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A one-dimensional two-layer Frenkel–Kontorova model is studied. Firstly, a feedback tracking control law is given.
Then, the boundedness result for the error states of single particles of the model is derived using the Lyapunov
Method. Especially, the motion of single particles can be approximated analytically for the case of sufficiently
large targeted velocity. Simulations illustrate the accuracy of the derived results.
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Recently, the Frenkel–Kontorova (FK) model,
which describes a chain of classical particles inter-
acting with its nearest neighbors and subjected to a
periodic one-site potential, has become a useful tool
to study nanotribology.[1−6] There are several gen-
eralizations of the FK model that have been intro-
duced with the hope of understanding friction dy-
namics at nanoscale. These models include a many-
layer model with harmonic interactions, the Frenkel–
Kontorova–Tomlinson model (FKT) and the single-
layer model with harmonic interactions.[5−7] Refer-
ences [8,9] formulated the friction control problem and
gave control laws based on a single layer FK model.
The main disadvantage of the single layer FK model
is that the atoms in one of the interfaces are fixed.
To overcome this disadvantage, different types of two-
layer FK models are studied. In Refs. [5,10], a one-
dimensional (1D), two-layer FK-type model with 2N
atoms is proposed, as shown in Fig. 1. This model
displays some key features of frictional dynamics at
nanoscale and therefore is used here as a controlling
theory. If xi + i and yi + i + 1/2(1 < i < N) are the
atomic displacements in the first and second layer, re-
spectively, the equations of motion of the model can
be written as

ẍi +γẋi = Fxi−b sin 2πxi +f, ÿi +γẏi = Fyi +f, (1)

where

Fxi =





kc(x2 − 3x1/2 + y1/2), i = 1,

kc(xi+1 + xi−1 − 3xi + yi/2 + yi−1/2),
i = 2, . . . , N − 1,

kc(xN−1 − 2xN + yN/2 + yN−1/2), i = N,

Fyi =





kc(y2 − 2y1 + x1/2 + x2/2), i = 1,

kc(yi+1 + yi−1 − 3yi + xi/2 + xi+1/2),
i = 2, . . . , N − 1,

kc(yN−1 − 3yN/2 + xN/2), i = N.

The interactions between the particles are assumed
to be harmonic with spring constant kc and the first
layer is subjected to a time-averaged sinusoidal force

of strength b. Symbol γ is the damping coefficient, f
is the external force taken to act on all particles uni-
formly. The simple two-layer FK model (1) displays
some key features of the large-scale simulations and
can be used to understand the data from experiment
analytically. Hence, in this Letter, the simple two-layer
FK model (1) will be subjected to study the friction
control problem by using controlling theory.

The control objective is to achieve the expected
average velocity, v0, of the model (1). Let the external
force f in (1) be a feedback control, denoted by u(t).
Due to physical accessibility constraints, the feedback
control u(t) is assumed to be a function of only three
measurable quantities, v0, vcm and xcm, where xcm =∑N

i=1(xi + yi)/(2N), vcm =
∑N

i=1(ẋi + ẏi)/(2N). To
design feedback tracking controllers, the tracking error
states are defined as ea1 = xcm − v0t, ea2 = vcm − v0.
Then asymptotic stability of the system in the error
state space is equivalent to asymptotic tracking of the
targeted positions and constant velocity. The dynam-
ics of [ea1, ea2] can be derived as

ėa1 = ea2, ėa2 = −γ(ea2 + v0)

−
N∑

i=1

b sin(2πxi1)/(2N) + u(t).
(2)

Since system (2) is similar to the system (26) in
Ref. [9]. The result derived in Ref. [9] can be used for
system (2). Hence, we give the stability result for sys-
tem (2) as the following theorem without proof. Read-
ers can see the detailed proof in Ref. [9].

Theorem 1. The states of system (2) are uniformly
bounded over time [0,∞) with the feedback control
law

u(t) = −γv0 − k1ea1 − k2ea2 + b sin(2πv0t)/2, (3)

where constants k1 and k2 are positive.
Then, the question is whether the dynamics of

single particles will also perform well under Eq. (3),
i.e., whether the single particle state, (xi, ẋi), will
convergent to (v0t, v0). Since the control design must
account for the whole dynamics (and therefore cannot
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tolerate the instability of single particle’s dynamics),
the single particle’s behavior has to be addressed care-
fully. Here the focus is to study the dynamics of single
particles for the two-layer FK model with the de-
signed controller. For studying the stability of single
particles in Eq. (1), the following equations define the
error states as exi1 = xi1 − v0t, exi2 = xi2 − v0,
eyi1 = yi1 − v0t and eyi2 = yi2 − v0. Let e =
[ex11, ex12, ey11, ey12, . . . , exN1, exN2, eyN1, eyN2]T .
Then under the control law (3), the corresponding

error dynamics of e can be derived as

ė =
(
I2N ⊗

[
0 1
0 −γ

]
+ Q⊗

[
0 0
kc 0

]

− 1
2N

J2N ⊗
[

0 0
k1 k2

] )
e + [gT

1 . . . gT
N ]T ,

(4)

where I2N denotes 2N -by-2N identity matrix,
J2N denotes a 2N -by-2N special matrix whose
elements are all 1, gT

i = [0b sin(2πv0t)/2 −
b sin(2πxi1)0b sin(2πv0t)/2] for i = 1, . . . , N , and

Q =




−3/2 1/2 1 0 0 0 0 · · · 0
1/2 −2 1/2 1 0 0 0 · · · 0
0 1 1/2 −3 1 1/2 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 1 1/2 −3 1 1/2 0
0 · · · 0 0 0 1 1/2 −2 1/2
0 · · · 0 0 0 0 1 1/2 −3/2



∈ <2N×2N .

II

I

Fig. 1. The geometry of the simplified two-layer FK
model.
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Fig. 2. Tracking performance of the average system for
v0 = 2 under control law (3) and its corresponding error
states of single particles.

A main difference between the system (4) and
Eq. (42) in Ref. [9] is that the sinusoidal term vanishes
in the dynamics of upper particles, which makes origin
of Eq. (4) no longer an equilibrium point and sufficient
conditions for the stability of origin can not be ob-
tained similarly to Ref. [9]. However, the boundedness
result for Eq. (4) can be concluded as follows:

Theorem 2. The states of system (4) are globally
uniformly ultimately bounded by

‖e‖ ≤ 2Nα2/α1, (5)

where α1 = min{γ
2 µ2N−1kc,

γ
2 k1,

γ
2 + k2}, α2 =

Nb
√∑2N−1

i=1 (γ+γ2+2µikc)2+(γ+γ2+γk2+2k1)2+8N ,
and µi > 0 for i = 1, . . . , 2N − 1 are eigenvalues of
matrix −Q with µ1 ≥ · · · ≥ µ2N−1, over time [0,∞).
Proof: Through,[9] we know that there exits a trans-
formation matrix T = (tij) ∈ <4N×4N such that

TT T = I4N , TT GT = diag{S1, . . . , S2N}, (6)

where Si =
[

0 1
−µikc −γ

]
for i = 1, . . . , 2N − 1,

S2N =
[

0 1
−k1 −γ − k2

]
and I4N denotes 4N -by-4N

identity matrix. Let η = [η11η12 · · · η2N,1η2N,2]T =
TT e, then the dynamics of η can be presented as:

η̇ = diag{S1, . . . , S2N}η + [φ11 φ12 · · · φ2N,1 φ2N,2]T ,
(7)

where [φ11φ12 · · ·φ2N,1φ2N,2]T = TT [gT
1 · · · gT

N ]T . Uti-
lizing Eq. (6) yields |tij | ≤ 1, ∀i, j. Hence,

|φij | ≤
N∑

i=1

(|(b sin(2πv0t))/2− b sin(2πxi1)|

+ |(b sin(2πv0t))/2|) ≤ 2Nb, (8)

where i = 1, · · · , 2N and j = 1, 2. Define the follow-
ing Lyapunov function V (η) =

∑2N
i=1[ρiη

2
i1 + (γ

2 ηi1 +
ηi2)2]/2, where ρi = γ2/4 + µikc for i = 1, . . . , 2N − 1
and ρ2N = γ2/4 + γk2/2 + k1. Using Eq. (8) and
taking the time derivative of V (η) along system (7)
has V̇ (η) ≤ −α1‖η‖2 + α2‖η‖. Hence, V̇ (η) < 0,
∀‖η‖ > α2/α1, which shows that system (7) is glob-
ally uniformly ultimately bounded by ‖η‖ ≤ α2/α1.
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Due to the similarity transformation e = Tη, we have
‖e‖ ≤ ‖T‖m∞‖η‖ ≤ 2Nα2/α1, by utilizing compati-
ble property (see Ref. [11], page 327), where ‖ · ‖m∞
denotes infinity matrix norm. The proof is thus com-
pleted.

(a)

(b)

-0.5

0

0.5

-1

0

1

-1

0

1

72 73 74
-5
0
5
T10-3

T10-3

T10-3

T10-3

T10-3

T10-3

72 73 74
-5
0
5

72 73 74
-5

0

5

-0.5

0

0.5

-0.5

0

0.5

0 20 40 60 80 100
-1

0

1

Time

0 20 40 60 80 100
Time

72 73 74
-5

0

5

72 73 74
-5

0

5

72 73 74
-5

0

5

e
x
1
1

e
x
2
1

e
y
1
1

e
y
2
1

e
y
3
1

e
x
3
1

Fig. 3. The performance of error states of single particles
for v0 = 4 using control law (3).

Theorem 2 considers a general case for the motion
of single particles. For some special cases such as ex-
tremely large v0, the motion of single particles can
be described more specifically. The following theorem
gives properties of the motion of single particles for
the case of extremely large v0.

Theorem 3 If the targeted velocity v0 is sufficiently
large, the solution of Eq. (4) can be approximated by

exi1 =b[2 sin(2π(cxi + v0t))− sin(2πv0t)]/(8π2v2
0)

+ cxi, eyi1 = −b sin(2πv0t)/(8π2v2
0) + cyi,

(9)

when time goes to infinity, where cxi (cyi) is decided
by the initial condition and satisfies

{ N∑

i=1

[( 3b

8π2v2
0

+cxi

)2 +
( b

8π2v2
0

+cyi

)2]}1/2

<
2Nα2

α1
.

(10)
Proof: In order to study the motion of single particles
for the special case that v0 is extremely large, Eq. (4)
is rewritten as

ëxi1 =− γėxi1 + Fexi − Fu

− b sin(2π(exi1 + v0t)) + b sin(2πv0t)/2,

ëyi1 =− γėyi1 + Feyi − Fu

+ b sin(2πv0t)/2, (11)

where function Fexi (Feyi) for i = 1, . . . , N has the
same form as Fxi (Fyi) except that variables xj and

ym for j, m = 1, . . . , N in Fxi (Fyi) are replaced by
exj1 and eym1, Fu =

∑N
i=1[k2(ėxi1 + ėyi1) + k1(exi1 +

eyi1)]/(2N). Since exi1 and eyi1 are shown at the stay
in a finite region, according to theorem 2, exi1 and eyi1

converge either to equilibrium or to a stable periodic
solution or is chaotic. Clearly the system does not have
an equilibrium point. Assume chaos do not appear for
this system, then exi1 and eyi1 can be presented as

exi1 =
∞∑

j=1

[
axi

( j

qxi

)
sin

2πjv0t

qxi
+ bxi

( j

qxi

)
cos

2πjv0t

qxi

]
,

eyi1 =
∞∑

j=1

[
ayi

( j

qyi

)
sin

2πjv0t

qyi
+ byi

( j

qyi

)
cos

2πjv0t

qyi

]
,

(12)

where qxi and qyi are positive integers, axi(j/qxi) and
bxi(j/qxi) (ayi(j/qxi) and byi(j/qxi)) are coefficients of
the terms containing sin(2πjv0t/qxi) (sin(2πjv0t/qyi))
and cos(2πjv0t/qxi) (cos(2πjv0t/qyi)) separately;
axi(j/qxi), bxi(j/qxi), ayi(j/qxi) and byi(j/qxi) are
limited to be constants due to the boundedness of
exi1 and eyi1, according to theorem 2. The term
−b sin(2π(exi1 +v0t))+ b sin(2πv0t)/2 is also periodic,
hence it can be presented as

− b sin(2π(exi1 + v0t)) + b sin(2πv0t)/2

=
∞∑

j=1

[ci

( j

qi

)
sin(2πjv0t/qi) + di

( j

qi

)
cos(2πjv0t/qi)],

(13)

where qi is a positive integer, ci(j/qi) and di(j/qi)
are coefficients of the terms containing sin(2πjv0t/qi)
and di(j/qi), respectively. Substituting Eqs. (12) and
(13) into Eq. (11) and utilizing the fact that the terms
contain sin(2πjv0t/qi) (cos(2πjv0t/qi)) should be sep-
arately equal has

axi(j/qxi)4π2j2v2
0/q2

xi + γbxi(j/qxi)2πjv0/qxi

=Fxsi − Fu2 + Fu1 − ci(j/qxi),

bxi(j/qxi)4π2j2v2
0/q2

xi − γaxi(j/qxi)2πjv0/qxi

=Fxci + Fu2 + Fu1 − di(j/qxi),

ayi(j/qyi)4π2j2v2
0/q2

yi + γbyi2πjv0/qyi

=Fysi − Fu2 + Fu1 − gj ,

byi(j/qyi)4π2j2v2
0/q2

yi − γayi(j/qyi)2πjv0/qyi

=Fyci + Fu1 + Fu2, (14)

where functions Fxsi and Fxci (Fysi and Fyci) for
i = 1, · · · , N have the same form as Fxi (Fyi) except
that variables xn and ym for n,m = 1, · · · , N in Fxsi

and Fxci (Fysi and Fyci) are replaced by axn(j/qxi)
and bxm(j/qxi) (ayn(j/qxi) and bym(j/qxi)), Fu1 =∑N

i=1 k1[bxi(j/qyi) + byi(j/qyi)]/(2N), Fu2 =∑N
i=1 k2[axi(j/qyi)2πjv0/qyi+byi(j/qyi)2πjv0/qyi]/(2N),

gj = b/2 when j = qyi, otherwise, gj = 0. Since
axi(j/qxi), bxi(j/qxi), ayi(j/qyi) and byi(j/qyi) for
all i and j are limited, the values of the left side
of Eq. (14) are limited. Hence, axi(j/qxi), bxi(j/qxi),
ayi(j/qyi) and byi(j/qyi) for all i and j are small due
to sufficiently large v0. Therefore, exi1 and eyi1 for all
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i are small. Sufficiently large v0 corresponds to the sit-
uation when the frequency 2πv0 of the nonlinear term
−b sin(2π(exi1 +v0t))+b sin(2πv0t)/2 (b sin(2πv0t)/2)
in Eq. (11) is much larger than the natural frequency
of Eq. (11). A well known technique which is his-
torically connected with the problem of the Kapitza
pendulum is applied.[12,13] The motion is assumed to
traverse a smooth path and at the same time execute
small oscillations of frequency 2πv0 about that path.
Accordingly, the function e1(t) is represented as a
sum:

e1(t) = ē1(t) + ξ1(t), (15)

where e1(t) = [ex11, ey11, . . . , exN1, eyN1]T , ē1(t) =
[ēx11, ēy11, . . . , ēxN1, ēyN1]T and ξ1(t) = [ξx11,
ξy11, . . . , ξxN1, ξyN1]T . The symbol ξ1(t) corresponds
to these small oscillations. The mean value of the
function ξxi1(t) (ξyi1(t)) over its period 2π/v0 is zero
and the function ē1(t) changes slightly in that pe-
riod of time. Denoting this average by a bar, we have
¯̄e1(t) = ē1(t). Substituting Eq. (15) into Eq. (11) and
expanding in the powers of ξ1(t) as far as the first-
order terms obtain:

¨̄exi1 + ξ̈xi1 =− γ( ˙̄exi1 + ξ̇xi1) + Fexi + b sin(2πv0t)/2
− b sin(2π(ēx11 + v0t))− F ′u
− 2bπ cos(2π(ēx11 + v0t))ξxi1,

¨̄eyi1 + ξ̈yi1 =− γ( ˙̄eyi1 + ξ̇yi1) + Feyi + b sin(2πv0t)/2
− F ′u, (16)

where F ′u =
∑N

i=1[k1(ēxi1+ξxi1+ēyi1+ξyi1)+k2( ˙̄exi1+
ξ̇xi1 + ˙̄eyi1 + ξ̇yi1)]/(2N). Equation (16) involves both
oscillatory and ‘smooth’ terms, which must evidently
be separately equal. For the oscillating terms we can
put

ξ̈xi1 = b[sin(2πv0t)− 2 sin(2π(ēxi1 + v0t))]/2,

ξ̈yi1 = b sin(2πv0t)/2. (17)

The other terms contain the small factor ξxi1(t)
(ξyi1(t)) and are therefore of a higher order of small-
ness (but the derivative ξ̈xi1 (ξ̈yi1) is proportional to
the large quantity v2

0 and so is not small). Integrating
Eq. (17) regarding ēi as a constant has

ξxi1 = b[2 sin(2π(ēxi1 + v0t))− sin(2πv0t)]/(8π2v2
0),

ξyi1 = −b sin(2πv0t)/(8π2v2
0). (18)

Equation (16) is averaged with respect to time. Since
−2bπξxi1 cos(2π(ēxi1 + v0t)) = −b2π sin(2πēxi1)/2
and the mean values of b sin(2π(ēxi1 + v0t)) −
b sin(2πv0t)/2 (−b sin(2πv0t)/2), ξ̇xi1 (ξ̇yi1) and ξxi1

(ξyi1) are zeros, the result is

¨̄exi1(t) =− γ ˙̄exi1 + Fēxi − Fū

− b2π sin(2πēxi1)/2,

¨̄eyi1(t) =− γ ˙̄eyi1 + Fēxi − Fū, (19)

where function Fēxi (Fēyi) for i = 1, . . . , N has the
same form as Fexi (Feyi) except that variables exj and
eym for j, m = 1, . . . , N in Fexi (Feyi) are replaced by

ēxj1 and ēym1, Fū =
∑N

i=1[k1(ēxi1 + ēyi1) + k2( ˙̄exi1 +
˙̄eyi1)]/(2N). Considering the following function U =∑N

i=1[( ˙̄e
2
xi1 + ˙̄e2

yi1)/2+ b2(1− cos 2πēxi1)/4+kc(ēxi1−
ēyi1)2/4] +

∑N−1
i=1 kc{[(ēxi+1,1 − ēxi1)2 + (ēyi+1,1 −

ēyi1)2]/2 + (ēxi+1,1 − ēyi1)2/4}. The time derivative
of U along system (16) is U̇ = −γ

∑N
i=1( ˙̄e

2
xi1 + ˙̄e2

yi1).
Hence, utilizing invariance theorem in Ref. [14] has

˙̄exi1 → 0, ( ˙̄eyi1 → 0), ēxi1 → cxi, (ēyi1 → cyi), (20)

as time goes to infinity, where constant cxi (cyi) is
decided by initial condition. Utilizing Eqs. (15), (18)
and (20) yields Eq. (9) when time goes to infinity. Us-
ing theorem 2 and Eq. (20), Eq. (10) holds. The proof
is thus completed.

Simulations on a particle array of two chains is
performed. The system parameters used are γ = 0.1,
kc = 0.26 and b = 0.5π.[7] Firstly, Fig. 2(a) demon-
strates the tracking performances of an average system
using control law (3) with random initial conditions
and for v0 = 2 and Fig. 2(b) shows the correspond-
ing error states of single particles. From Fig. 2(b), it
can be seen that the error states of dynamical sys-
tem (4) are bounded which is claimed in theorem
2. Figure 3 demonstrates the performances of dy-
namical system (4) with N = 3 and for v0 = 4.
The initial condition for (4) is randomly chosen as
e = [0.2, 0.1, 0.3, 0, 0.4, 0.3, 0.5, 0.2, 0.6, 0.2, 0.8, 0.6]T
and control parameter are k1 = 1 and k2 = 1. The
simulation results in Fig. 3 show that the theorem 3
gives a satisfactory approximation for the solution of
Eq. (4) with sufficiently large v0.

In summary, we have studied the 1D two-layer FK
model. A control law is given to make the average sys-
tem have a desired velocity. The main contribution is
that the boundedness result for error states of indi-
vidual particles is obtained by the Lyapunov Method.
Especially, if v0 is sufficiently large, the error states of
individual particles can be approximated analytically.
Simulation results are presented to illustrate the ac-
curacy of the results obtained. The present results are
applicable to various nonlinear systems that can be
described by the two-layer FK model.
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