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Abstract In this paper, we propose a cooperative control
strategy for a group of robotic vehicles to achieve the
specified task issued from a high-level astronaut command.
The problem is mathematically formulated as designing the
cooperative control for a general class of multiple-input-
multiple-output (MIMO) dynamical systems in canonical
form with arbitrary but finite relative degrees such that the
outputs of the overall system converge to the explicitly given
steady state. The proposed cooperative control for individual
vehicle only need to use the sensed and communicated
outputs information from its local neighboring vehicles. No
fixed leader and time-invariant communication networks are
assumed among vehicles. Particularly, a set of less-restrictive
conditions on the connectivity of the sensor/communication
networks are established, under which it is rigorously
proven by using the newly found nice properties of the
convergence of sequences of row stochastic matrices that the
cooperative objective of the overall system can be achieved.
Simulation results for a group of vehicles achieving a target
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and surrounding a specified object in formation are provided
to support the proposed approach in this paper.
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1. Introduction

Cooperative control design for a group of robotic vehi-
cles has been an active research topic recently due to
its wide applicability in accomplishing complex and vi-
tal tasks such as exploring the hazardous environment.
In particular, an interesting question in future space
applications is how the robotic vehicles can coopera-
tively work together to achieve the command issued re-
motely from an astronaut or an operator on the earth.
Mathematically, this kind of task can be formulated as the
problem of designing the cooperative control through the ex-
changed communication information among vehicles such
that the outputs of all the individual systems converge to
the same steady state, that is, the so-called agreement or
cooperative consensus problem.

The early studies on cooperative control have been
focused on the formation control problem for a group of
agents using either the classical feedback control techniques
(Wang, 1989; Desai et al., 1998; Kang et al., 2000; Leonard
and Fiorelli, 2001; Olfati and Murray, 2002; Swaroop and
Hedrick, 1996) or the artificial intelligent based methods
(Parker, 1998; Fox et al., 2000; Balch and Arkin, 1098).
For instance, the stability of line formation was studied in
(Swaroop and Hedrick, 1996). In (Desai et al., 1998), using
graph representation, the system dynamics were converted
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into a set of equations corresponding to the relative position
and relative angle between robots, and then formation con-
trol was designed using feedback linearization technique to
stabilize the relative distances of the robots in the formation.
In (Leonard and E. Fiorelli, 2001; Olfati and Murray, 2002),
virtual leaders and artificial potential method were used
for a group of agents maintaining the group geometry,
and the closed-loop stability was proven by using the
system kinetic energy and the artificial potential energy as a
Lyapunov function. However, the aforementioned formation
control designs generally require the assumption that the
group members maintain a fixed sensor/communication
network among vehicles. To deal with the more realistically
dynamically changing sensor/communication network in
practice, recent efforts have been paid to seek the conditions
on the time-varying sensor/communication networks under
which the cooperative behaviors can be achieved (Vicsek
et al., 1995; Jadbabaie et al., 2003; Lin et al., 2004; Moreau
2003; Qu et al., 2004; Qu et al., 2005). Motivated by
animals’ flocking behavior via local interaction, a computer
simulation model was first built in (Reynolds, 1987) to
animate the cohesion, separation and alignment rules
inherently followed by animals in group. Subsequently, a
simple first-order mathematical model for heading updating
according to the neighboring alignment rule was proposed in
(Vicsek et al., 1995) for a group of planar particles moving
with the same speed and it was verified through experimental
results that finally all particles will move with the same
direction. A theoretical breakthrough for the proof of this
result was later obtained in (Jadbabaie et al., 2003) with the
aid of graph theory and matrix analysis, and it is shown that
the cooperative behavior can be achieved provided that the
undirected agents’s sensor graph is periodically connected.
For the same kind of simple first-order integrator model,
strongly connectivity condition for ensuring the cooperative
behavior has been obtained for the case of communication
being represented by a directed graph (Lin et al., 2004;
Moreau, 2003). To deal with the more complicated dy-
namical systems, in our recent works (Qu et al., 2004; Qu
et al., 2005), we proposed a cooperative control design for
a general class of multiple-input-multiple-output (MIMO)
dynamical systems with arbitrary but finite relative degrees.
The connectivity requirements among vehicles are further
relaxed and less-restrictive conditions on the choice of co-
operative feedback matrices have been found. The obtained
results show that neither strongly connectivity among vehi-
cles nor fixed leader are required. It is worth pointing out that
a different cooperative control method has been given for a
class of linear systems with relative-degree one in a recent
work (Feddema et al., 2002), where large-scale decentralized
control techniques have been employed to first establish
the related input/ouput reachability, structural observability
and controllability conditions based on the communication

paths available between vehicles and the information
transmitted and received, and consequently the coopera-
tive control design and stability analysis can be carried
out.

In this paper, as a natural continuation of the work in
(Qu et al., 2004; Qu et al., 2005), we propose a cooperative
control strategy for a group of dynamical systems in the
canonical form while the control objective being specified
to achieve the explicitly given steady state. By sophisti-
catedly modelling the given command as an additional
virtual vehicle, new and less-restrictive conditions on
the design of cooperative control and connectivity of the
sensor/communication network are established to guarantee
the convergence of overall system to the desired objective.
The significance of the proposed cooperative control lies
in the following aspects: (a) the proposed cooperative
control can deal with high-order dynamical systems with
arbitrary relative degrees; (b) the proposed cooperative
control only need to use the outputs feedback information,
which has the advantage of saving the load of wireless
communication resources; (c) no fixed or strongly connected
sensor/communication networks are required. Specifically, it
reveals that the cooperative behavior can be achieved if there
exists at least one vehicle in the leader group can periodically
receive information from the high-level command system;
(d) the vehicles in the group are allowed to be heterogeneous
with the nonlinear models as long as they are input-output
feedback linearizable and with stable internal dynamics;
(e) the proposed design is not only theoretically sound
with rigorous proof, but also has appealing potentiality for
practical application as shown by the agreement problem
and cooperative formation control problem in the simulation
examples.

The paper is organized as follows. The cooperative con-
trol design problem is formulated in section 2. Section 3
gives the proposed cooperative control and the conditions on
system convergence as well as its proof. Extensive simula-
tion results on cooperative consensus and formation control
are provided in section 4, and section 5 concludes the pa-
per. For the completeness of paper and the ease of reference,
some mathematical preliminaries on row stochastic matrices,
irreducibility and sequence convergence of row stochastic
matrices are collected in the appendix.

2. Problem formulation

In this paper, we consider a general problem important to
the development of a self-sustaining system that follows the
commands from an operator. In particular, we consider a
group of robotic vehicles that operate individually by them-
selves most of the time, communicate intermittently among
their teammates within their neighboring groups, and receive
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high-level commands from a human operator. Such a setting
will be typical in future space applications, in which com-
mands are issued remotely from an astronaut or an operator
on the earth, the commands may reach some of the vehicles
(as vehicles are in general heterogeneous and of different
functions and capabilities), and vehicles have limited sens-
ing range.

Mathematically, the control design problem for achieving
autonomy in robotic ecology is formulated as follows.
Consider a group of q robotic vehicles described by
dynamic equations (after appropriate state and control
transformations): for i = 1, · · · , q,

ẋi = Ai xi + Bi ui , yi = Ci xi , η̇i = gi (ηi , xi ), (1)

where yi (t) ∈ �m is the output of the ith robot, li ≥ 1
is an integer (representing the relative degree of the ith
vehicle’s dynamics), xi ∈ �li m is the state of ith vehicle,
ηi ∈ �ni −li m is the substate of internal dynamics, Im×m is
the m-dimensional identity matrix, Jk is the kth order Jordan
canonical form given by

Jk =




−1 1 0 · · · 0 0

0 −1 1
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 · · · −1 1 0

0 0 0 · · · −1 1

0 0 0 · · · 0 −1




∈ �k×k,

Ai = Jli ⊗ Im×m ∈ �(li m)×(li m),

Bi =
[

0
Im×m

]
∈ �(li m)×m,

Ci = [
Im×m 0

] ∈ �m×(li m),

ui is the control to be designed, and subsystem η̇i = gi (ηi , xi )
is input-to-state stable (Khalil, 2003).

Remark 1 In this paper, for the purpose of generality in
dealing with heterogenous vehicles in the group, the cooper-
ative control design problem is formulated according to the
dynamical systems in canonical form given by (1). In point
of fact, the above formulation includes at least two classes
of systems as special cases: input-output linearizable sys-
tems with stable internal dynamics (Qu, 1998), and tracking
dynamics of nonholonomic systems in the chained form (Qu
et al., 2004), which fit into most of the dynamics of the prac-
tical robotic vehicles (Qu and Dawson, 1996). Examples will
be given in the simulation section for illustration purpose.

The design objective of cooperative control in this paper
is to find a cooperative control law ui = Ui (y1, · · · , yq , rss)
such that, for any given high-level command vector rss ∈ �m ,
the overall system is globally asymptotically stable in the
sense that

lim
t→∞ yi (t) = rss, i = 1, · · · , q. (2)

To account for human presence, our approach is to model
the human command as the 0th vehicle, a virtual vehicle
described by

ẋ0 = −x0 + u0, y0 = x0, (3)

where x0 ∈ �m is the state. By setting initial condition
x0(t0) = rss and by choosing virtual control u0(t) = x0(t),
equation (3) has the unique solution x0(t) = rss . Thus, the
overall system consists of (1) and (3), and the control objec-
tive is to make

lim
t→∞ yi (t) = x0(t0) = rss, i = 1, · · · , q. (4)

In next section, we first address the general cooperative
control design problem according to the time-varying sen-
sor/communications (possibly unpredictable) among vehi-
cles, and then establish the less-restrictive conditions on
the connectivity requirements for sensor/communication net-
works so as to achieve the control objective (4).

3. Proposed cooperative control

To make a group of individual vehicles achieve an object
collaboratively, a necessary condition is that the vehicles in
the group are capable of exchanging information through
sensor/communication networks. For instance, consider a
scenario that a group of vehicles implementing the target
searching task. The vehicles move randomly at beginning
and then the possible location of the target is sensed by some
vehicles or issued by the high-level commander only to some
(maybe the fast-reached) vehicles, thus through the informa-
tion exchange among vehicles, it is possible that all the group
members can finally reach the target together. In such a sce-
nario, the vehicles in the group operate by themselves most
of the time with or without the target location in minds,
and exchange of output information among the vehicles oc-
curs only intermittently and locally. The questions naturally
arisen are thus: (a) how to design the cooperative control
law according to the shared outputs information among ve-
hicles? (b) what is the less-restrictive condition imposed on
the connectivity of the sensor/communication networks to
make sure that the cooperative behavior can be reached? In
this section, we explicitly address these two problems and
give the ascertained answers.
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3.1. General class of cooperative controls

The proposed cooperative control reacts to the sen-
sor/communications among vehicles. Consider that the ve-
hicles in the group have the limited sensor view, and each
vehicle can only acquire the information from other vehi-
cles in a relative direction and distance of itself. To capture
this nature of information flow, let us define the following
sensing/communication matrix and its corresponding time
sequence {t s

k : k = 0, 1, · · ·} as:

S(t) =




S1(t)
S2(t)

...
Sq (t)




=




s11 s12(t) · · · s1q (t)
s21(t) s22 · · · s2q (t)

...
...

...
...

sq1(t) sq2(t) · · · sqq


 ∈ �q×q ,




S(t) = S(t s
k ), ∀t ∈ [t s

k , t s
k+1)

S(k)
	= S(t s

k ),

(5)

where sii ≡ 1; si j (t) = 1 if the jth vehicle is in the sen-
sor range of the ith vehicle at time t, and sij = 0 if other-

wise; and t s
0

	= t0. Time sequence {t s
k } and the corresponding

changes in the row Si(t) of matrix S(t) are detectable instan-
taneously by and locally at the ith vehicle. Assume without
loss of any generality1 that 0 < ct ≤ t s

k+1 − t s
k ≤ ct < ∞,

Figure 1 illustrates an example of sensor graph. In the graph,
the line with arrow indicates the directed communication
channel between vehicles. If the ith vehicle receives infor-
mation from the jth vehicle, then there is a line from the
jth vehicle pointing at the ith vehicle. The corresponding
sensing/communication matrix is

S =




1 1 0 1

0 1 0 0

1 0 1 0

0 0 1 1


 . (6)

Recall that to accomplish the cooperative control objective
(4), the virtual vehicle (3) is introduced. Correspondingly,
communication from the virtual vehicle to the physical vehi-

1 If S(t) becomes a constant matrix after some finite time, an infinite
time sequence t s

k can always be chosen to yields a finite ct except that
S(t s

k ) remains constant. On the other hand, requirement of ct not being
too small is needed for implementation.

2

1
3

4

Fig. 1 A
sensor/communication network
for 4 vehicles

cles is also intermittent and local, thus we can introduce the
following augmented sensor/communication matrix as:

S(t) =




1 0 · · · 0
s10
...

sq0

S(t)


 ∈ �(q+1)×(q+1),




S(t) = S(t s
k ), ∀t ∈ [t s

k, t s
k+1)

S(k)
	= S(t s

k ),

(7)

To this end, let the proposed cooperative control be: for
i = 1, · · · , q,

ui (t) =
q∑

j=0

si j (t)∑q
η=0 siη(t)

Kc y j
	= Gi (t)y, (8)

where si j (t) are piecewise-constant entries of (7), Kc ∈
�m×m is a constant, nonnegative, and row stochastic matrix
(see appendix) to be designed, y = [yT

0 yT
1 · · · yT

q ]T and

Gi
	= [

Gi0 Gi1 · · · Giq
]
, Gi j

	= si j (t)∑q
η=0 siη(t)

Kc. (9)

It then follows from KC being row stochastic and S(t) being
piecewise constant that Gi (t) is also piecewise constant and
row stochastic (i.e., satisfies the properties that Gi 1m(q+1) =
1m where 1m is defined in the appendix.) Accordingly, let the
closed loop feedback gain matrix be

G =
[

G
T
0 G

T
1 · · · G

T
q

]T
∈ �(m(q+1))×(m(q+1)),

where G0 = [
Im×m 0 · · · 0

]
.

It then follows from (1), (3) and (8) that

ẋ = [A + BG(t)C]x = [−INq×Nq + E(t)]x, (10)

where x = [xT
0 , xT

1 , · · · , xT
q ]T ∈ �Nq , Nq = m + mLq ,

Lq = ∑q
i=1 li , x0 = [x01, x02, · · · , x0m]T ∈ �m, xi = [xT

i1,

xT
i2, · · · , xT

ili
]T ∈ �mli , xi j = [xi j1, xi j2, · · · , xi jm]T ∈ �m

with i = 1, · · · , q and j = 1, · · · , li and A = diag{Im×m,

A1, · · · , Aq} ∈ �Nq×Nq , C = diag{Im×m, C1, · · · , Cq} ∈
�((m+1)q)×Nq , B = diag{Im×m, B1, · · · , Bq} ∈ �Nq×((m+1)q),
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and E(t) ∈ �Nq×Nq , Eii ∈ �(li m)×(li m), Ei j (t) ∈ �(li m)×(l j m)

are defined as2

E(t)
	=




E00(t) E01(t) · · · E0q (t)

E10(t) E11(t) · · · E1q (t)

...
...

...
...

Eq0(t) Eq1(t) · · · Eqq (t)




=




Im×m 0 · · · 0

E10(t) E11(t) · · · E1q (t)

...
...

...
...

Eq0(t) Eq1(t) · · · Eqq (t)




,

with

Ēii =
[

0 I(li −1)×(li −1) ⊗ Im×m

Gii 0

]
, i = 1, · · · , q,

and

Ēi j =
[

0 0
Gi j 0

]
, i =1, · · · , q, j =0, 1, · · · , q, i �= j.

It is obvious that matrix E(t) is also piecewise constant and
row stochastic at any given time instant t.

According to (10), the cooperative control objective (4)
can be rewritten as

lim
t→∞ xµ1(t) = rss = x0(0), or lim

t→∞ xµ1i (t) = x0i (0),

(11)

where µ = 1, · · · , q, and i = 1, · · · , m. Obviously, the co-
operative control design is successful if

lim
t≥t s

k , k→∞
x̄(t) = x̄ss, (12)

with x̄ss = 1Lq+1 ⊗ rss . In next section, the choice of feed-
back gain matrix Kc and a set of less-restrictive conditions
on sensor/communications are given to ensure convergence
of (12).

3.2. Conditions and convergence analysis

It is clear from the design of cooperative control ui(t) in
(8) that the convergence of (12) relies on the connectivity
of the sensing/communication matrices S(t) in (5) and S(t)
in (7). When the control objective is only focused on the
convergence of all systems’ states instead of pursuing the
specified convergence task such as defined in (4), that is,

2 Whenever li−1 = 0, the corresponding rows and columns of
I(li −1)×(li −1) ⊗ Im×m are empty, i.e., removed from E .

the final achieved common value is unpredictable while de-
pending initial conditions of the states and connectivity of
sensor/communication networks, some remarkable results
have been reported very recently (Lin et al., 2004; Qu et al.,
2004; Qu et al., 2005). In particular, if there exists a sequence
{S(t s

k )} for which the sensor/communication matrix S(t s
k ) is

strongly connected (irreducible), the convergence result was
obtained in (Lin et al., 2004) for linear system with single
integrator model. It was later extended to a general class of
dynamical systems in (Qu et al., 2004). Obviously, strong
connectivity of sensor/communication network is a stringent
condition which is costly to maintain and also sensitive to
communication failures. Therefore, to enhance the robust-
ness and improve the performance, it is preferred that in the
situation of ensuring the success of cooperative control, the
exchange of information among vehicles should be kept as
sparse as possible. A recent work in (Qu et al., 2005) revealed
that the matrices S(t s

k )) do not need to be strongly connected
(that is, S(t s

k ) are reducible) for the convergence although the
final convergence value is uncertain. In this subsection, we
further extend the works in (Qu et al., 2005)(Qu et al., 2004),
and explore the analytical conditions on S̄(t) under which the
specified new control objective (4) can be achieved.

To search for the less-restrictive conditions on S(t) and
S̄(t), let us consider the general case of S(t) being reducible.
It is shown in (Minc, 1988) that, if S(t) is reducible, then
there exist an integer 1 < p ≤ q and permutation matrix
T1(k) ∈ �q×q such that ST1 (k) = T T

1 (k)S(t s
k )T1(k), where

ST1 (k) =




ST1,11(k) 0 · · · 0

ST1,21(k) ST1,22(k) · · · 0
...

...
. . .

...

ST1,p1(k) ST1,p2(k) · · · ST1,pp(k)




, (13)

with ST1,i i (k) ∈ �qi ×qi being irreducible,
∑k

i=1 qi = q. Cor-
respondingly, by employing the augmented permutation ma-
trices

T 1(k) = diag{1, T1(k)},
T2 = diag{Im×m, T1 × ⊗Im×m} ∈ �(q+1)m×(q+1)m,

we have

ST1 (k) = T
T
1 (k)S(k)T 1(k)

=




ST1,00(k) 0 0 · · · 0

ST1,10(k) ST1,11(k) 0 · · · 0

ST1,20(k) ST1,21(k) ST1,22(k) · · · 0
...

...
...

. . .
...

ST1,p0(k) ST1,p1(k) ST1,p2(k) · · · ST1,pp(k)




,
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and

GT2 (k)= T T
2 (k)G(k)T2(k)

=




GT2,00(k) 0 0 · · · 0

GT2,10(k) GT2,11(k) 0 · · · 0

GT2,20(k) GT2,21(k) GT2,22(k) · · · 0
...

...
...

. . .
...

GT2,p0(k) GT2,p1(k) GT2,p2(k) · · · GT2,pp(k)




,

where ST1,00(k) = 1 and ST1,i0 ∈ �qi ×1 for i = 1, · · · , p,
and GT2,00(k) = Im×m GT2,i i ∈ �qi m×qi m, i �= 0.

Now we are ready to present the conditions on sen-
sor/communication matrix S(k) to achieve the control ob-
jective (4).

Assumption 1 Suppose that the sensor/communication ma-
trices S(k) are reducible for all k, and there exists a
sub-sequence {sv, v = 0, 1, · · · ,∞} of {0, 1, 2, · · · ,∞} and
limv→∞ sv = +∞, such that for all time instants t s

sv
per-

mutation matrices T1(t s
sv

) are same. Moreover, the sen-
sor/communication matrix sub-sequence {ST1 (t s

sv
)} satisfies

the conditions for i = 1, · · · , p: (a) ST1,i i (t
s
sv

) is irreducible;
(b) ST1,10(t s

sv
)  0; (c) for every i > 1, there is at least one j

such that ST1,i j (t s
sv

)  0, j ∈ [1, i − 1].

Remark 2 Assumption 1 is less restrictive in the sense
that we allow that the directed sensor graph to be always
not strongly connected. Moreover, the vehicles in the
group doesn’t need to maintain the fixed communication
topology. We only need the existence of sub-sequence of

{sv, v = 0, 1, · · · ,∞} in which the vehicles keep the same
communication topologies. This is possible since the num-
ber of the vehicle communication topologies is finite given
the group size. The condition (a) always holds according to
transformation (13). The condition (b) is to make sure that
there will at lease one vehicle in the leader group can re-
ceive the command from the virtual vehicle. The condition
(c) is imposed to maintain the information exchange among
vehicles for convergence. �
Theorem 1. Consider dynamical systems in (1) and (3)
under assumption1. Given cooperative control (8) with
the choice of Kc = Im×m, the control objective (4) can be
achieved.

Proof: The proof consists of two steps. In step 1), we first
introduce two coordinates transformations, by which the
analytical solution of the diagonal subsystem zi (t) can be
explicitly obtained. Then, in step 2), the convergence of
zi (t) is proven for all i = 1, · · · , m, which is equivalent to
the proof of (12). �

Step 1): Note that under the choice of Kc = Im×m, the
nonzero sub-blocks Gi j (t) of G(t) is of the diagonal form,
that is, Gi j (t) = diag{Gi j,ss(t)}, s = 1, · · · , m. Thus, to fa-
cilitate the proof, let us first introduce the following state
transformation z = T x to diagonalize the system dynamics:

z = [zT
1 , · · · , zT

m]T ,

zi = [zi0, zT
i1, zT

i2, · · · , zT
iq ]T ∈ �1+Lq , zi0 = x0i , zi j = [zi j1, · · · , zi jl j ]

T ∈ �l j , i = 1, · · · , m, j = 1, · · · , q,

zi1 : zi11 = x11i , zi j : zi j1 = x j1i , ziq : ziq1 = xq1i

zi12 = x12i zi j2 = x j2i , ziq2 = xq2i ,
... · · · ... · · · ... (14)

zi1l = x1l1i zi jl = x jl j i , ziql = xqlq i .

It is easy to see that T is a permutation matrix, which permutes
the rows of x to obtain z. It follows from (10) and (14) that

ż = [−INq×Nq + Ẽ(t)]z, (15)

where Ẽ
	= T ET −1 = diag{Ẽ11, · · · , Ẽmm} with Ẽii ∈

�(1+Lq)×(1+Lq), i = 1, · · · , m given by

Ẽii =




1 0 0 0 0 · · · 0 0
0 0 I(l1−1)×(l1−1) 0 0 · · · 0 0

G10,i i G11,i i 0 G12,i i 0 · · · G1q,i i 0
0 0 0 0 I(l2−1)×(l2−1) · · · 0 0

G20,i i G21,i i 0 G22,i i 0 · · · G2q,i i 0
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 0 I(lq−1)×(lq −1)

Gq0,i i Gq1,i i 0 Gq2,i i 0 · · · Gqq,i i 0




.
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On the other hand, note the fact of S(k) being reducible in
assumption 1 and that there exists T1(k) to make it into the tri-
angular form in (13), we have the corresponding augmented
permutation matrix

T3 = diag{T31, · · · , T3m} ∈ �Nq×Nq ,

such that

ẼT3 = T T
3 ẼT3 = diag

{
T T

31 Ẽ11T31, · · · , T T
3m Ẽmm T3m

}
,

with

ẼT3i

	= T T
3i Ẽi i T3i

=




1 0 0 · · · 0

ẼT3i ,10(t) ẼT3i ,11(t) 0 · · · 0

ẼT3i ,20(t) ẼT3i ,21(t) ẼT3i ,22(t) · · · 0

...
...

...
. . .

...

ẼT3i ,p0(t) ẼT3i ,p1(t) ẼT3i ,p2(t) · · · ẼT3i ,pp(t)




,

(16)

where i = 1, · · · , m, T3i = diag{1, T ′
3i } ∈ �(1+Lq), and T ′

3i

is given from the augmentation of T1.3

To this end, we further define the state transformation
ξ = T T

3 z, and the system dynamics (15) becomes

ξ̇ = −(INq×Nq − T T
3 ẼT3)ξ. (17)

It follows that the solution of (17) is given by

ξ (t s
k+1) =

k∏
η=1

Q(η)ξ (t s
0 )

	= Q(k)Q(k − 1) · · · Q(1)ξ (t s
0 ), (18)

where Q(η) = e[−I+T T
3 (η−1)Ẽ(t s

η−1)T3(η−1)](t s
η−t s

η−1). It then fol-
lows from (18) and z(k) = T3(k)ξ (k) that

z(t s
k+1) =

k∏
η=1

T3(η)Q(η)T3(η)T z(t s
0 ). (19)

Since T3(η) = diag{T31(η), · · · , T3m(η)} and Ẽ(η) =
diag{Ẽ11, · · · , Ẽmm} are in the diagonal structure, we know
from (18) that Q(η) = diag{Q11, · · · , Qmm} are also in the

3 The augmentation rule is: if in the µth row of permutation matrix
T1, its element T1,µν = 1, then the µνth sub-block of T ′

3i is given by:
T ′

3i,µν = Ilν×lν otherwise, T ′
3i,µν = 0 ∈ �lν×lν .

diagonal structure and

zi (t
s
k+1) =

k∏
η=1

T3i (η)Qii (η)T3i (η)T zi (t
s
0 ),

i = 1, · · · , m, (20)

where Qii (η) = e[−I+T T
3i (η)Ẽii (η)T3i (η)](t s

η−t s
η−1). It is then obvi-

ous from (16) that Qii (η) is in the low-triangular structure
given by

Qii (η) =




1 0 0 · · · 0

Qii,10(η) Qii,11(η) 0 · · · 0

Qii,20(η) Qii,21(η) Qii,22(η) · · · 0

...
...

...
. . .

...

Qii,p0(η) Qii,p1(η) Qii,p2(η) · · · Qii,pp(η)




,

(21)

Moreover, Qii(η) is row stochastic and its diagonal elements
are lower-bounded by a positive value (Freedman, 1983).

Step 2): It follows from the transformation z = T x in (14)
that the proof of (12) is equivalent to show that

lim
t→∞ zi (t) = 1(1+Lq)zi0(0) = 1(1+Lq)x0i (0),

∀i = 1, · · · , m. (22)

To prove (22), it follows from (20) that it suffices to prove

lim
k→∞

k∏
η=1

T3i (η)Qii (η)T3i (η)T = 1(1+Lq) ⊗ cs, (23)

where cs = [1, 0, · · · , 0] ∈ �1×(1+Lq).
It follows from the condition (a) of assumption 1 that

ST1,µ(t s
sv

) is irreducible, for 1 ≤ µ ≤ p. By the definition of
G(t s

sv
) in (9), we know that GT2,µµ(t s

sv
) is irreducible. Thus,

according to lemma 1 and the definition of ẼT3i (t
s
sv

) in (16),
we know that ẼT3i ,µµ(t s

sv
) is irreducible, and Qii,µµ(sv) > 0

(Qu et al., 2004). On the other hand, it follows from
ST1,µν(t s

sv
)  0 and (9) that GT2,µν(t s

sv
)  0 which leads to

ẼT3i ,µν(t s
sv

)  0 and Qii,µν(sv)  0. It then follows from the
condition (b) of assumption 1 and corollary 1 that

lim
v→∞ Qii (sv)Qii (sv−1) · · · Qii (s0) = 1(1+Lq ) ⊗ cs . (24)

Define Q′
i i (sv) = T3i (sv)T T3i (sv − 1)Pii (sv − 1)T T

3i (sv −
1) · · · T3i (sv−1 + 1)Pii (sv−1 + 1)T T

3i (sv−1 + 1)T3i (sv−1).
Note that Q′

i i (sv) has positive diagonal elements, (23) follows
from (24) by using corollary 2.
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Remark 3 It is worth emphasizing that the proof of theo-
rem 1 is based on first finding the solution of system (15)
and then studying the convergence of the pre-multiplying
row stochastic matrix products (23). The transformations
introduced, such as T, T1, T2 and T3, are all for the anal-
ysis purpose rather than for design. Actually, the proposed
cooperative control law (8) is quite simple and convenient
for real-time implementation and practical application. On
the other hand, the conditions introduced in assumption 1
expose to be the less-restrictive requirements on the connec-
tivity of sensor/communications among vehicles compared
to the known results in the recent cooperative control litera-
tures (Jadbabaie et al., 2003; Lin et al., 2004; Ren and Beard,
2004; Qu et al., 2005). More importantly, those conditions
can be taken as a guideline to devise the large-scale com-
munication networks for the success of cooperative control
while be robust to the possible drop-out of some communi-
cation links during certain time intervals. To illustrate the
applicability of the proposed cooperative control, extensive
simulation studies on consensus problem and formation con-
trol problem are presented in next section.

In what follows, we give a simple example for better
understanding of the reducible sensor/communication matrix
and the corresponding transformations.

Example 1 Consider a group of 4 robots in (1) with m = 2
and li = 1,i = 1, · · ·,4. Let the human command be modelled
as the 0th robot. Then we have Nq = m + ∑4

j=1 l j m = 10,

and x = [xT
0 , xT

1 , xT
2 , xT

3 , xT
4 ]T with xi = [xi1, xi2]T , i =

0, 1, · · · , 4. Suppose that at the current time instant, the sen-
sor/communication graph is given by figure 1. Obviously,
the corresponding sensor/communication matrix S in (6) is
reducible. Let the permutation matrix T1 be

T1 =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




.

Then we have ST1 =
[

ST1,11 0
ST1,21 ST1,22

]
, with

ST1,11 = 1, ST1,21 =




1

0

0


 , ST1,22 =




1 0 1

1 1 0

0 1 1


 ,

where ST1,11 and ST1,22 are irreducible. To this end, four
robots is reformulated into two subgroups, that is, group 1
= {2} and group 2 = {1, 3, 4}. Assume that the group 1 can

receive command from the 0th robot. Then the augmented
sensor/communication matrix is

ST1 =




1 0 0

1 ST1,11 0

ST1,20 ST1,21 ST1,22


 ,

where ST1,20 = [0, 0, 0]T . It follows from (9) that

G =




I2×2 0 0 0 0

0 G11 G12 0 G14

G20 0 G22 0 0

0 G31 0 G33 0

0 0 0 G43 G44




. (25)

The corresponding permutation matrix T2 is[
I2×2 0

0 T1 ⊗ I2×2

]
, and

GT2 =




I2×2 0 0

GT2,10 GT2,11 0

0 GT2,21 GT2,22


 ,

with GT2,10 = G20, GT2,11 = G22 and

GT2,21 =




G12

0

0


 , GT2,22 =




G11 0 G14

G31 G33 0
0 G43 G44


 .

On the other hand, it follows from (25) and li = 1
for i = 1, · · · , 4, that E = G. Define the following coor-
dinate transformation matrix T ∈ �10×10:




1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1




,
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we have z = T x = [zT
1 , zT

2 ]T with z1 =
[x01, x11, x21, x31, x41]T and z1 = [x02, x12, x22, x32, x42]T .
Thus, it follows from E that

Ẽ = T ET −1 = diag {Ẽ11, Ẽ22},

with

Ẽss =




1 0 0 0 0

0 G11,ss G12,ss 0 G14,ss

G20,ss 0 G22,ss 0 0

0 G31,ss 0 G33,ss 0

0 0 0 G43,ss G44,ss




,

s = 1, 2.

Noting the structure of T1, the corresponding permutation
matrix T3 is

T3 = diag{T31, T32},

with

T3s =
[

1 0

0 T1

]
, s = 1, 2.

To this end, we have

ẼT3 = T T
3 ẼT3 =

[
T T

31 Ẽ11T31 0

0 T T
32 Ẽ22T32

]

where

T T
3s Ẽss T3s =




1 0 0

ẼT3s ,10 ẼT3s ,11 0

0 ẼT3s ,21 ẼT3s ,22


 ,

with ẼT3s ,10 = G20,ss, ẼT3s ,11 = G22,ss , and

ẼT3s ,21 =




G12,ss

0

0


 ,

ẼT3s ,22 =




G11,ss 0 G14,ss

G31,ss G33,ss 0

0 G43,ss G44,ss


 .

�

4. Simulation

In this section, simulation results for a group of vehicles
approaching a given target and surrounding a specified object
in formation are provided, respectively.

4.1. Vehicle platforms

In general, the vehicle described by (1) are heterogeneous,
i.e, the vehicles can be any combination of vehicle dynam-
ics which are input-output feedback linearizable with sta-
ble internal dynamics, such as point-mass agent (Vicsek
et al., 1995), unmanned aerial vehicle (Menon and Sweriduk,
1999) and nonholonomic chained systems (Qu et al., 2004).
In what follows, two examples of platforms are given, and to
simplify the notation, the subscript i denoting the ith vehicle
is omitted.

Example 2 A point-mass agent whose equation of motion
is:

φ̇1 = φ2, φ̇2 = v, ψ = φ1, (26)

where φ1 ∈ �m is the position of the agent, φ2 ∈ �m is the
velocity, ψ is the output, and v ∈ �m is the control. Then,
under the state and input transformation of

x1 = φ1, x2 = x1 + φ2, v = −2x2 + x1 + u,

dynamical system of (26) can be transformed into (1) with

A =
[ −1 1

0 −1

]
⊗ Im×m , B =

[
0

Im×m

]
, C = [

Im×m 0
]
.

Example 3 A 4-wheel differential driven mobile robot model
is given by

ṙx = rv cos(rθ ), ṙy = rv sin(rθ ),

ṙθ = rω, ṙv = F/m, ṙω = τ/J, (27)

where (rx, ry) is the inertial position of the robot, rθ is the
orientation, rvis the linear speed, rω is the angular speed, τ is
the applied torque, F is the applied force, m is the mass, and J
is the moment of inertia. By taking the robot “hand” position
as the guide point (which is a point located a distance L from
(rx, ry) along the line that is perpendicular to the wheel axis),
the robot model in (27) can be feedback linearized to

φ̇1 = φ2, φ̇2 = v,

with a stable internal dynamics

ṙθ =
[

− 1

2L
sin(rθ )

1

2L
cos(rθ )

]
φ2,
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where v = [v1, v2]T ∈ �2, φ1 =
[

rx + L cos(rθ )
ry + L sin(rθ )

]
∈ �2 is

the position of “hand” point, φ2 ∈ �2, and

[
F

τ

]
=




1

m
cos(rθ ) − L

J
sin (rθ )

1

m
sin (rθ )

L

J
cos (rθ )




−1

×
(

v −
[−rvrω sin (rθ ) − L2r2

ω cos (rθ )

rvrω cos (rθ ) − L2r2
ω sin (rθ )

])
.

�

4.2. Cooperative consensus

In this subsection, the proposed cooperative control is sim-
ulated for a group of 3 vehicles described by (1) with m =
2 and li = 2. The control objective is that 3 vehicles move
cooperatively towards the specified target position. For illus-
tration purpose, we assume that the sensor/communications
change randomly among the following given patterns:

S1 =




1 0 0

1 1 0

0 0 1


 , S2 =




1 1 0

0 1 0

1 0 1


 ,

S3 =




1 0 0

0 1 0

1 0 1


 . (28)

Moreover, assume that vehicle 1 can intermittently receive
the information from the human command, which is de-
fined as the virtual vehicle with the model given by (3). It is
straightforward to verify that all the communication patterns
in (28) are reducible, and that the sequence consisting of S1

and S3 satisfying the assumption 1. Thus, by using the con-
trol feedback matrices given in (9) with Kc = I2×2, we can
guarantee that the control objective can be achieved.

In the simulation, let the initial positions of the robots are
[6, 3]T , [2, 5]T and [4, 1]T , respectively. The target position is
[2.5, 2]T . Figure 2 illustrates the convergence of the robots’s
positions, which verifies the effectiveness of the proposed
cooperative control in this paper. The cooperative control
inputs for vehicle 1 to vehicle 3 are shown by Figure 3a to
Figure 3c, respectively. It is observed from figure 2 that each
vehicle does not need to take the shortest path to the target.
This phenomena is attributed to the nature of cooperative
control problem. In essence, different from the conventional
control methods, cooperative control is according to the in-

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.5

1

1.5
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3.5
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5.5
Vehicle 1
Vehicle 2
Vehicle 3

Fig. 2 Convergence to the specified target under cooperative controls

formation exchange and sharing among group members to
collaboratively accomplish the given task, such as approach-
ing the target. Specifically, in the simulation, it is assumed
that only vehicle 1 is able to intermittently receive the in-
formation about target position, and the cooperative control
design for vehicles 2 and 3 are based on the position infor-
mation of the vehicles within their sensor/communication
networks, and the corresponding trajectories are dependent
on the properties of the communication networks. Nonethe-
less, if all the vehicle in the group have the target informa-
tion, then the decoupled tracking control can be individually
designed according to the classical control approaches for
optimal trajectory, such as that in (Qu et al., 2004).

To further verify the performance of the proposed coop-
erative control design, a random disturbance with 0 mean
and 0.05 variance is added into the output measurements.
Figures 4 to 5 are the simulation results which indicate that
the proposed cooperative control is robust and cooperative
convergence can still be achieved even in the presence of ran-
dom disturbance although the control signals become more
chattering. This is understandable because that the conver-
gence of the cooperative control system inherently relies on
the connectivity of sensor/communication networks.

4.3. Surrounding a target

To see broad applicability of the proposed cooperative con-
trol methodology, we show here how to design a formation
control using the proposed method. As an example, let us
start with the double integrator model given by (26) with m
= 2, that is, for the ith vehicle, we have

φ̇i1 = φi2, φ̇i2 = vi , i = 1, · · · , q, (29)

where φi1 = [φi11, φi12] ∈ �2 is the planar position of the
ith vehicle, φi2 = [φi21, φi22] ∈ �2 its velocity, and vi =
[vi1, vi2]T the control input.
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Fig. 3 Cooperative controls
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Fig. 4 Convergence in the presence of random disturbance

A formation is defined in a coordinate frame, which moves
with the desired trajectory. Let e1(t) ∈ �2 and e2(t) ∈ �2 be
the orthonormal vectors which forms the moving frame F(t).

Let φd (t) = [φd1(t), φd2(t)] ∈ �2 be any desired trajectory of
the origin of the moving frame. A formation consists of q
points in F(t), denoted by {P1, . . .s, Pq}, where

Pi = di1(t)e1(t) + di2(t)e2(t), i = 1, · · · , q, (30)

with di (t) = [di1(t), di2(t)] ∈ �2 being the desired relative
position for the ith vehicle in the formation. It is obvious that
di(t) being constant refers to the rigid formation. The desired
position for the ith vehicle is then

φd
i (t) = φd (t) + di1(t)e1(t) + di2(t)e2(t). (31)

Figure 6 illustrates a formation setup for 3 agents.
In what follows, we show that, through state and input

transformations, the formation control problem for (29) can
be recast as the cooperative control design problem for (1).
Let the input transformation be
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Fig. 5 Cooperative controls in the presence of random disturbance

xi1 = φi1 − φd
i (t), xi2 = φi2 + xi1 − φ̇d

i (t), (32)

and the decentralized control be

vi (t) = −2xi2 + xi1 + ui . (33)

Substituting (32) and (33) into (29), we obtain the canon-
ical model (1) with xi = [xT

i1, xT
i2]T ∈ �4, ui ∈ �2, and

yi = xT
i1 ∈ �2. To this end, if we can design the cooper-

ative control ui such that states xi1 and xi2 for all i con-
verge to the same steady state xss, then it follows from (32)
that

φi1 → xss + φd
i (t), φi2 → φ̇d

i (t),

from which it can be seen that the desired formation is
achieved for the whole group while vehicles moving with
the desired trajectory shape.

)(tzd

1e

),( 2221 dd
2e

),( 1211 dd
),( 3231 dd

Fig. 6 Formation Setup

In the simulation, assume that in the group there
are 3 vehicles given by (29). Similarly, assume that
the sensor/communications change randomly among the
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Fig. 7 Circle motion under cooperative control

given patterns (28), and the vehicle 1 can acquire
the human command. The formation control objective
is to make the vehicles circle around a target lo-
cated at [0, −0.25]T , that is, the virtual vehicle in
(3) stays at x0(t0) = [0, −0.25]T . All vehicles try to keep
the same radius and speed, and relative angle offset. Let

φd (t) = [cos(t), sin(t)]T .

The moving frame F(t) is defined as

e1(t) =
[− sin(t)

cos(t)

]
, e2(t) =

[
cos(t)
sin(t)

]
.

The formation is defined by the three points:

P1 = the origin of F(t), P2 = d1e1 + d2e2,

P3 = −d1e1 + d2e2,

where d1 = 0.5 and d2 = −0.1340. The initial positions for
three vehicles are given by [0, 0]T , [−0.5, −0.5]T , and [0.5,
−0.5]T , respectively. Figures 7 shows that the circle motion
around the given target is achieved while maintaining the
formation among vehicles.

5. Conclusion

In this paper, a cooperative control strategy has been pro-
posed for a group of robotic vehicles to collaboratively ac-
complish the issued tasks. A set of less-restrictive condi-
tions on the requirements for sensor/communication net-
works have been established for the convergence of the
overall closed-loop system. Particularly, the proposed co-
operative control method is scalable in the sense that the
information of drop-out and add-in of the vehicles in the

group can be totally captured by the sensor/communication
matrix S(t) in (5), and accordingly the cooperative control (8)
can be designed. In addition, the final convergent behavior
can be adaptively adjusted with the change of the specified
target and simulation results have also shown that the pro-
posed method is robust against uncertainties in sensors and
detection disturbances.

In summary, the proposed control-design methodology
enables us to analyze, understand and achieve cooperative
behavior and autonomy for a team of robotic vehicles that are
autonomous by themselves to operate in space, communicate
with and/or sense each other intermittently, and receive and
follow high-level commands from astronauts or operators on
earth. In addition to the development of new and effective
rules and controls, the framework can also be used to gain
fundamental understandings about and develop analytical
analysis tools for the rules and behaviors inspired by nature.

Appendix

The cooperative control design and system convergence anal-
ysis result of this paper rely on the study of the convergence
of the infinite products of sequences of row stochastic ma-
trices. In the appendix, we give some preliminaries by first
introducing the related notations and definitions and then pre-
senting some useful results on irreducible matrices as well
as the convergence properties of products of row stochastic
matrices.

Nonnegative matrices and row stochastic matrices

Let 1p be the p-dimensional column vector with all its el-
ements being 1, and Jr1×r2 ∈ �r1×r2 be a matrix whose ele-
ments are all 1. Im is the m–dimensional identity matrix. ⊗
denotes the Kronecker product.

A nonnegative matrix has all entries nonnegative. A
square real matrix is row stochastic if it is nonnegative and
its row sums all equal 1.

Given a sequence of nonnegative matrix E(k), the nota-
tion of E(k)  0, k = 0, 1, · · ·, means that, there is a sub-
sequence {lv, v = 1, · · · ,∞} of {0, 1, 2, . . . ,∞} such that
limv→∞ lv = +∞ and E(lv) �= 0.

A non-negative matrix E is said to be reducible if the

set of its indices, I 	= {1, 2, · · · , n}, can be divided into two

disjoint nonempty setsS 	= {i1, i2, · · · , iµ} andSc 	= I/S =
{ j1, j2, · · · , jν} (with µ + ν = n) such that Ei α Jβ , where α =
1, . . ., µ and β = 1, . . ., ν. Matrix E is said to be irreducible
if it is not reducible.

A square matrix E ∈ �n×n can be used to define a directed
graph with n nodes v1, . . . , vn , and there is a directed arc from
vi to v j if and only if Ei j �= 0. A directed graph represented
by E is strongly connected if between every pair of distinct
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nodes vi, vj there is a directed path of finite length that begins
at vi and ends at vj. The fact that a directed graph represented
by E is strongly connected is equivalent to that matrix E is
irreducible (Minc, 1988).

Results on sequence convergence of row
stochastic matrices

The following lemma provides a necessary and sufficient
condition on the irreducibility of a non-negative matrix in a
special structure, which has direct relation to the canonical
system model discussed in this paper.

Lemma 1 (Qu et al., 2004) Given any non-negative ma-
trix E ∈ �(qm)×(qm) with sub-blocks Ei j ∈ �m×m, let E =
[Ei j ] ∈ �(Lm)×(Lm) with L = l1+· · ·+lq be defined by

Eii =
[

0 I(li −1) ⊗ Im

Eii 0

]
, Ei j =

[
0 0

Ei j 0

]

where li ≥ 1 are positive integers for i = 1, · · ·, q. Then, E
is irreducible if and only if E is irreducible.

The classical convergence result of the infinite products
of sequences of row stochastic matrices (Wolfowitz, 1963)
has been applied in the study of coordination behavior of
groups of mobile autonomous agents (Jadbabaie et al., 2003;
Lin et al., 2004). In our recent works (Qu et al., 2004; Qu
et al., 2005), we relaxed the condition in (Wolfowitz, 1963)
and found an easy-to-check condition on the convergence of
a sequence of row stochastic matrices in the lower-triangular
structure, and also extended it to the case of the products of
lower-triangular matrices and general matrices. These new
results are useful for establishing the less-restrictive condi-
tions on the design of cooperative control and the connectiv-
ity requirements among individual systems. In what follows,
we recall these two results without proof for briefness.

Lemma 2 (Qu et al., 2004) Consider a sequence of nonneg-
ative, row stochastic matrices P(k) ∈ �R×R in the lower-
triangular structure,

P(k) =




P11(k)

P21(k) P22(k)

...
...

. . .

Pm1(k) Pm2(k) · · · Pmm(k)




∈ �R×R,

where R = ∑m
i=1 ri , sub-blocks Pii(k) on the diagonal are

square and of dimension �ri ×ri , sub-blocks Pij(k) off diagonal
are of appropriate dimensions. Suppose that Pii (k) ≥ εi Jri ×ri

for some constant εi > 0 and for all (i = 1, . . .s, m), and in
the ith row of P(k) (i > 1), there is at least one j (j < i) such
that Pi j  0. Then,

lim
k−1∏
l=0

P(k − l) = 1Rc,
k→∞

where constant vector c = [c1, 0, · · · , 0] ∈ �1×R with that
constant vector c1 ∈ �1×r1 exists and given by

c1 = lim
k−1∏
l=0

P11(k − l).
k→∞

Lemma 3 (Qu et al., 2005) Given sequences of row stochas-
tic matrices P(k) ∈ �R×R and P ′(k) ∈ �R×R, where P(k)
is in the lower-triangular structure and P′(k) satisfying
P ′

i i (k) ≥ εp > 0. Then,

lim
k−1∏
l=0

P(k − l)P ′(k − l) = 1Rc1,
k→∞

if and only if limk→∞
∏k−1

l=0 P(k − l) = 1Rc2, where c1 and
c2 are constant vectors.

Lemmas 2 and 3 present sets of conditions on the conver-
gence of the product of a sequence of row stochastic matri-
ces containing lower-triangular matrices. In general, the final
convergence values (say, vector c in lemma 2 and vector c1 in
lemma 3) are not determinable. However, it is of interest to
note that if lower-triangular matrices have a special feature,
then the final convergence value can be determined. The fol-
lowing corollaries summarize this observation, which can be
directly proved following the same insights of lemmas 2 and
3, respectively. Corollaries 1 and 2 will be used to establish
the main result of this paper.

Corollary 1 Consider a sequence of nonnegative, row
stochastic matrices P(k) ∈ �R×R in the lower-triangular
structure, where R = ∑m

i=1 ri , sub-blocksPi j (k) Pii(k) on the
diagonal are square and of dimension �ri ×ri , sub-blocks
off diagonal are of appropriate dimensions. Suppose that
P11(k) = 1, and Pii (k) ≥∈i Jri×ri for some constant εi >

0 and for all (i = 2,. . .s, m), and in the ith row of P(k)
(i > 1), there is at least one j (j < i) such that Pi j  0.
Then, limk→∞

∏k−1
l=0 P(k − l) = 1Rc, where constant vector

c = [1, 0, · · · , 0] ∈ �1×R.

Proof: The proof follows from the fact that
limk→∞

∏k−1
l=0 P11(k − l) = 1r1 and lemma 2. �

Corollary 2 Given sequences of row stochastic ma-
trices P(k) ∈ �R×R and P ′(k) ∈ �R×R, where P ′(k)

Springer



Auton Robot (2006) 20:97–112 111

satisfy P ′
i i (k) ≥ εp > 0. Let P(k) ∈ �(R+1)×(R+1) and

P
′
(k) ∈ �(R+1)×(R+1) be defined as

P(k) =
[

1 0

P21(k) P(k)

]
,

P
′
(k) =

[
1 0

P
′
21(k) P ′(k)

]
.

Suppose that

lim
k→∞

k−1∏
l=0

P(k − l) = 1Rc,

Then,

lim
k→∞

k−1∏
l=0

P(k − l)P
′
(k − l) = 1Rc,

where c = [1, 0, · · · , 0] ∈ �1×(R+1).

Proof: The proof can be done by invoking lemma 3 and
noting the lower triangular structure of P(k) and P

′
(k).
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