*)
s that of (17).

roof. The conclusion is correct obviously. The proof is omit-
ed. �

Lemma 3 shows that problem (17) can be converted to solve
he POS of (26). But it is still very difficult to solve problem
26) due to the nonlinearities of constraint (c). Fortunately, if
he parameter η is given, constraint (c) in (26) is also a LMI,
hich implies that certain iterative algorithm can used to handle

t [17]. Namely, we can fix some variables to solve the others,
nd then reverse this process. Repeat these steps until a threshold
s reached. Thus, problem (26) can be solved by the following
lgorithm:

A-1 ((Iterative Algorithm 1 for problem (17))).

Step 1: Initialize parameter η and fix it.
Step 2: Solve the multi-objective LMI optimization problem
(26) with fixed η.
Step 3: Find a better value of η and go to step 2 until the
convergence conditions are satisfied.

For the above algorithm IA-1, there are still two key problems
ifficult to handle. One is to solve the degenerative problem of
26) with fixed η; the other is to find a better value of η. In
he following analysis, we give the algorithms and their theory
oundations to handle the two problems.

For the first problem of IA-1, we note that when both η and
are fixed, problem (26) degenerates into a LMI optimization

roblem which can be solved easily. The degenerative model is

∗ = min
R>0

γ (27)

.t. constraints of optimization problem (26) with fixed α and η.
Similarly, when both γ and η are fixed, problem (26) degen-

rates into

α∗ = min
R>0

− α (28)

.t. constraints of optimization problem (26) with fixed γ and η.
Hence, we can present the following two algorithms, say IA-
(Iterative Algorithm A) and IA-B (Iterative Algorithm B), to

andle the first key problem in IA-1 mentioned above.
The main steps of IA-A are

Step 1: Initialize variables η and α0.
Step 2: Calculate γ* by optimization problem (27) with fixed
η and α0.
Step 3: Calculate α* by optimization problem (28) with fixed
γ* and η; consequently, obtain the (−α*,γ*), a POS of opti-
mization problem (26) with the fixed η.

The main steps of IA-B are
Step 1: Initialize variables η and γ0.
Step 2: Calculate α* by optimization problem (28) with fixed
η and γ0.
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Fig. 1 shows the route of looking for POS by IA-3; otherwise if
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Step 3: Calculate γ* by optimization problem (27) with fixed
η and α*; consequently, obtain the (−α*,γ*), a POS of opti-
mization problem (26) with the fixed η.

To show that IA-A or IA-B does catch a POS of optimization
roblem (26) corresponding to a fixed η, we further introduce
he following theorem, whose proof is given in Appendix A.

heorem 3. The result of IA-A (or IA-B), say (−α*,γ*), is one
f the POS of problem (26) with fixed η.

roof. See Appendix A. �

As shown in Theorem 3, since IA-A (or IA-B) can obtain a
OS, it can be concluded that if η in IA-A (or IA-B) is equal to

hat of the optimal solution of (26), the results derived by IA-A
or B) are the POS of (26). Thus, step 3 of IA-1 is reasonable.

For the second problem of IA-1, we use the golden section
earch (GSS) method [18] to search the better η in a pre-
etermined interval, such that the results of IA-A (or IA-B)
ncrease along with the update of η. Therefore, based on the
SS method and IA-A (or IA-B), IA-1 can be implemented and

he POS of problem (26) can be approximated by the following
lgorithms.

A-2 ((Iterative Algorithm 2)).

Step 1: Initialize with k = 0, α = α0 and a reasonable interval
[c0,d0] for parameter η.
Step 2: Set η′

k = ck + 0.382lk and η′′
k = ck + 0.618lk, where

lk = dk − ck.
Step 3: Calculate the results, say (−α′∗

k, γ
′∗
k) and (−α′′∗

k, γ
′′∗
k),

by IA-A with (η,α) being (η′
k, α0) and (η′′

k , α0), respectively.
Step 4: If (−α′∗

k, γ
′∗
k) ≤ (−α′′∗

k, γ
′′∗
k), go to step 5; else go to

step 6.
Step 5: Set dk+1 = η′′

k , ck+1 = ck, η′′
k+1 = ck+1 + 0.618lk+1;

calculate (−α′′∗
k+1, γ

′′∗
k+1) by IA-A with (η, α) = (η′′

k+1, α
′∗
k);

set k = k + 1, α∗
k = α′′∗

k , γ∗
k = γ ′′∗

k , and go to step 7.
Step 6: Set ck+1 = η′

k, dk+1 = dk, η′
k+1 = ck+1 + 0.382lk+1;

calculate (−α′∗
k+1, γ

′∗
k+1) by IA-A with (η, α) = (η′

k+1, α
′′∗
k);

set k = k + 1, α∗
k = α′∗

k , γ∗
k = γ ′∗

k , and go to step
7.
Step 7: If lk > ε, a pre-determined thresholding value, go to
step 3; else go to step 8.
Step 8: Set η* = 0.5(ck + dk), α∗ = α∗

k ; calculate (−α*,γ*) by
IA-A with (η, α) = (η∗, α∗

k), then the (−α*,γ*), a POS of
optimization problem (26), is founded.

From the fourth step to the seventh step in the above algo-
ithm, we know that the better value of (−α,γ) is reserved as
pdating η. Hence, along with the convergence of η′

k and η′′
k ,

he (−α∗
k, γ

∗
k ) increases, i.e., (−α∗

1, γ
∗
1 ) ≥ (−α∗

2, γ
∗
2 ) ≥ · · · ≥

−α∗
k, γ

∗
k ) ≥ · · · is satisfied.
In the above algorithm, IA-1 is implemented by IA-2 using
SS and IA-A, however, based on the GSS method and the IA-
, IA-1 also can be implemented by the iterative algorithm as

ollows.

t
d
t
t

s Research 78 (2008) 849–860

A-3 ((Iterative Algorithm 3)). Similar to those of IA-2, the
teps of IA-3 are

Step 1: Initialize with k = 0, γ = γ0 and a reasonable interval
[c0,d0] for parameter η.
Step 2: Set η′

k = ck + 0.382lk and η′′
k = ck + 0.618lk, where

lk = dk − ck.
Step 3: Calculate the results, say (−α′∗

k, γ
′∗
k) and (−α′′∗

k, γ
′′∗
k),

by IA-B with (η,γ) being (η′
k, γ0) and (η′′

k , γ0), respectively.
Step 4: If (−α′∗

k, γ
′∗
k) ≤ (−α′′∗

k, γ
′′∗
k), go to step 5; else go to

step 6.
Step 5: Set dk+1 = η′′

k , ck+1 = ck, η′′
k+1 = ck+1 + 0.618lk+1;

calculate (−α′′∗
k+1, γ

′′∗
k+1) by IA-B with (η, γ) = (η′′

k+1, γ
′∗
k);

set k = k + 1, γ∗
k = γ ′′∗

k , α∗
k = α′′∗

k , and go to step 7.
Step 6: Set ck+1 = η′

k, dk+1 = dk, η′
k+1 = ck+1 + 0.382lk+1;

calculate (−α′∗
k+1, γ

′∗
k+1) by IA-B with (η, γ) = (η′

k+1, γ
′′∗
k);

Set k = k + 1, γ∗
k = γ ′∗

k , α∗
k = α′∗

kand go to step 7.
Step 7: If lk > ε, a pre-determined thresholding value, go to
step 3; else go to step 8.
Step 8: Set η* = 0.5(ck + dk), γ∗ = γ∗

k ; calculate (−α*,γ*) by
IA-B with (η, γ) = (η∗, α∗

k), then the (−α*,γ*), a POS of
optimization problem (26), is founded.

From previous analysis, the sequences (−α∗
k, γ

∗
k ) (k =

, 1, 2, . . .) derived by IA-2 or IA-3 can approximate the POS of
26) and satisfy (−α∗

1, γ
∗
1 ) ≥ (−α∗

2, γ
∗
2 ) ≥ · · · ≥ (−α∗

k, γ
∗
k ) ≥

· ·. Thus, from the inverse transformation of (20) we can
btain the sequences (α∗

k, β
∗
k ) (k = 0, 1, 2, . . .), correspond-

ng to (−α∗
k, γ

∗
k ) (k = 0, 1, 2, . . .), which can approximate the

OS of (17) and satisfy (α∗
0, β

∗
0) ≤ (α∗

1, β
∗
1) ≤ (α∗

1, β
∗
1) ≤ · · · ≤

α∗
k, β

∗
k ) ≤ · · ·.

. Saturated control performance analysis based on
OS

.1. Choice of the iterative algorithms and their initial
arameters

A global optimal solution of the multi-objective optimization
roblem (17) may not exist [14]. Different initial values may
ead to different POS and different algorithms also can yield
ifferent POS. Therefore, when applying the suggested method,
ne should make full use of engineering knowledge.

Since sequences (αk,βk) derived by IA-2 (or IA-
) satisfies (α∗

0, β
∗
0) ≤ (α∗

1, β
∗
1) ≤ (α∗

2, β
∗
2) ≤ · · · ≤ (α∗

k, β
∗
k ) ≤

· ·, when the suggested method is applied to analyze the power
ystems with saturation nonlinearities and disturbance rejection,
he following strategies can be implemented: if our concern is
he stability region, for example, the estimated stability region

0 needs to contain a ball with radium not less than β̄, then we
an select the IA-3 with γ0 = β̄−2. For this case, the path 1 of
he issue is the disturbance rejection, for example, the maximum
isturbance rejection needs be not less than ᾱ, then we can select
he IA-2 with α0 = ᾱ. For this case, the path 2 of Fig. 1 shows
he route of looking for POS by IA-2.
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where S = diag{s1, s1, s2}, s1 = [I(ng−1)×(ng−1)|e], s2 = I4ng×4ng,
Fig. 1. Search route of IA-2 and IA-3.

.2. Process of performance analysis of saturated
ontrollers

As discussed above, problem (17) may not have a global
ptimal solution, so a reasonable goal is to find a practical
OS, say (α*,β*). Based on the practical POS, the perfor-
ance of the saturated controller, or the small-signal stability

f power systems (4) can be analyzed by the following
teps:

Step 1: Is Assumption 1 satisfied or not? If yes, then continue;
else, exit the algorithm.

Step 2: Calculate the POS by IA-2 or IA-3. Select a practical
result, say (α*,β*), to meet the engineering requirement.
Step 3: Does the expected set of initial states and disturbance
rejection set reside in their estimated regions? If yes, then the
control law u = Gx is effective; else, non-effective.

. Simulations and results

In this section, we will apply the method (algorithms) derived
reviously to analyze the dynamic performance of a test power
ystem with detailed saturated PSS controller models as an
xample.

.1. The models of PSS with saturation nonlinearities and
isturbance rejection

Suppose that the power system under study consists of N
uses and n generators. We take the impedance model for loads,
he model shown in Fig. 2 for AVR and PSS [1]. These models
re also used in our recent paper [9], in which the disturbance

ejection of PSS and AVR is not considered.

In this paper, we consider the saturated constraints are: (1) the
utput (�Ef in Fig. 2) of generator’s excitation; (2) the output
y2 in Fig. 2) of the PSS control system. Namely, the constrained

e

i

Fig. 2. Diagram of the excitation system and PSS Transfer Function.

quations are

�Efi| ≤ �Ēfi,
∣∣y2i

∣∣ ≤ ȳ2i, i = 1, 2, ..., n (29)

here �Ēfi is the upper saturation bound of �Ef, the
utput of the ith generator’s excitation; ȳ2i is the upper
aturation bound of y2, the output of the ith PSS control
ystem.

Consider that the disturbance rejection results from stochastic
isturbance imbed in the input signal of AVR and PSS, i.e., the
δ and �ω as input signal inputs contain noises, say e1 and e2,

espectively.
Hence, if we let

(30)

hen the closed-loop system after linearization can be expressed
s

˙ = Ãy + Ẽw (31)

ū ≤ G̃y ≤ ū (32)

For more information about the variable in (30)–(32), readers
re referred to Refs. [1,9].

In system (31)–(32), matrix Ã has a zero eigenvalue
nd specially two zero eigenvalues with uniform damp-
ng coefficients [1]. For this case, a reference machine,
ay the nth generator, is chosen to obtain the equiva-
ent reduced-order model, which satisfies Assumption 1.
his process can be easily done for the systems with uni-

orm damping coefficients via the following transformation
9]:

= SÃ · pinv(S), G = G̃ · pinv(S);

x = Sy, E = Ẽ · pinv(S) (33)
= −[

ng−1︷ ︸︸ ︷
1, 1, · · ·1]

T

and symbol pinv(·) denotes generalized
nverse function [18].
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0.053 = 0.230, then the PSS control system can stabilize this
system, which can also be checked by the results of time domain
simulations as shown in Fig. 4, here the magnitude (2-norm) of
initial state and disturbance rejection are 0.06 and 0.21, respec-
Fig. 3. Diagram o

Thus, from (31)–(33), the equivalent model of (31)–(32)
egenerates into

˙ = Ax + Ew (34)

ū ≤ Gx ≤ ū (35)

Model (34)–(35) satisfies Assumption 1. We will use them to
nalyze the effectiveness of PSS control system and the small-
ignal stability of power systems in the following section.

emark 2.

. It should be noted that the method we suggested is not
restricted to the dynamic models of PSS and AVR as what we
have selected. In fact, as long as the linearization model of
a power system can be expressed as (31)–(32) or (34)–(35),
then the method works.

. In power systems, we usually can directly obtain the dynamic
models such as system (31) or (34) for small-signal stabil-
ity analysis from a software package, so we only need to
set up the saturation constraint equations when applying the
suggested method. Hence, we extended model (4) to model
(16), such that it is very easy to apply the method to a large
power system with more complex models, such as various
models of PSS and dynamic models of loads, etc.

.2. Results

To illustrate the methods (algorithms) discussed previously,
test system with three generator and five buses is used. The

iagram of this test system is shown in Fig. 3. The data of this
est system are shown in Appendix B, including the data of PSS
nd AVR.

The parameters are initialized as follows: the range for η

s [8,40]; our concern here is the stability region, i.e., the sta-
ility region needs contain a ball with radium more than 0.05,
o β0 = 5% is taken. Using the methods (algorithms) addressed

reviously, we first calculate the stability region and the cor-
esponding POS for the power system stability analysis, i.e., to
ecide the maximum magnitude of disturbance rejection that the
ower system can withstand and meanwhile to decide the maxi-
three-bus system.

um excursion of the initial states of the system based on these
esults. Second, we want to analyze the impact of the saturation
ound in the power system on the stability regions and the POS.
s such, we can obtain some conclusions about the impact of
saturation constraint such as the constraint of a generator’s

xciter on the power system stability to some extent. Thus, we
erform the following simulations.

.2.1. Stability regions and the POS
By IA-3, the (0.053, 0.072), one of the POS, is derived,

nd the corresponding optimal solution of η is 21.017, i.e.,
ax(α,β) = (0.053, 0.072) and η* = 21.017. For this POS, from

revious analysis, we can draw the conclusion that, if the ini-
ial states reside in a ball with radium of β* = 0.072 and the
isturbance rejection resides in a ball with radium of

√
α∗ =
Fig. 4. Results of the time domain by simulations.
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straint (b) in the expression (23) become equality constraints
when the index i is equal to 1 or 3. However, from the fourth
sub-figure, the saturation constraint of the third PSS is not tan-
gent with the stability region, so it is not an active constraint. But
Fig. 5. Projections

ively. However, if IA-2 with α0 = 0 is applied instead of IA-3,
0.0, 0.081), another POS, can be obtained. This is consistent
ith the fact that the POS are not unique. In fact, (0.0, 0.081) is

he optimal result of paper [9], so the method in this paper is the
xtension of [9] when the disturbance rejection is considered.
oreover, the projections of the estimated stability regions cor-

esponding to these two POS are depicted by Fig. 5, where the
eal ellipses denote the projections of the stability region cor-
esponding to (0.053, 0.072) and the dash ellipses denote those
orresponding to (0.0, 0.081).

Next, we analyze the relationship between the stability region
the maximum set of initial states) and the maximum endurable
isturbance rejection for the system. In Fig. 5, the maximum set
f initial states (a ball in our simulation as mentioned previously)
n the estimated stability region of nominal system (no distur-
ance rejection) is larger than that of the system with disturbance
ejection. In fact, the phenomena are common, since the energy
f controller is finite due to saturation nonlinearities, when the
nergy of disturbance rejection increases, the energy of initial
tates must decrease so that the controller can guarantee the sys-
em stability. Thus, disturbance rejection will minish estimated
tability region, and the more the disturbance rejection (α*) is,
he smaller the maximum ball (β*) contained by estimated sta-
ility region is. This conclusion also can be illustrated by curve
b) of Fig. 6, where curve (b) is the POS of problem (17) and it
lso validates Theorem 2, i.e., β* decreases when α* increases.

To show that the GSS method we constructed for IA-1 works
ell, we compare the results of IA-A in which we did not opti-
ize η and those of IA-2 in which we have optimized η. It

an be imaged that the results of POS are more conservative
han that uses GSS method. In fact, the GSS method works well
n this optimization problem, this conclusion can be illustrated

y Fig. 6, where curve (a) denotes the POS by IA-A with fixed
arameter (η = 15), and curve (b) denotes the POS by IA-2 which
as used the GSS method. It is evident that the results of IA-A
re more conservative than those of IA-2, this is because the
attractive regions.

esults of IA-A are not the POS of optimization problem (17)
ut those of (27).

.2.2. Impacts of saturation bound on the pos and the
tability regions

Now let us get back to Fig. 5 to show the relaxation of some
aturation constraint has evident impact on the active constraints
9] in the optimization problem (17). In the third sub-figure
hich depicts the projection of stability region on coordinate
Ef3 − �Ef1, we note that the excitation constraints of genera-

ors 1 and 3 are tangent with stability region at point B and point
, respectively. Hence, the excitation saturation constraints of
enerators 1 and 3 are active constraints, i.e., the inequality con-
Fig. 6. POS of the test system by IA-A and IA-2.
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does the corresponding optimal parameter (η*). In other words,
in power systems the saturation bounds have large impact on
the performance of controllers and on the small-signal stability.
Moreover, it is only when the saturation bound of a exciter’s
Fig. 7. Relationship between st

hen the saturation bound �Ēf3 is changed and other param-
ters are fixed, i.e., only the saturation bound of generator 3
s changed, the stability region changes rapidly. Fig. 7 shows
he projections of the corresponding estimated stability regions,
here �Ēf3 is 4.0, 6.0, and 10.0, respectively. In Fig. 7, we can
nd that when �Ēf3 increases to 6.0, the saturation bound of

he PSS output of generator 1, ȳ2(1) = 3, is also tangent with the
stimated stability region on coordinates y2(1) − y2(2). Namely,
he active constraints are changed, i.e., the saturation constraints
f exciters are still active, but the PSS output of generator 1
ecomes the active constraint.

The change of saturation bound �Ēf3 can also have impact on
he POS of problem (17) and on η*. Fig. 8 shows the relationship
etween the POS and the upper bound �Ēf3 and Fig. 9 shows the
elationship between α* and η*. In Fig. 8, it can be observed that
he curves of POS with bigger ΔĒf3 are above the curves with
maller �Ēf3, so the relaxation of the saturation constraints can
ead to the increase of POS monotonously. However, from Fig. 9,
e can find that for the same α*, the curve with �Ēf3 = 5.2 is
ot above the curve with �Ēf3 = 7.2 but is above that with
Ēf3 = 10, thus, the change of η* has no monotonous property

s the relaxation of the saturation constraints. Nevertheless, the
* is decreasing monotonously with the increase of α* from
heorem 2 or from Fig. 6. This important observation can help
s select the range for η in the initialization step in the iterative
lgorithms such as IA-2 and IA-3.
When �Ēf3 is small enough, the active constraints are only
he saturation of �Ef3 and the POS is only determined by this
onstraints. But when bound �Ēf3 is big enough, the POS is not
nly determined by the saturation of the exciter’s outputs, but
y region and saturation bound.

lso determined by the saturation of PSS’s outputs. This con-
lusion can be easily confirmed by Fig. 8, where, the change of
Ēf3 has an apparent impact on the POS when �Ēf3 is smaller

han 10. When �Ēf3 is larger than 10, along with the change
f �Ēf3 from 10 to 12, the POS remain nearly constant and so
Fig. 8. Relationship between POS and the saturation bound.
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Fig. 9. Relationship between η* and the saturation bounds.

utput is small enough that turning the exciter’s output bound
s useful to improve the power system small-signal stability.
therwise, tuning of the saturation bounds need be considered

ynthetically.

. Conclusion

In this paper, we provide an analytical method to analyze the
mpact of saturation nonlinearities and disturbance rejections on
he small-signal stability of power systems. As an application,
e choose to study the performance of a PSS controller with
onlinearity saturation and disturbance rejections. To improve
he accuracy of the results, a multi-objective optimization model
ased on LMI is introduced and algorithms for solving the prob-
em are developed. The properties of the algorithms are proved
lso. The simulation results of a test power system demonstrate
hat the method is effective.
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ppendix A

To describe the following analysis clearly, we introduce
ome abbreviations as follows. Let Ω denote the feasible region
f optimization problem (26), i.e., for every (R, γ, α, η) ∈ Ω,
R,γ ,α,η) is a solution satisfying the constraints of (26); Let

η, Ωη,α and Ωη,γ denote the Ω with fixed η, (η,α) and (η,β),

espectively. Clearly, from our previous analysis, we know that
η,α is the feasible region of (27) with fixed (η,α); and Ωη,γ is

he feasible region of (28) with fixed (η,γ).

A

P

s Research 78 (2008) 849–860 859

First of all, to prove the theorem we introduce the following
emma.

emma 4. In IA-A (or IA-B), α0 ≤ α*(or γ0 ≥ γ*). Here, α0
or γ0) is the initial value of α (or γ); α* (or γ*) is the result of
A-A (or IA-B).

roof. We only prove the conclusion for IA-A since the proof
or IA-B is similar.

In the second step of IA-A, γ* is the optimal value of opti-
ization problem (27) with fixed η and α0, and we let R1 denote

he optimal value corresponding to R, thus (R1,γ*,α0,η) sat-
sfies the constraints of (26), i.e., (R1, γ

∗, α0, η) ∈ Ω, which
mplies (R1, α0) ∈ Ωη,γ∗ from the definition of Ωη,γ . Simi-
arly, in the third step of IA-A, α* is the optimal value of
roblem (28) with fixed η and γ*, and we let R2 denote the
ptimal value of R, so (R2,γ*,α*,η) satisfies the constraints of
26), i.e., (R2, γ

∗, α∗, η) ∈ Ω, which implies (R2, α
∗) ∈ Ωη,γ∗

rom the definition of Ωη,γ . Hence, both (R1, α0) ∈ Ωη,γ∗ and
R2, α

∗) ∈ Ωη,γ∗ are satisfied. Since α* is the maximum value
f problem (27) with the fixed η and γ*, i.e., α* is the max-
mum value among all of variables satisfying (R, α) ∈ Ωη,γ∗ .
onsequently, α0 ≤ α*. �

Now we can prove Theorem 3 on the basis of Lemma 4.

heorem 3. The result of IA-A (or IA-B), say (−α*,γ*), is one
f the POS of problem (26) with fixed η.

roof. Since the proof for IA-B is alike, we only prove the
onclusion for IA-A, i.e., (−α*,γ*) is a POS of (26) with fixed
. To show this conclusion, we use a contradiction argument.

Suppose that (−α*,γ*) is not a POS of (26) with fixed η.
hus, from the definition of POS, there exists a (R′, γ ′, α′) ∈ Ωη

atisfying (−α′,γ ′) < (−α*,γ*), which implies that α′ ≥ α* and
′ ≤ γ*. From Lemma 4 α* ≥ α0 holds, and consider again that
oth α′ ≥ α* and γ ′ ≤ γ* hold, so observing the constraints
f (26), we easily get that (R′, γ ′, α′) ∈ Ωη implies that both
R′, γ ′, α0) ∈ Ωη and (R′, γ∗, α′) ∈ Ωη hold. Furthermore, the
ollowing expressions are satisfied from the definition of Ωη,α0

nd Ωη,γ∗ :

R′, γ ′) ∈ Ωη,α0 , (R′, α′) ∈ Ωη,γ∗ (36)

We know that γ* is the minimum value among the vari-
bles satisfying (R, γ) ∈ Ωη,α0 from the second step of IA-A, so
* ≤ γ ′ is satisfied from (R′, γ ′) ∈ Ωη,α0 in (36). Consequently,

rom γ ′ ≤ γ* and γ* ≤ γ ′, we get γ ′ = γ*. Similarly, we know
hat α* is the maximum value among the variables satisfying
R, α) ∈ Ωη,γ∗ from the third step of IA-A, so α′ ≤ α* holds
rom (R′, α′) ∈ Ωη,γ∗ in (36). Consequently, from α′ ≤ α* and
′ ≥ α*, we get α′ = α*. Therefore, both γ ′ = γ* and α′ = α* holds.
t is contradictory with assumption (−α′,γ ′) < (−α*,γ*). Thus,
he conclusion is proved. �
ppendix B

In this appendix, we give the parameters of the generators,
SS and exciter’s controllers in Fig. 3.
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Generator 1: P1 = 1, Q1 = 0.5, x′
d = 0.5, H = 5s, D = 0.005,

′
do = 5.35; KA = 6, TA = 0.02(s); Ks = 1.0, Tw = 5.0(s),
1 = 0.35(s), T2 = 0.03(s); �Ēf1 = 6.2, ȳ2 = 3.0.

Generator 2: P2 = 5, U2 = 1.05, x′
d = 0.045, H = 25s,

= 0.025, T ′
do = 5.35; KA = 10, TA = 0.02(s); Ks = 1.0,

w = 8.3(s), T1 = 0.35(s), T2 = 0.03(s); �Ēf1 = 5.2, ȳ2 = 3.0.
Generator 3: θ3 = 0, U3 = 1.05, D = 0.020, H = 20s, x′

d =
.04, T ′

do = 3.76; KA = 17.5, TA = 0.02(s); Ks = 1.0, Tw = 8.0(s),
1 = 0.45(s), T2 = 0.05(s); �Ēf1 = 5.2, ȳ2 = 3.0.
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