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Saturated Control of Chained Nonholonomic Systemsg
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Plenty of approaches to stabilize chained nonholonomic
systems have been proposed in the literature. However, the
stabilization with constrained inputs is seldom addressed.
This problem has practical importance since all physi-
cal nonholonomic systems have actuator limitations. In
this article, a novel switching control design is pro-
posed. The design strategy is inspired by the structural
similarity between chained nonholonomic systems and
multiple-integrator systems. The key idea is to make u1
to be piecewise constant, which renders the rest of the
states a chain of constant weighted integrators. Moreover,
since the saturation control u2 eventually works in a lin-
ear region with fixed eigenvalues, a buffer zone for x1 is
introduced to ensure the convergence of the rest of the
states. The effectiveness of the proposed design is verified
by computer simulations.

Keywords: Nonholonomic systems, chained form, feed-
back control, saturated control

1. Introduction

In past decades, plenty of effort has been devoted
to the stabilization and tracking control of chained
systems [1, 7, 10, 12–16, 21, 22]. It is well known that
the chained form is a canonical form for many non-
holonomic mechanical systems, hence control designs
based on chained systems ensure their wide applica-
bility. Since chained systems do not satisfy Brockett’s
necessary condition [3], discontinuous or time-varying
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feedback controls have to be sought for their stabiliza-
tion. In the literature, a great deal of solutions have
been obtained following the lines of using discontinu-
ous control method or time-varying control method [8].
In general, discontinuous controls can render exponential
stability [2, 6, 10, 12], while time-varying controls lead
to asymptotic stability [14, 17, 19]. More recent study
has also seen the results of ρ-exponential stability of
chained system using time-varying periodic feedback con-
trols [13]. In [16, 21, 22], exponential convergence rates
are also reported for continuous time-varying aperiodic
design.

Despite these extensive studies on feedback control
design, the problem of stabilization with input satura-
tion effect is rarely addressed. In this article, we focus
on designing such a control with constrained inputs.
When actuator saturation is applied to the inputs, usu-
ally, there could be two types of treatments. One is to
handle the saturation effect implicitly (or a posteriori),
through the so-called antiwindup strategies [4, 5, 9]. The
other treatment is to handle the saturation explicitly (or
a priori), pursuing one of the following two techniques.
The first one is the saturation avoidance method which
prevents the saturation from taking place. Therefore the
resulted controller always operates in the linear region
of saturation nonlinearities. The second approach is the
saturation allowance approach which allows the satura-
tion to take place and take saturation effects into account
from the outset of control design. The existing designs for
nonholonomic systems have been following the second
approach mentioned above. In [7], the saturated stabiliza-
tion and tracking controls are directly synthesized from a
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unicycle-type robot model by using passivity theory and
Lyapunov argument. However, the design was not gen-
eralized to nonholonomic systems in the chained form.
In [10], the authors proposed a discontinuous control
design, seeking to remedy the excessively large con-
trol inputs near the singular manifold resulting from the
σ -process [1]. The state space is decomposed into two
separate “good” or “bad” regions. In the “good” region,
the control inputs are typically small. In the “bad” region,
the controller uses the so-called linear-dominant func-
tion (L.D.F) to scale down the magnitude of the control
inputs while forcing the trajectories to get into the “good”
region. This article proposes a novel switching control
design. The chained system is divided into two sub-
systems controlled by u1 and u2, respectively. The key
idea is to make u1 piecewise constant, which renders
the other subsystem a chain of integrators. Then, the
multiple-integrator system is transformed into a linear sys-
tem with an upper triangular system matrix and control u2
is synthesized.

This article is organized as follows. In Section 2,
the bounded state feedback stabilization problem for
chained systems is formulated. Section 3 gives the con-
troller design. Section 4 gives the simulation results, and
Section 5 concludes the paper.

In the article, ‖x‖ denotes the Euclidean norm of a vec-
tor x, min{a, b} and max{a, b} define the minimum and
maximum of parameters a and b. The sign functions are
defined as:

sgn(x) =
{

1 x ≥ 0

−1 x < 0
.

The saturation functions are defined as satφ(x) =
sgn(x) min{|x|, φ}, where φ is the saturation bound. More-
over, sat1(x) is written as sat(x) for short.

2. Problem Formulation

The objective of this article is to present a control design
strategy which globally stabilizes the chained nonholo-
nomic system under saturation conditions. Consider the
following nth order chained system with initial condition
x(t0) ∈ �n, where t0 ≥ 0 is the initial time.




ẋ1 = u1

ẋ2 = u1 · x3

ẋ3 = u1 · x4
...

ẋn−1 = u1 · xn

ẋn = u2

(1)

where x = [x1 · · · xn]T ∈ �n is the state, u =
[u1, u2]T ∈ �2 is the control input, which is subject to
the following saturation constraint:

−δi ≤ ui ≤ δi, i = 1, 2, δi > 0. (2)

The control design follows the second aforementioned
approach, that is, the saturation effect is taken into con-
sideration at the design phase. It follows from (1) that the
chained system can be reorganized as the following two
subsystems:

ẋ1 = u1, (3)

and

ż = u1Az + Bu2, (4)

where z
�= [z1 z2 · · · zn−1]T = [x2 x3 · · · xn]T , and

A
�=




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0




, B
�=




0

0
...

0

1




.

Clearly, subsystem (3) only contains x1 and is indepen-
dent of the rest of the states. It can be easily stabilized
with or without saturation. Subsystem (4) is a linear
time-varying (LTV) system, which is very structurally
similar to a multiple-integrator system, except that it is
weighted by one of the control inputs. Naturally, one
would think of manipulating u1 to gain advantages in
controlling subsystem (4). A straightforward way is to
create a piecewise constant u1 that meets the saturation
condition as well as stabilize the subsystem (3). Then
subsystem (4) becomes a constant-weighted multiple-
integrator system whose saturation control is studied in
[20, 18, 11, 23].

3. The Saturated Control Design

Before proceeding with the control design, we first state
the following stability theorem from [23].

Theorem 1: Let λi, i = 1, · · · , n be a series of
positive constants. Consider the following linear sys-
tem with input constraint −vmax ≤ v ≤ vmax with
vmax > 0:

ξ̇ = Anξ + bnv, (5)
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where ξ = [ξ1 ξ2 · · · ξn], v ∈ �,

An =




0 λ2 · · · λn−1 λn

0 0
. . .

...
...

...
... · · · λn−1 λn

0 0 · · · 0 λn

0 0 · · · 0 0




∈ �n×n,

bn =




1
...

1

1

1




∈ �n×1.

The nonlinear control:

v = −
n∑

i=1

εisat

(
λiξi

εi

)
, (6)

where εi satisfies:




ε1 > 0

εj >
∑j−1

i=1 εi, j = 2, 3, · · · , n.∑n
i=1 εi ≤ vmax

(7)

is a globally stabilizing control that satisfies the input
constraint. Furthermore, the closed loop system will oper-
ate in a linear region in finite time with eigenvalues −λi,
i = 1, · · · , n.

Proof: Refer to Lemma 2 and Theorem 3 of [23]. �

Corollary 1: The linear region of (6) is:

�1 =
{
ξ : |ξ1| ≤ ε1

λ1
, |ξ2| ≤ ε2

λ2
, · · · , |ξn| ≤ εn

λn

}
.

And once control (6) gets into �1, its saturation elements
will not be saturated again, that is, the control becomes a
linear control law afterward.

Proof: From (6), the saturation functions become linear
if |λiξi

εi
| ≤ 1, i = 1, 2, · · · , n, from which, �1 can be

deduced.
Define:

vj = −
j∑

i=1

εisat

(
λiξi

εi

)
, j = 1, 2, · · · , n.

Suppose at a certain moment, control (6) is in the linear
region �1, then it can be rewritten as:

v = vn = −λnξn + vn−1.

Consider the last state equation:

ξ̇n = vn = −λnξn + vn−1.

Take the Lyapunov function candidate Vn = 1
2ξ2

n . It
follows that:

V̇n = −λnξ
2
n + ξnun−1

≤ −λn|ξn|2 + |ξn||un−1|
≤ −λn|ξn|2 + |ξn|εn.

It shows if |ξn| > εn
λn

, then V̇n < 0. Therefore ξn will
remain in |ξn| ≤ εn

λn
. Consider the second to last state

equation:

ξ̇n−1 = λnξn + vn = −λn−1ξn−1 + vn−2.

Take the Lyapunov function candidate Vn−1 = 1
2ξ2

n−1. A
similar process would show that ξn−1 is in |ξn−1| ≤ εn−1

λn−1
.

Repeating the same process for the state ξ1, ξ2, · · · , ξn−2,
one would have:

|ξi| ≤ εi

λi
, i = 1, 2, · · · , n − 2.

Therefore, the state ξ is always confined in the same set
of �1, which indicates that once the state gets into �1, it
cannot escape, where control (6) is linear. �

3.1. The Saturated Control Design

To begin the control design process, it is needed to define
some new state variables in a transformed space. Let w =
[w1 w2 · · · wn−1]T and w′ = [w′

1 w′
2 · · · w′

n−1]T , where

wn−1−i =
i∑

j=0

(
i

j

)
(−1)jzn−1−j,

w′
n−1−i =

i∑
j=0

(
i

j

)
zn−1−j, i = 0, 1, · · · , n − 2. (8)

with z introduced in (4), and(
i

j

)
= i!

j!(i − j)! .
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(a) (b)

Fig. 1. Two case of control: (a) t1 ≤ td ; (b) t1 > td .

It can be verified that the transformations are invertible.
Define the following set for any n − 1 dimensional vector
X = [X1 X2 · · · Xn−1]:

�2 =
{
X : |X1| ≤ ε1

kδ1
, |X2| ≤ ε2

kδ1
, · · · ,

|Xn−1| ≤ εn−1

kδ1

}
,

where 0 < k ≤ 1 is a constant, εi satisfies condition (7)
with i = 1, 2, · · · , n − 1 and vmax = δ2. In fact, it would
be straightforward to verify that �2 is the linear region for
control u2 that is proposed in (12).

The control design for the case of x1(t0) ≥ 0 is to be
discussed. For the case of x1(t0) < 0, one can always make
it positive by redefining the following coordinate system
x′

i(t) = (−1)ixi(t), i = 1, 2, · · · , n, which results in a new
chained system with x′

1(t) > 0.
A scheme for controlling x1 is shown in Fig. 1, where

a buffer zone �3 = −d ≤ x1 ≤ d is created, with d > 0
as a design parameter. The objective of creating �3 is by
forcing x1 out of �3 after subsystem (4) gets into the linear
region �2, sufficient time can be ensured for subsystem (4)
to converge as controls are terminated at x1 = 0.

To better illustrate the control strategy, let’s first con-
sider a simpler control for t ≥ t0:


u1(t) = −sgn(x1(t0))kδ1

u2(t) = − ∑n−1
i=1 εisat

(
kδ1wi

εi

) . (9)

With u1 in (9), define td to be the time when x1 gets into
�3, which can be calculated as:

td =

t0 + x1(t0) − d

kδ1
, x1(t0) > d

t0, 0 ≤ x1(t0) ≤ d
.

Accordingly, subsystem (4) becomes:


ż1 = −kδ1z2

ż2 = −kδ1z3
...

żn−2 = −kδ1zn−1

żn−1 = u2

.

By the transformation (8), the transformed system is:

ẇ = Aww + Bwu2, (10)

where

Aw =




0 kδ1 · · · kδ1
...

. . .
. . .

...
0 · · · 0 kδ1

0 · · · · · · 0


 , Bw =




1
...
1


 .

By Theorem 1, u2 in (9) is a stabilizing control for sys-
tem (10). This indicates that limt→∞ ‖w‖ = 0. Hence,
there is a minimal time tw such that w(t) ∈ �2 for t ≥ tw.
Here, two cases are possible:

1. t0 ≤ tw ≤ td , this means system (10) gets into �2 while
x1 hasn’t reach �3. This case is illustrated by Fig. 1(a)
where we define t1 = tw.

2. tw > td , in this case, x1 entered �3 before system (10)
gets into �2. It is desired to force x1 leave �3. The
condition for x1(t) ≤ −d is:

t ≥ t′d
�= t0 + x1(t0) + d

kδ1
.

Since limt→∞ ‖w(t)‖ = 0, there is limt→∞ ‖z(t)‖ = 0.
By transformation (8), limt→∞ ‖w′(t)‖ = 0, hence
there exists a finite time t′w such that w′(t) ∈ �2 for
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t ≥ t′w. t1 is defined to be t1 = max{t′d , t′w}. This case
is illustrated by Fig. 1(b).

Note that in both cases, |x1(t1)| ≥ d.
Depending on which situation occurs, different controls

are applied for t ≥ t1. The full controllers are proposed in
(11) and (12).

u1(t) =




−sgn(x1(t0))kδ1, t0 ≤ t ≤ t1
−sgn(x1(t1))kδ1, t1 < t ≤ t2
0, t > t2

, (11)

u2(t) =


− ∑n−1
i=1 εisat

(
kδ1wi

εi

)
, t0 ≤ t ≤ t1

− ∑n−1
i=1 εisat

(
kδ1wi

εi

)
, t1 < t ≤ t2, t1 ≤ td

− ∑n−1
i=1 εisat

(
kδ1w′

i

εi

)
, t1 < t ≤ t2, t1 > td

0, t > t2

,

(12)

where t1 is redefined for both cases:

t1 = inf{{t0 ≤ t ≤ td : w(t) ∈ �2, x1(t) ≥ d}
∪ {t ≥ td : w′(t) ∈ �2, x1(t) ≤ −d}}.

t2 is the moment when the control goal is considered to be
accomplished and it can be quantified as:

t2 = t1 + |x1(t1)|
kδ1

.

Due to the fact |x1(t1)| ≥ d, the following relation holds

t2 ≥ t1 + d

kδ1
. (13)

The following theorem proves that the proposed con-
trols have practical stability.

Theorem 2: Control (11) and (12) practically stabilize
the chained system (1) while satisfying the bound condi-
tion (2). Moreover, for any constant ρ > 0, there exists a
constant d0 > 0, such that when d > d0, ‖x(t)‖ < ρ for
t ≥ t2.

Proof: Consider subsystem (3), since 0 < k ≤ 1, obvi-
ously u1 satisfies |u1| ≤ δ1. Moreover, no matter where
x1(t1) is,

x1(t2) = x1(t1) + u1 × (t2 − t1)

= x1(t1) − sgn(x1(t1))kδ1 × |x1(t1)|
kδ1

= 0.

For t ∈ [t0 t1], subsystem (4) becomes (10). Moreover, if
t0 ≤ t1 ≤ td , u1 and u2 are kept unchanged for t1 < t ≤ t2.
Therefore, for t1 < t ≤ t2, subsystem (4) still has the
transformed system (10).

However, if t1 > td , for t1 < t ≤ t2, control u1 and
subsystem (4) becomes:

u1 = kδ1,

and 


ż1 = kδ1z2

ż2 = kδ1z3
...

żn−2 = kδ1zn−1

żn−1 = u2

.

By transformation (8), subsystem (4) becomes:

ẇ′ = Aww′ + Bwu2. (14)

No matter which case occurs, the closed loop system
for t > t1 is in the following form:

ζ̇ = Acζ , (15)

where either ζ = w or ζ = w′, and

Ac =




−kδ1 0 · · · 0
...

. . .
. . .

...

−kδ1
. . . −kδ1 0

−kδ1 −kδ1 · · · −kδ1


 ∈ �(n−1)×(n−1).

Therefore,

‖ζ(t2)‖ = ‖eAc(t2−t1)ζ(t1)‖

≤ ‖e
Ac· d

kδ1 ‖‖�2‖,

where

‖�2‖ =
[(

ε1

kδ1

)2

+
(

ε2

kδ1

)2

+ · · · +
(

εn−1

kδ1

)2
] 1

2

.

Here, we used the relation (13) and ‖ζ(t1)‖ ≤ ‖�2‖.
Since Ac is Hurwitz, limd→∞ ‖ζ(t2)‖ = 0. Therefore
limd→∞ ‖z(t2)‖ = 0, hence for any given ρ > 0, there
exists a finite d0 such that for d > d0, ‖z(t2)‖ < ρ.
Since ‖x(t2)‖ = ‖[x1(t2) z(t2)T ]T ‖ = ‖z(t2)‖, that is
‖x(t2)‖ < ρ. Moreover, since u1 = u2 = 0 for t > t2,
‖x(t)‖ < ρ holds for t > t2. �
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3.2. Choice of k and d

To meet the saturation condition, the design parameter
k is restricted by 0 < k ≤ 1. Intuitively, k should be
chosen large. Because with a larger k, the connections
among the states of subsystem (4) are stronger and the
magnitude of control u2 tends to be larger (within the satu-
ration bound). This contributes to a faster convergence rate
before the controller reaches the linear region. Moreover,
in the linear operation region �2, the closed loop system
of subsystem (4) is equation (15). The system matrix Ac

shows that −kδ1 is the (n − 1)th order eigenvalue, k also
decides the convergence rate when the controls work in
the linear operation region. So, where convergence speed
is concerned, k needs to be chosen as large as possible,
that is, k = 1.

For the choice of d, it follows from (15) that the Laplace
transformation of the state transition matrix is:

L(eAct) = (sI−Ac)
−1 =




1

s + kδ1
0 · · · 0 0

−kδ1

(s + kδ1)2

1

s + kδ1
· · · 0 0

...
. . .

. . .
...

...

−kδ1sn−4

(s + kδ1)n−2

. . .
. . .

1

s + kδ1
0

−kδ1sn−3

(s + kδ1)n−1

−kδ1sn−4

(s + kδ1)n−2
· · · −kδ1

(s + kδ1)2

1

s + kδ1




.

Therefore,

eAct =




e−kδ1t 0 · · · 0 0

−kδ1te−kδ1t e−kδ1t · · · 0 0
...

. . .
. . .

...
...∑n−2

i=2 (−1)i−1 (kδ1t)i−1

(i − 1)! e−kδ1t . . .
. . . e−kδ1t 0

∑n−1
i=2 (−1)i−1 (kδ1t)i−1

(i − 1)! e−kδ1t ∑n−2
i=2 (−1)i−1 (kδ1t)i−1

(i − 1)! e−kδ1t · · · −kδ1te−kδ1t e−kδ1t




.

With the information of k and δ1, one can solve for the time
Tm that is needed for maneuvering in the linear region.
Then d is obtained by d ≥ kδ1Tm. For example, with the
choice k = 1 and the saturation bound δ1 = δ2 = 1, the
state transition matrix for a chained system with n = 3 is:

eAct =
[

e−t 0

−te−t e−t

]
.

If one chooses Tm = 4 or Tm = 5, the final state is around
7% or 3% of the value it takes when it enters the linear
operation region �2.

4. Simulations

In this section, simulation results for the proposed control
are presented. The simulation is conducted on a chained
system with n = 3. The saturation limit is chosen to be
δ1 = δ2 = 1, the gain parameter for u1 is k = 1 and d is
set to be d = 4. Satisfying the condition (7), ε1 and ε2 are
chosen to be ε1 = 0.499 and ε2 = 0.5. To illustrate the two
types of control actions, two sets of initial conditions are
selected in the simulation. The results for both cases show
that the proposed control is successful under the saturation
condition.

In the first case, the initial condition is set to be x(t0) =
[12 5 3]. Then, it can be obtained that td = 8. By run-
ning the simulation, it is obtained that t1 = 6.2146 and
t2 = 12. The simulation results for this case are shown in
Fig. 2. Fig. 2(a) shows the state response, since t1 < td ,

subsystem (4) reaches �2 before x1 gets into the region
[−d d]. Therefore, the controller knows the time for
maneuvering subsystem (4) is sufficient. Hence when
x1 reaches zero, the controls are set to zero, and the
states x2 and x3 are stopped at 0.0027 and 0.0039,
respectively.

In the second case, the initial condition is set to be
x(t0) = [6 5 3]. Therefore, td = 2. It is obtained from the
simulation that t1 = 10.0012 and t2 = 14.0024. The sim-
ulation results for this case are shown in Fig. 3. Fig. 3(a)
shows the state response, since t1 > td , subsystem (4)
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Fig. 2. State and control for the case t1 ≤ td . (a) state; (b) control.
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Fig. 3. State and control for the case t1 > td . (a) state; (b) control.

reaches �2 later than x1 gets into the region [−d d].
Therefore, the controller thinks the time for maneuvering
subsystem (4) is not sufficient. Hence, it steers x1 cross
zero until w′ gets into the linear region �2 then steers x1
back to zero. In this case, at t2, the states x2 and x3 are
stopped at −0.0082 and 0.0077, respectively. It is seen
that in both cases, the residual errors for x2 and x3 are very
small as expected.

Remark 1: The controls proposed in (11) and (12) can
be roughly verified by the daily experience of parking a
car. A car is a 4th order nonholonomic system. x1 is the
displacement from the parking position and u1 relates to
its linear velocity. Subsystem (4) is its orientation and u2
is its angular control. When the car’s initial position is
far away from the parking position, one usually can drive
directly to the parking position. The car’s body angle can
be aligned without difficulties and no more maneuvers

are needed. However, when the car’s initial position is
close to the parking position, it might not be feasible to
get to the parking position while aligning the car’s body
angle at the same time. Therefore a straightforward solu-
tion would be to slightly get beyond the parking position
for aligning the body angle and then back into the parking
position.

5. Conclusion

In this article, we studied the feedback stabilization
problem of chained nonholonomic systems with input
constraints, and a switching control design scheme is
proposed. The essential idea is that by making u1 to
be piecewise constant, subsystem (4) becomes multiple
integrators that have a constant weight u1. Then, a state
transformation is applied to convert the multiple integrator
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into a linear system with an upper triangular system matrix,
based on which the saturated control is obtained. Sim-
ulation study shows the effectiveness of the proposed
control.
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