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SUMMARY

A specialized method for constructing a hyper-ellipse that resides inside the stability regions of a class of
nonlinear autonomous systems such as electric power systems is provided. This method is further generalized to
estimate the stability region of a fairly general class of high dimension nonlinear autonomous systems.
Applications of the introduced results to power system transient stability analysis are described, together with
numerical examples. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The stability region (or attractor) of a dynamic system is of interest in many fields. For example, power

engineers have been looking for a solution of stability region estimation for well over 40 years [1–5].

The recent 2003 North America blackout has stimulated an ever-stronger interest in power system

stability analysis [6]. In power system control design, controllers are subject to very tight control

saturations [7–10]. This also raises the question of stability region estimation.

The best known result so far is a geometric characterization of stability region boundary [1,2]. This

celebrated result asserts that the stability region boundary of a dynamic system is composed of the

union of stable manifolds of the unstable equilibrium on the boundary. Aside from this seminal work,

energy function heuristics for power system stability analysis have been extensively studied [3]. This

method may produce either optimistic or pessimistic stability analysis results, which somewhat

limited the acceptance by the power industry.

Many techniques for estimating a guaranteed set of a stability region have been reported. For an

autonomous system with an isolated equilibrium, a subset of the stability region can be estimated by a

quadratic Lyapunov Function [11]. This method requires finding a bounding function. However, there

does not seem to exist a general and numerically efficient method for constructing bounding functions
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for general autonomous systems. In Reference [12], a method using quadratic Lyapunov function

and grid search was reported. This method can deal with fairly general autonomous systems but it

works for systems with very low dimensions only. Other results can be found in, for example,

References [13–17].

Based on an exact Taylor’s expansion, a specialized method for computing a guaranteed set of

stability region of power system is presented in the paper. This method is further generalized to solve

the problem for a fairly general class of autonomous systems: the systems that are sufficiently smooth.

Applications of this general method to a power system represented by a higher order model are

described. Both methods are free of the problem of ‘curse of dimensionality.’ The results of using first

order as well as higher order Taylor’s expansion terms are presented.

2. THE SPECIALIZED METHOD FOR MULTI-MACHINE POWER SYSTEMS

The right-hand-side of the classical model of a multi-machine power system contains trigonometric

functions only thus can be conveniently bounded; this allows the application of Lyapunov’s method

[11,18]. The multi-machine system classical model with uniform damping coefficients is as follows [3]:

_�in ¼ !in ð1Þ

_!in ¼ ��!in þ
Pmi � Peið�1; �2 . . . �nÞ

Mi

� Pmn � Penð�1; �2 . . . �nÞ
Mn

ð2Þ

i ¼ 1; 2; . . . ; n� 1 ð3Þ

where, n is the number of the generators in the system and

�in ¼ �i � �n ð4Þ

!in ¼ !i � !n ð5Þ

� ¼ D1

M1

¼ � � � ¼ Dn

Mn

ð6Þ

Pei ¼ Ei

Xn
l¼1

El Gil cos�il þ Bil sin�ilð Þ ð7Þ

Let xi ¼ �in � �0in, yi ¼ !in � !0
in, G

00
il ¼ EiElGil, B

00
il ¼ EiElBil, xij ¼ xi � xj for i ¼ 1; 2; . . . ; n� 1,

where (�0in; !
0
in) denotes the post-fault system stable equilibrium, and consider n-th machine as
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reference, the state space model of a multi-machine system with post-fault system stable equilibrium

being transferred to the origin becomes,

_xi ¼ yi ð8Þ

_yi ¼ g0i x; yð Þ ¼ ��yi þ gi xð Þ ð9Þ

where i ¼ 1; 2; . . . ; n� 1 and

x ¼ ½x1; x2; . . . xn�1�T ; y ¼ ½y1; y2; . . . yn�1�T ð10Þ

giðxÞ ¼ �PgiðxÞ
Mi

þ PgnðxÞ
Mn

þ Pgið0Þ
Mi

� Pgnð0Þ
Mn

ð11Þ

PgiðxÞ ¼ Ei

Xn
l¼1

Ej Gil cos xil þ �0il
� �

þ Bil sin xil þ �0il
� �� �

ð12Þ

Let us expand g0ið�Þ at the origin as follows:

g0iðx; yÞ ¼ ��yi þ gið0Þ þ
Xn�1

j¼1

@gið�ixÞ
@xj

xj ð13Þ

Since gið0Þ ¼ 0 and �i is a constant which satisfies 0 � �i � 1, rewrite the equation as:

g0iðx; yÞ ¼ � �yi þ
Xn�1

j¼1

@gið0Þ
@xj

xj þ
Xn�1

j¼1

@gið�ixÞ
@xj

� @gið0Þ
@xj

� �
xj

¼� �yi þ
Xn�1

j¼1

aijxj þ
Xn�1

j¼1

hijð�ixÞxj

¼ ��yi þ
Xn�1

j¼1

aijxj þ hiðx; �iÞ ð14Þ

where,

hijð�ixÞ ¼
@gið�ixÞ

@xj
� @gið0Þ

@xj
ð15Þ

aij ¼
@gið0Þ
@xj

ð16Þ
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hiðx; �iÞ ¼
Xn�1

j¼1

hijð�ixÞxj ð17Þ

Theorem 1. Assume that the linearized part of the power system (8), Equation (9) is exponentially

stable, then the stability region of Equation (8), Equation (9) is non-empty and it can be estimated

using a quadratic Lyapunov function.

Proof. Let z ¼ ðxT ; yTÞT , Equations (8) and (9) can be expressed as:

_z ¼ Azþ h ð18Þ

Or :
_x
_y

� �
¼ A

x
y

� �
þ h ð19Þ

where:

A ¼

0 � � � 0 1 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � 1

a11 � � � a1;n�1 �� � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

an�1;1 � � � an�1;n�1 0 � � � ��

0
BBBBBBB@

1
CCCCCCCA

ð20Þ

h ¼ 0 � � � 0 h1 � � � hn�1ð ÞT ð21Þ

By hypothesis the matrix A is stable and the above application of Taylor’s expansion does not rely

on any approximation. Since the nonlinear term h in Equation (19) contains trignometric terms only,

therefore it is bounded. This makes it possible to find an estimate of stability region of Equation (19).

Choose Lyapunov function as:

V ¼ zTPz ð22Þ

It follows that:

_V¼ zTðATPþ PAÞzþ 2zTPh ¼ �zTQzþ 2zTPh

�� �minðQÞ zk k22 þ 2�maxðPÞ zk k2 hk k2
ð23Þ

Now the key is to find a bound for khk2. Let us derive the analytical expression of the khk2 upper
bound. We at first derive the bounding function of jhiðxÞj. The expression of hiðxÞ and matrix A are

given in the appendix.
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hiðxÞ ¼
Xn�1

j¼1
j6¼i

2xij G0
ij cos

�ixij þ 2�0ij
2

þ B0
ij sin

�ixij þ 2�0ij
2

 !
sin

�ixij

2

þ 2xi G0
in � G0

ni

� �
cos

�ixi þ 2�0in
2

þ B0
in þ B0

ni

� �
sin

�ixi þ 2�0in
2

� �
sin

�ixi

2

þ
Xn�1

j¼1
j 6¼i

2xj �G0
nj cos

�ixj þ 2�0jn
2

þ B0
nj sin

�ixj þ 2�0jn
2

 !
sin

�ixj

2

ð24Þ

Using the following inequalities: sinðtÞ � jtj, cosðtÞ � 1:0, we can obtain a bounding function for

jhiðxÞj. This is the approached suggested in Equation [19]. Here a different approach is used. Note that
for any real number a, b, u we have the following H€older inequality:

acosuþ bsinuj j ¼ a bð Þ
cosu

sinu

� �����
����

� a bð Þk k cosu sinuð ÞT
�� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ð25Þ

Let

rin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0

in � G0
nið Þ2 þ B0

in þ B0
nið Þ2

q
; ði ¼ 1; . . . nÞ ð26Þ

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0

ij2þ B0
ij2

q
; ði ¼ 1; . . . n; j ¼ 1; . . . ; n� 1Þ ð27Þ

Since 0 � �i � 1 and jsinð�itÞj � jtj,

hiðxÞj j � rinx
2
i þ

Xn�1

j¼1
j 6¼i

rijx
2
ij þ

Xn�1

j¼1
j6¼i

rnjx
2
j

¼ x2i rin þ
Xn�1

j¼1
j 6¼i

rij

0
B@

1
CA� 2

Xn�1

j¼1
j 6¼i

rijxixj þ
Xn�1

j¼1
j 6¼i

rnj þ rij
� �

x2j

ð28Þ

and

hðxÞk k1 ¼
Xn�1

i¼1

hiðxÞj j

¼
Xn�1

i¼1

x2i rin þ
Xn�1

j¼1
j 6¼i

rij

0
B@

1
CA� 2

Xn�1

j¼1
j 6¼i

rijxixj þ
Xn�1

j¼1
j 6¼i

rnj þ rij
� �

x2j

0
B@

1
CA
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¼
Xn�1

i¼1

x2i rin þ
Xn�1

i¼1

x2i

Xn�1

j¼1
j 6¼i

rij � 2
Xn�1

i¼1

Xn�1

j¼1
j 6¼i

rijxixj þ
Xn�1

i¼1

Xn�1

j¼1
j 6¼i

rnjx
2
jþ
Xn�1

i¼1

Xn�1

j¼1
j 6¼i

rijx
2
j

¼
Xn�1

i¼1

x2i rin þ
Xn�1

i¼1

x2i

Xn�1

j¼1
j 6¼i

rij � 2
Xn�1

i¼1

Xn�1

j¼1
j 6¼i

rijxixj þ ðn� 2Þ
Xn�1

j¼1

rnjx
2
j þ

Xn�1

j¼1

x2j

Xn�1

i¼1
i 6¼j

rij

¼ xTWx � Wk k2 xk k22

ð29Þ

where the matrix W is made of wii and wlk as follows:

wij ¼
rin þ

Pn�1

j¼1
j6¼i

rij þ ðn� 2Þrnj þ
Pn�1

i¼1
i 6¼j

rij; ði ¼ jÞ

�rij; ði 6¼ jÞ

8><
>: ð30Þ

Then the expression khðxÞk1 will satisfies

hðxÞk k1� Wk k2 xk k22 ð31Þ

Since the matrix W is positive definite, it can be easily verified that:

hk k2� hk k1� Wk k2 xk k22¼ �maxðWÞ xk k22 � �maxðWÞ zk k22 ð32Þ

Equations (23) and (31) show that _V < 0 if the following inequality is satisfied.

zk k2 < � ¼ �minðQÞ
2�minðPÞ�minðWÞ ð33Þ

It is now clear that inside the compact set D, where D is defined below:

D ¼ z 2 Rn kzk2 � �
�� 
�

the derivative _V is negative definite and the Lyapunov function is positive definite. Once we find such a

ball D, choose:

c ¼ min
zk k2¼�

VðzÞ ¼ �minðPÞ�2

and define set �c as:

�c ¼ z 2 Rn
��jVðzÞ < cg � D

�
Then the set �c is a subset of the stability region [11]. The proof is complete. &
To check the transient stability of a power system, one can follow the following steps:
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(1) Calculate the post-fault equilibrium;
(2) Form matrices A, P, Q and W;
(3) Compute � and c;
(4) Run simulation to obtain the state variable z0 at fault clearing time;
(5) Check if Vðz0Þ < c.

The above method yields a conservative estimate of stability region. Since trignometric functions

and their derivatives are bounded above, higher order terms of Taylor’s expansion can be used to

improve the stability estimation results. This will be further illustrated in subsequent sections.

Three examples are provided in this section to further illustrate the approach described above.

Example a: A Single-Machine-Infinite-Bus System (SMIB)

Consider the SMIB system in Figure 1 where a synchronous machine is connected to an infinite bus

through a transmission line and two transformers. In order to use the result of the paper we consider the

infinite bus as a specialized generator with a very large inertia constant M and very small transient

reactance X0
d, so this system is effectively a two-machine system. Two cases are studied. In the first

case, a three-phase-to-ground short-circuit is applied at node 2 and later removed. In the second case,

the fault is applied at node 3. The critical clearing angles based on the suggested method and a step-by-

step simulation (SBS) method are shown in Figure 2.

Example b: A Nine-Bus system

The data of the system is from Reference [3] and the simulation results are shown in Figure 3.

Example c: New England 39 bus test system

The data is again obtained from Reference [3] and the results are shown in Figure 4.

3. A GENERAL METHOD FOR NONLINEAR AUTONOMOUS DYNAMIC SYSTEM

In this section, we generalize the specialized bounding function method in Section 2 to estimate the

stability region of a class of general autonomous system.

Consider the following nonlinear autonomous system,

_x ¼ f ðxÞ ¼ ½ f1ðxÞ; f2ðxÞ . . . fnðxÞ�T ; ð34Þ

with f 2 C2ðRnÞ. Without loss of generality, assume that the equilibrium point is the origin, and the

eigenvalues of A ¼ ð@fið0Þ=@xjÞn�n have strictly negative real parts. Note that the above system does

Figure 1. The single-line diagram of the SMIB test system.
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not have the special structure system (19) possess thus the specialized method presented in Section 2

does not apply.

To find a stability region of autonomous system (34), first consider the following Taylor’s series

expansion,

fiðxÞ ¼ fið0Þ þ
@fið0Þ
@x

xþ 1

2
xTr2fiðniÞx ð35Þ

where ni ¼ �ix, 0 < �i < 1, for i ¼ 1 . . . n. Since f ð0Þ ¼ 0, let us rewrite the above equation as,

Figure 2. Comparison of critical clearing angles obtained using SBS and the suggested
bounding function method (BFM).

Figure 3. Comparison of critical clearing angles of a nine-bus system.
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f ðxÞ ¼ Axþ 1

2

xTr2 f1ðn1Þx
xTr2 f2ðn2Þx
..
.

xTr2 fnðnnÞx

2
6664

3
7775 ¼ AxþH2 ð36Þ

where H2 ¼ ½h1; h2 . . . hn�T , hi ¼ 1
2
xTr2 fiðniÞx, ni ¼ �ix, 0 < �i < 1, for i ¼ 1 � � � n.

To proceed the analysis, pick a
�

r > 0 and define B1 ¼ �Bð0;
�

rÞ. Since the norm function r2fiðxÞ
�� ��

is continuous in the compact set B1, it has a maximum in set B1. Let

li ¼ max
x2B1

1

2
r2fiðxÞ
�� ��� 


; l ¼

ffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

l2j

vuut ð37Þ

Since 8 x 2 B1 implies that ni 2 B1, the norm of H2 satisfies the inequality

H2k k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

1

2
r2fiðniÞ

����
���� xk k2

� �2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

l2j

vuut xk k2¼ l xk k2: ð38Þ

Now choose Q to be a positive definite matrix, since all of the eigenvalues of the Jacobian matrix A

have negative real parts, solve the following Lyapunov function to obtain a positive definite matrix P:

PAþ ATP ¼ �Q: ð39Þ

Let the minimum eigenvalue ofQ be c1 ¼ �minðQÞ, the maximum eigenvalue of P be c2 ¼ �maxðPÞ,
and the minimum eigenvalue of P be c3 ¼ �minðPÞ. Define VðxÞ ¼ xTPx, and _V be its derivative along

the trajectory of system (34), it follows that:

Figure 4. The comparison of critical clearing angles in the New England system.
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_V ¼ xT PAþ ATP
� �

xþ 2xTPH2 ¼ �xTQxþ 2xTPH2

� �c1 xk k2 þ 2c2 xk k H2k k � xk k2 �c1 þ 2c2l xk kð Þ
ð40Þ

Finally, let �r ¼ c1=2lc2, B2 ¼ �Bð0;�rÞ, r ¼ minð

�

r;�rÞ, B ¼ intðB1 \ B2Þ ¼ Bð0; rÞ, Vcr ¼
min
kxk¼r

VðxÞ ¼ c3r
2 and define

�c ¼ fx 2 Rnj VðxÞ < Vcrg ð41Þ

Apparently �c � B, if not so, there exists a point x1in �c satisfying kx1k � r, which implies

Vðx1Þ � c3r
2, a contradiction with the definition of �c.

Now let us prove that the set�c is an invariant set and also is a subset of stability region of system (34).

Theorem 2. The set �c as defined in Equation (41) is an invariant set and it is in the interior of the

stability region of Equation (34).

Proof: let ~li ¼ max
x2B

f1
2
kr2fiðxÞkg, ~l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

~l
2

i

q
. Since r �

�

r implies B � B1, therefore ~li � li and
~l � l. For every x, x � B and x 6¼ 0, following Equation (40), we have:

_V � xk k2 �c1 þ 2c2~l xk k
� �

< xk k2 �c1 þ 2c2~lr
� �

� xk k2ð�c1 þ 2c2l�rÞ < 0

By LaSalle’s Invariance Principle [11], the closed set �c is an invariant set and it is a subset of the

stability region of Equation (34). The proof is complete. &

Remark 1. The constant li as defined in Equation (37) can be estimated by solving a nonlinear

optimization problem. This gives the best estimate of li. It can be estimated using other forms of

norms, for example, 1-norm and infinity-norm, since for a matrixX, kXk2 � kXk1 and kXk2 � kXk1.

The later approach is simpler but gives less favorable solution. This is the idea of the specialized

method described in previous section.

Remark 2. The choice of the matrix Q will affect the value of r. For certain problems, it has been

shown in Reference [11, pp. 206] that the best choice of matrix Q is the identity matrix. It remains an

open question as to what the best choice of matrix Q is. In the numerical examples supplied in the

paper, the identity matrix is used.

Apparently, once the matrix Q is given, the parameter r has significant impact on the solution of

stability region estimation. The best choice of r can be obtained via certain iteration algorithm. We

provide one such an algorithm.

Algorithm 1.

Step 1. Initialize

�

r0 with an arbitrary number (here the subscript denotes the index of the iteration

numbers), choose relaxation parameter � such that 0 < � < 1;

Step 2. Given

�

rk of the k-th iteration, compute �rk and rk ¼ minf

�

rk; �rkg;
Step 3. Check if j�rkj ¼ jrk � rk�1j is smaller than a given tolerance level or the number of

iterations reaches a given threshold, if yes, rk is the desired solution, stop computation; if

not, go to the next step;

Step 4. set

�

rkþ1 ¼

�

rk þ �ð�rk �

�

rkÞ, and return to step 2.

The following result demonstrates that the algorithm is convergent and the execution of the

algorithm improves the initial solution.
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Proposition. The sequence rk is non-decreasing.

Proof: From Equations (37) and (38), it is clear that l is a function of

�

r, denote it as lð

�

rÞ, this function
is non-decreasing as

�

r increases [20]. It follows that the function �rð

�

rÞ, where �r ¼ c1=2lc2, is non-
increasing. Recall the definition of the sequence rk:

�rkþ1 ¼ rkþ1 � rk ¼ minf

�

rkþ1; �rkþ1g �minf

�

rk; �rkg

Now consider the case that

�

rk > �rk, then based on Algorithm 1, �rk <

�

rkþ1 ¼

�

rk � �ð

�

rk � �rkÞ <

�

rk
and �rkþ1ð

�

rkþ1Þ � �rkð

�

rkÞ. This implies that minf

�

rkþ1; �rkþ1g � �rk, therefore:

�rkþ1 ¼ minf

�

rkþ1; �rkþ1g � �rk � 0

For the cases where

�

rk < �rk, then based on Algorithm 1, �r >

�

rkþ1 ¼

�

rk þ �ð�rk �

�

rkÞ >

�

rk and

�rkþ1ð

�

rkþ1Þ � �rk. This implies that minf

�

rkþ1; �rkþ1g �

�

rk, therefore:

�rkþ1 ¼ minf

�

rkþ1; �rkþ1g �

�

rk � 0

For all the cases we have �rkþ1 � 0 as the iteration advances, this completes the proof. &

Remark 3. If

�

rk � �rk ¼ 0, then the sequence rk reaches its maximum point.

Remark 4. The third order term of Taylor’s expansion can be used in Equation (36) to improve the

quality of the stability region estimation. The computational results of the third order method will be

presented below for a comparison.

Two examples are provided below.

Example d. Consider the stability region of the second-order system:

_x1 ¼ x2

_x2 ¼ 1�
ffiffiffi
2

p
sinðx1 þ �=4Þ � x2

Let us try the second-order method. First linearize the system and compute the Taylor expansion terms as:

A ¼ 0 1

�1 �1

� �
; h1 ¼ 0; h2 ¼

1ffiffiffi
2

p x1
x2

� �T
sinð�1 þ �=4Þ 0

0 0

� �
x1
x2

� �
:

Then choose

�

r0 ¼ �=5, B1 ¼ fx 2 Rnjkxk � �=5g, and compute l ¼ max
x2B1

kH2ðxÞk ¼ sinð

�

r0þ
�=4Þ=

ffiffiffi
2

p
¼ 0:6984:

Now let Q ¼ I, so we have:

P ¼ 1:5000 �0:5000
�0:5000 1:0000

� �
;

c1 ¼ 1, c2 ¼ �maxðPÞ ¼ 1:8090, c3 ¼ �minðPÞ ¼ 0:6910:
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It follows that �r0 ¼ 0:3958 <

�

r0. After executing a search based on Algorithm 1, we have

r ¼ 0:4187. Finally let Vcr ¼ c3r
2 ¼ 0:1211, so the inequality

x1
x2

� �T
1:5000 �0:5000
�0:5000 1:0000

� �
x1
x2

� �
< 0:1211

characterizes a subset of the stability region (see Figure 5).

The third order method yields a better solution as follows (see Figure 5):

x1
x2

� �T
1:5000 �0:5000
�0:5000 1:0000

� �
x1
x2

� �
< 0:2224

Example e [12]. Consider the stability region of the second order system

_x1 ¼ �x2

_x2 ¼ �x1 � ð1� x21Þx2

Let us start with the second-order method. First calculate A ¼ 0 �1

1 �1

� �
, h1 ¼ 0,

h2 ¼
x1
x2

� �T
�22 �21
�21 0

� �
x1
x2

� �
:

Now choose

�

r0 ¼ 1, B1 ¼ fx 2 Rnj kxk � 1g, so l ¼ max
x2B1

kH2ðxÞk ¼

�

r0 ¼ 1.

Let Q ¼ I, we obtain P ¼ 1:5000 0:5000
0:5000 1:0000

� �
, c1 ¼ 1, c2 ¼ 1:8090, c3 ¼ 0:6910, furthermore, we

have �r0 ¼ 0:2764 <

�

r0, and r ¼ 0:5257 > minð

�

r0;�r0Þ ¼ 0:2764:

Figure 5. The result of example d. (a) Stability region boundary estimated using the second Method. (b) Stability
region boundary estimated using the third Method.
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Finally let Vcr ¼ 0:1910, so the inequality

x1
x2

� �T
1:5000 0:5000
0:5000 1:0000

� �
x1
x2

� �
< 0:1910

characterizes a subset of the stability region (see Figure 6).

Again, the third-order method gives a better estimate of the stability region as follows (see

Figure 6).

x1
x2

� �T
1:5000 0:5000
0:5000 1:0000

� �
x1
x2

� �
< 0:5778

Example f. Consider the stability region of a single machine system with flux decay model:

M€� ¼ Pm �
E0
qE

x12 þ x0d
sin� � D _� ð42Þ

_E
0
q ¼ � 1

T 0
do

E0
q �

ðxd � x0dÞ
T 0
do

Id þ
1

T 0
do

Efd ð43Þ

where,

Figure 6. The result of the example e. (a) Result of Reference [4]. (b) Result of the second-order
method. (c) Result of the third-order method.
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Id ¼
E0
q

ðx12 þ x0dÞ
� E

x12
cos�

The definitions of the variables and equations can be found in Reference [3]. The stable equilibrium

point is given by � ¼ �s and E0
q ¼ e. It is obtained by setting the derivatives of the right hand side equal

to zero and solving for � and E0
q. The equilibrium point is then shifted to the origin by defining new

state variables as

_x1 ¼ x2

_x2 ¼ _�

_x3 ¼ E0
q � e

ð44Þ

The above system can be re-written as:

_x ¼ AxþH2 ð45Þ

where, for i ¼ 1; 2; 3:

A ¼
0 1 0

� K1e cos �
s

M
�� � K1 sin �

s

M

��2 sin�
s 0 ��1

2
4

3
5; H2 ¼

0

h2
h3

2
4

3
5;

K1 ¼
E

x12 þ x0d
� � ; �1 ¼

x12 þ xd

x12 þ x0d
� �

T 0
do

; �2 ¼
xd � x0d
� �

E

x12 þ x0d
� �

T 0
do

h2 ¼
1

2
xT

b11 0 b31
0 0 0

b13 0 0

2
4

3
5x; h3 ¼

1

2
xT

b011 0 0

0 0 0

0 0 0

2
4

3
5x;

b11 ¼
K1

M
ðeþ �3Þsinð�2 þ �sÞ; b13 ¼ b31 ¼ �K1

M
cos �2 þ �sð Þ;

b011 ¼ ��2 cos �01 þ �0
� �

; �i ¼ �ixi; �0i ¼ �0
ixi; 0 � �i; �

0
i � 1:

In the set B1 ¼ fx 2 R3j kxk � rg, we have

h2j j � b11j j þ b13j jð Þx2 � K1ðeþ r þ 1Þx2=M ð46Þ
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h3j j ¼ b011
�� ��x2 � �2x

2 ð47Þ

The final system is as follows:

_x1 ¼ x2

_x2 ¼ 0:8318� 2ðx3 þ 1:02Þsinðx1 þ 0:42Þ � 0:2x2

_x3 ¼ �0:2295� 0:405x3 þ 0:255cosðx1 þ 0:42Þ

The stability region estimated using the general method is illustrated in Figure 7.

Remark 5. The specialized bounding function presented in Section 2 fails to deal with examples

e and f. Both the general method presented in this section and the method in Reference [12] can solve

the case. The advantage of the suggested method is that it has the potential of dealing with higher

dimension systems while the method in Reference [12] cannot.

4. CONCLUSION

In this paper, a specialized bounding function method for estimating stability region of a special class

of systems such as power systems in classical model is described. This specialized method is further

generalized to estimate the stability region of a fairly general class of nonlinear autonomous systems.

The general method is applicable for systems that are sufficiently smooth, and it is particularly useful

for higher dimension systems. Extension of the method to transient stability analysis subject to

parameter uncertainties is presented in Reference [21].

Figure 7. Stability region of a single machine system with flux decay model.
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5. LIST OF SYMBOLS AND ABBREVIATIONS

7.1. Symbols:

Ei Constant voltage behind direct axis transient reactance of the i-th generator

� Uniform damping coefficient

�i, !i Rotor angle and speed of the i-th generator

Pmi, Pei Mechanical input power and electrical output power of the i-th generator

Mi, Di Moment of inertia and the damping constant of the i-th generator

Gij, Bij Transfer conductance and susceptance of the i-j element in the reduced

admittance matrix of the system

z, x, y state variable

_z, _x, _y Derivatives of the corresponding state variable

xT Transpose of vector x
I Identity matrix

P, Q Positive definite matrixes

�minðPÞ Minimum eigenvalue of matrix P

�maxðPÞ Maximum eigenvalue of matrix P

a, b, u, �i Algebraic variables

@ Partial derivation

Rn n-dimension Euler domain

f ð�Þ A map from Rn to Rn

Vð�Þ Lyapunov function

A Jacobian matrix of a full system

C2ð�Þ Functions with two continuous derivatives

intðBÞ Interior of set B

r2 Hessian Operator

k � k Norm of an element in a vector space, a 2-norm if not stated specifically

k � k1, k � k2, k � k1 1-norm, 2-norm and 1-norm of an element in a vector space

7.2 Abbreviations:

�Bðx0; rÞ ¼ fx 2 Rnj
��x� x0 � rg

Bðx0; rÞ ¼ fx 2 Rnj
��x� x0

�� < rg
kxk2 ¼

ffiffiffiffiffiffiffiffi
xTx

p
, kxk1 ¼ max

i
ðjxijÞ, kxk1 ¼

P
i

jxij

kAk1 ¼ max
j

Pm
i¼1

jaijj, kAk2 ¼ ½�maxðATAÞ�1=2, kAk1 ¼ max
i

Pn
j¼1

jaijj
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APPENDIX

In this appendix, we give the expression of @gi=@xj, aij, hij and the expressions of the bounding

function of hiðxÞ.
First we derive the expressions of @gi=@xj:

@Pgi

@xj
¼

G0
ij sin xij þ �ij

0
� �

� B0
ij cos xij þ �ij

0
� �

; ð j 6¼ iÞPn
l¼1
l 6¼i

�G0
il sin xil þ �il

0ð Þ þ B0
il cos xil þ �il

0ð Þ
� �

; ð j ¼ iÞ

8><
>: ðA1Þ

Let

G0
ij ¼ EiEjGij=Mi; B0

ij ¼ EiEjBij=Mi ðA2Þ

So the expression of @gið�Þ=@xj is given by:

@gið�Þ
@xj

¼ � 1

Mi

@Pgi

@xj
þ 1

Mn

@Pgn

@xj

¼
Xn
l¼1
l 6¼i

�
G0

il sin xil þ �il
0

� �
� B0

il cos xil þ �il
0

� ��

þ G0
nj sin xnj þ �nj

0
� �

� B0
nj cos xnj þ �nj

0
� �� �

; ðj ¼ iÞ

ðA3Þ

@gið�Þ
@xj

¼ � 1

Mi

@Pgi

@xj
þ 1

Mn

@Pgn

@xj

¼ �G0
ij sin xij þ �ij

0
� �

þ B0
ij cos xij þ �ij

0
� �

þ G0
nj sin xnj þ �nj

0
� �

� B0
nj cos xnj þ �nj

0
� �

; j 6¼ ið Þ

ðA4Þ

From Equations (50) and (51), let x ¼ 0, we obtain:

aij ¼
Pn
l¼1
l 6¼i

G0
il sin�il

0 � B0
il cos�il

0
� �

þ G0
nj sin�nj

0 � B0
nj cos�nj

0
� �

; ð j ¼ iÞ

�G0
ij sin�ij

0 þ B0
ij cos�ij

0 þ G0
nj sin�nj

0 � B0
nj cos�nj

0; ð j 6¼ iÞ

8><
>: ðA5Þ

Further more, hij can be expressed as

hij ¼
@gi �ixð Þ

@xj
� @gið0Þ

@xj
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¼
Xn
l¼1
l 6¼i

�
G0

il sin �ixil þ �0il
� �

� B0
il cos �ixil þ �il

0
� ��

þ
�
G0

ni sin �ixni þ �ni
0

� �
� B0

ni cos �ixni þ �ni
0

� ��

�
Xn
l¼1
l6¼i

G0
il sin�il

0 � B0
il cos�il

0
� �

� G0
ni sin�ni

0 � B0
ni cos�ni

0
� �

¼
Xn
l¼1
l 6¼i

2 G0
il cos

�ixil þ 2�il
0

2
þ B0

il sin
�ixil þ 2�il

0

2

� �
sin

�ixil

2

þ 2 G0
ni cos

�ixni þ 2�ni
0

2
þ B0

ni sin
�ixni þ 2�ni

0

2

� �
sin

�ixni

2

¼
Xn�1

l¼1
l 6¼i

2 G0
il cos

�ixil þ 2�il
0

2
þ B0

il sin
�ixil þ 2�il

0

2

� �
sin

�ixil

2

þ 2 �G0
ni cos

�ixi þ 2�in
0

2
þ B0

ni sin
�ixi þ 2�in

0

2

� �
sin

�ixi

2

þ 2 G0
in cos

�ixi þ 2�in
0

2
þ B0

in sin
�ixi þ 2�in

0

2

� �
sin

�ixi

2
; ð j ¼ iÞ

ðA6Þ

hij �ixð Þ ¼ @gi �ixð Þ
@xj

� @gið0Þ
@xj

¼ �G0
ij sin �ixij þ �ij

0
� �

þ B0
ij cos �ixij þ �ij

0
� �

þ G0
nj sin �ixnj þ �nj

0
� �

� B0
nj cos �ixnj þ �nj

0
� �

þ G0
ij sin�ij

0 � B0
ij cos�ij

0 � G0
nj sin�nj

0 þ B0
nj cos�nj

0

¼ �2 G0
ij cos

�ixij þ 2�ij
0

2
þ B0

ij sin
�ixij þ 2�ij

0

2

� �
sin

�ixij

2

þ 2 �G0
nj cos

�ixj þ 2�jn
0

2
þ B0

nj sin
�ixj þ 2�jn

0

2

� �
sin

�ixj

2
; ð j 6¼ iÞ

ðA7Þ
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The expression of hiðxÞ is derived as:

hiðxÞ ¼
Xn�1

j¼1

hij �ixð Þxj

¼
Xn�1

l¼1
l 6¼i

2xi G0
il cos

�ixil þ 2�0il
2

þ B0
il sin

�ixil þ 2�0il
2

� �
sin

�ixil

2

þ 2xi �G0
ni cos

�ixi þ 2�in
0

2
þ B0

ni sin
�ixi þ 2�in

0

2

� �
sin

�ixi

2

þ 2xi G0
in cos

�ixi þ 2�in
0

2
þ B0

in sin
�ixi þ 2�in

0

2

� �
sin

�ixi

2

�
Xn�1

j¼1
j6¼i

2xj G0
ij cos

�ixij þ 2�ij
0

2
þ B0

ij sin
�ixij þ 2�ij

0

2

� �
sin

�ixij

2

þ
Xn�1

j¼1
j6¼i

2xj �G0
nj cos

�ixj þ 2�jn
0

2
þ B0

nj sin
�ixj þ 2�jn

0

2

� �
sin

�ixj

2

¼
Xn�1

j¼1
j 6¼i

2xij G0
ij cos

�ixij þ 2�ij
0

2
þ B0

ij sin
�ixij þ 2�ij

0

2

� �
sin

�ixij

2

þ 2xi G0
in � G0

ni

� �
cos

�ixi þ 2�in
0

2
þ B0

ni þ B0
in

� �
sin

�ixi þ 2�in
0

2

� �
sin

�ixi

2

þ
Xn�1

j¼1
j6¼i

2xj �G0
nj cos

�ixj þ 2�jn
0

2
þ B0

nj sin
�ixj þ 2�jn

0

2

� �
sin

�ixj

2

ðA8Þ
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