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Abstract

An optimal iterative learning control (ILC) is proposed to optimize an accumulative quadratic performance index in the iteration domain
for the nominal dynamics of linear discrete-time systems. Properties of stability, convergence, robustness, and optimality are investigated and
demonstrated. In the case that the system under consideration contains uncertain dynamics, the proposed ILC design can be applied to yield
a guaranteed-cost ILC whose solution can be found using the linear matrix inequality (LMI) technique. Simulation examples are included to
demonstrate feasibility and effectiveness of the proposed learning controls.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In applications such as automation, manufacturing, and
chemical processes, control systems are commanded to
repetitively perform the same task. In a typical scenario, the
output of the system is to track a given reference signal within a
specified time interval, which is repeated trial-by-trial. In these
applications, tracking accuracy can be improved by designing
an iterative learning control (ILC) in which the control input in
the current trial is calculated according to the control input and
tracking error in the previous trial(s). In other words, different
from standard feedback controls (such as PID control, adaptive
control, robust control), an ILC is a functional feedback control.
By taking advantage of periodicity in the reference signal, a
properly designed ILC can achieve better tracking accuracy in
a fixed-length time interval (than those under standard feedback
controls) and can learn an unknown periodic function (Qu,
2002). Due to these advantages, ILC design has been and
continues to be a useful methodology.
I This paper was not presented at any IFAC meeting. This paper was
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In 1984, Arimoto and his coworkers proposed the first D-
type ILC for robot systems (Arimoto, Kawamura, & Miyazaki,
1984). Since then, different ILCs have been proposed (Arimoto,
Naniwa, & Suzuki, 1990, 1991; Bien & Huh, 1989; Chen,
Gong, & Wen, 1998; Heinzinger, Fenwick, Paden, & Miyazaki,
1989; Jayati & Bard, 2002; Shao, Gao, & Yang, 2003), and they
have the common control objective that either limk→∞ ek(t) =

limk→∞[yk(t) − y∗(t)] = 0 or limk→∞ uk(t) = u∗(t)
for any t in a given discrete-time interval [0, N ], where
subscript k represents the index of trial numbers, and y∗(t)
and u∗(t) are the desired output and control input, respectively.
More recently, optimal ILCs are designed using two types of
quadratic performance indices. The first type includes those
indices defined in the time domain. For instance, the time
domain performance index used by Frueh and Phan (2000),
Gunnarsson and Norrlof (2001), Norrlof (2002) and Phan
and Frueh (1996) is quadratic in both the tracking error
and control input error, and it also is the same as that in
the design of standard feedback optimal control. The second
type of performance indices are those defined in the iteration
domain, which is more suitable for ILCs by their nature.
The performance index used by Amann, Owens, and Rogers
(1996a,b), Kim, Chin, and Lee (2000), Lee, Lee, and Kim
(2000) and Sugie and Ono (1991) is quadratic in both tracking
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error and control error between two successive trials. However,
their ILC design is to locally minimize the performance index
using the gradient method, and optimality of the learning
process in the iteration domain is not guaranteed. In this
paper, ILC is designed to ensure the optimal performance of
the learning process in the iteration domain. To this end, an
accumulative performance index over iterations is defined, and
optimal ILCs are then designed for linear discrete-time systems.

The rest of the paper is organized as follows. In Section 2,
the problem of performance-based ILC design is described,
and a new performance index in the iteration domain is
introduced. In Section 3, an optimal ILC with respect to the
new performance index is derived for the nominal dynamics,
and its stability, convergence, and optimality are analyzed.
In Section 4, a guaranteed-cost ILC is proposed to achieve
robustness for uncertain systems, and its solution is expressed
in terms of a linear matrix inequality (LMI). In Section 5,
simulation examples are presented. In Section 6, conclusions
are drawn.

2. Problem formulation

Consider a linear time-invariant discrete system:

x(i + 1) = [A + ∆A] x(i) + [B + ∆B] u(i)

y(i) = [C + ∆C] x(i) + [D + ∆D] u(i),
(1)

where ΩN
4
= {0, . . . , N }, and i ∈ ΩN is the time index. Vectors

x(i) ∈ Rn , y(i) ∈ Rm and u(i) ∈ Rr are state, output, and
control input, respectively. Matrices A, B, C , and D are known
and of appropriate dimension, and they represent the nominal
dynamics of the system. Matrices ∆A, ∆B, ∆C and ∆D are
uncertain dynamics (if any) of the system, respectively.

For the ease of technical development, systems of
linear time-invariant model (1) are considered in the paper.
Nonetheless, the learning control designs proposed here are not
restricted to this class of systems. For instance, the proposed
designs can directly be applied to time-variant systems, and the
process is parallel to that presented in Amann et al. (1996a) and
Lee et al. (2000). Nonlinear systems could also be handled in
a way analogous to the Lyapunov argument presented in Ham,
Qu, and Kaloust (2001) except that the optimal solution would
require solving a two-point boundary value problem.

Let us first consider the nominal dynamics of system (1).
Suppose that its relative degree and input–output controllability
index are d and γ , respectively, that is,

d
4
=

{
0 if D 6= 0

min
l

{
l ∈ ℵ

+
: C Al−1 B 6= 0

}
if D = 0,

and

γ
4
= min

i

{
max

k

{
i ∈ ℵ

+
: rank(Hi ) = k

}}
,

where ℵ
+ is the set of positive integers,

ϕ(d)
4
=

{
D, if d = 0
C Ad−1 B, if d > 0
is a nonzero matrix, and Hi with i ≥ d is defined by

Hi
4
=

[
C Ai−1 B C Ai−2 B · · · C Ad B ϕ(d)

]
.

If rank(Hγ ) = m, the nominal system is input–output
controllable. The proposed learning control design is based on
the input–output controllability.

Let {y∗(i), i ∈ ΩN } be the known signal representing the
desired output sequence for the system to track. Given the
knowledge of relative degree d, controllability index γ , and
initial condition x(0), output tracking error e(i) , y(i) − y∗(i)
for the nominal dynamics can be expressed as, under any
control sequence {u(i), i ∈ ΩN },

e(i) =



C Ai x(0) − y∗(i) for i < d

Hi


u(0)

u(1)
...

u(i − d)

 + C Ai x(0) − y∗(i) for i ≥ d.
(2)

It is obvious that, given input–output controllability of
the nominal system, error system (2) is also input–output
controllable.

In system (2), tracking error e(i) of i < γ may not
be made zero under any control. In particular, tracking error
e(i) with i < d depends solely upon x(0) and y∗(i), and
it is not influenced by control u( j) for any j ≤ i . Thus,
in the subsequent design and analysis of learning control,
convergence of e(i) is studied for i ≥ γ . To this end, error
equation (2) is rewritten into the following batch form:

E = GU + Λx(0) − Y ∗, (3)

where p ≥ 1 is a design integer chosen by the designer, integer
l should be chosen such that γ + lp ≤ N < γ + (l + 1)p,

E ,


e(γ )

e(γ + p)
...

e(γ + lp)

 , G ,


Gγ

Gγ+p
...

Gγ+lp

 ,

U ,


u(0)

u(1)
...

u(N − d)

 ,

Λ ,


C Aγ

C Aγ+p

...

C Aγ+lp

 , Y ∗ ,


y∗(γ )

y∗(γ + p)
...

y∗(γ + lp)

 ,

and matrix block Gi ∈ Rm×[(N−d+1)r ] is defined by

Gi ,


[
C Ai−1 B C Ai−2 B · · · C AB C B D 0

]
if γ ≤ i < N[

C AN−1 B C AN−2 B · · · C AB C B D
]

if i = N .

(4)

Note that all of row blocks Gi in (4) contain Hγ and have the
same rank as Hγ . From one block row to the next in matrix
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G, locations of sub-matrix Hγ contained therein are shifted
horizontally by pr columns. Thus, it becomes apparent that,
upon properly choosing p (e.g., as a sufficient condition, any
choice satisfying p ≥ γ ), matrix G becomes to be of full rank
if matrix Hγ is so (i.e., the nominal system is input–output
controllable).

In a manner similar to the derivation of error equation (3),
one can show that error dynamics in the batch form and of
uncertain system (1) are:

E = G ′U + Λ′x(0) − Y ∗, (5)

where matrices G ′ and Λ′ are defined in the same way as their
counterparts G and Λ except that matrices A, B, C , and D are
replaced by (A + ∆A), (B + ∆B), (C + ∆C), and (D + ∆D),
respectively. It is easy to see from the relationship between
Eqs. (3) and (2) that their stabilization problems are equivalent.
Hence, the subsequent discussions will be in terms of batch
model (5).

In a typical application of iterative learning control
methodology, dynamical model of the system needs to be re-
stated in terms of trial index k, which is usually done under the
two assumptions1 that their dynamics (including uncertainties)
are repetitive and that initial conditions at the beginning of the
trials are re-set as xk(0) , x0. Following this convention, we
let Ek and Uk denote the values of E and U during the kth trial,
respectively, and then rewrite Eq. (5) into the following iterative
error model between any two successive trials:

Ek+1 = Ek + [G + ∆G] Vk, k ∈ ℵ (6)

where ℵ is the set of non-negative integers, ∆G , G ′
− G is

the lumped uncertainty, and Vk , Uk+1 −Uk is the incremental
control input for which an ILC control law is to be designed.2

System (6) remains to be in the standard linear form.
Accordingly, an optimal ILC law can be designed for the case
that ∆G = 0. If ∆G 6= 0, a guaranteed-cost ILC law can be
found. Both designs are presented in the subsequent sections
based on the performance index

J = lim
k→∞

J k, (7)

where

J k
=

k∑
l=0

Jl , (8)

Jl = ET
l Θ1 El + V T

l Θ2Vl , (9)

and Θ1 and Θ2 are the positive definite matrices of
proper dimension. It will be shown that, under input–output
controllability, the resulting iterative learning controls are
static and output feedback. Should system (1) be input-state
controllable but not input–output controllable, the proposed
designs can still be pursued with the aid of a standard linear
state observer to yield observer-based learning controls.
1 The assumptions can be relaxed by incorporating such methods as robust
control methodology, etc. (Qu, 2002).

2 U0 can be chosen to be either zero or any other standard feedback law.
3. Design of the optimal ILC

The proposed optimal ILC and its properties are summarized
in the following theorem and its corollary.

Theorem 1. Consider the ILC control

Vk = −(Θ2 + GT PG)−1GT P Ek , −K Ek, (10)

where P is the solution to the Riccati equation

PG(Θ2 + GT PG)−1GT P − Θ1 = 0. (11)

Suppose that matrix G is full rank and that ∆G = 0. Then,
under control (10), system (6) is both exponentially stabilizing
and optimal with respect to performance index (7).

Proof. With ∆G = 0, system (6) reduces to

Ek+1 = Ek + GVk, k ∈ ℵ.

It follows from matrix G being full rank that the above
system with pair {I, G} is controllable. Therefore, there is a
unique symmetric positive definite matrix solution P to Riccati
equation (11) for arbitrary choices of matrices Θ1,Θ2 > 0.
Substituting control (10) into the above yields the closed-loop
system

Ek+1 =

[
I − G(Θ2 + GT PG)−1GT P

]
Ek, (12)

where I is the identity matrix of appropriate dimension.
Let Lyapunov function be

Lk = ET
k P Ek, k ∈ ℵ. (13)

It follows from (11) and (12) that

Lk+1 − Lk = ET
k+1 P Ek+1 − ET

k P Ek

= −ET
k

[
Θ1 + K T Θ2 K

]
Ek

< 0.

Hence, the closed-loop system (12) is exponentially stable, and
the corresponding value of performance index (7) is

J ∗
=

∞∑
k=0

[
ET

k Θ1 Ek + VkΘ2Vk

]
= −

∞∑
k=0

[
Lk+1 − Lk

]
= ET

0 P E0.

To demonstrate optimality of control (10), consider any other
ILC law V ′

k 6= Vk under which the closed-loop system is

Ek+1 = Ek + GV ′

k,

along which the corresponding change in Lyapunov function
(13) is

Lk+1 − Lk = (Ek + GV ′

k)
T P(Ek + GV ′

k) − ET
k P Ek

= −

[
ET

k Θ1 Ek + V ′T
k Θ2V ′

k

]
+ (V ′

k − Vk)
TGT PG(V ′

k − Vk) + V ′

k
T Θ2V ′

k − V T
k Θ2Vk

+ 2(V ′

k − Vk)
TGT P(I + G K )Ek .
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It follows from (11) that

(V ′

k − Vk)
TGT P(I + G K )Ek = −V ′T

k Θ2Vk + V T
k Θ2Vk .

Hence, the performance index value under control V ′

k is

J ′
=

∞∑
k=0

[
ET

k Θ1 Ek + V ′

kΘ2V ′

k

]
= J ∗

+

∞∑
k=0

(V ′

k − Vk)
T(GT PG + Θ2)(V ′

k − Vk) > J ∗,

from which the optimality is concluded. �

It follows from closed-loop system (12) that error state Ek
converges exponentially as

‖Ek+1‖ ≤ λ‖Ek‖,

where 0 ≤ λ < 1 is defined in Euclidean norm and by

λ , ‖I − G(Θ2 + GT PG)−1GT P‖ = ‖I − P−1Θ1‖.

Through the choices of Θ1 and Θ2, the convergence rate λ can
be optimized according to its definition above and Eq. (11).
This is important because λ provides a measure of robustness
as shown in the following corollary.

Corollary 1. Suppose that pair {I, G} is controllable. Then,
under iterative learning control (10), uncertain system (6) is
exponentially stable provided that the lumped uncertainty ∆G
is bounded from above as

‖∆G‖ <
1 − λ

‖(Θ2 + GT PG)−1GT P‖
. (14)

Proof. In the presence of uncertainty ∆G, the closed-loop
system is

Ek+1 = [I − (G + ∆G)(Θ2 + GT PG)−1GT P]Ek .

Thus, it follows from (14) that

‖Ek+1‖ ≤ ‖[I − G(Θ2 + GT PG)−1GT P]Ek‖

+ ‖∆G(Θ2 + GT PG)−1GT P Ek‖

≤ λ‖Ek‖ + ‖∆G‖ · ‖(Θ2 + GT PG)−1GT P‖ · ‖Ek‖

< ‖Ek‖,

from which stability can be concluded. �

Compared with several of existing ILC designs, the proposed
optimal design renders better performance. For example,
consider the ILC design in Amann et al. (1996a) and Lee
et al. (2000) which is based on the gradient method. That
design locally minimizes performance index Jk in (9) and,
when applied to system (6) with ∆G = 0, yields the following
learning control:

V ′′

k = −(Θ2 + GT Θ1G)−1GT Θ1 Ek . (15)

Clearly, performance index J in (7) is common to this gradient-
based design and our proposed design. However, control (15)
is not optimal with respect to the performance index (7) unless
Riccati Eq. (11) has the specific solution of P = Θ1, which
is unlikely for most systems. Hence, by Theorem 1, we know
that the optimal control (10) has better performance than that of
control (15).
4. Design of a guaranteed-cost ILC

In the presence of uncertainty ∆G 6= 0, ILC control (10) is
shown in Corollary 1 to be robust. However, control (10) has
two shortcomings. First, for system (6), it no longer ensures
certain level of performance as measured by performance index
(7). Second, condition (14) is quite conservative for most
systems in general. Consequently, it is both interesting and
useful to design a guaranteed-cost ILC which is defined by the
following definition.

Definition 1. An iterative learning control Vk is to be
guaranteed-cost for system (6) if, for a class of admissible class
of uncertainties ∆G and along all possible trajectories of the
system, the value of performance index (7) is upper bounded as
J ≤ ET

0 P E0, where P is a positive definite symmetric matrix.

As stipulated in the above definition, guaranteed-cost ILC
is designed for some fixed-matrix P and a class of admissible
uncertainties. Parallel to many robust control results (Zhou,
Doyle, & Glover, 1996), the following assumption on
uncertainties is introduced.

Assumption 1. Uncertainty ∆G in system (6) is norm bounded
in the time domain, that is,

∆G = LΞ M, (16)

where L and M are known constant matrices of appropriate
dimensions, and Ξ is a matrix of independent and unstructured
uncertainties satisfying the inequality of Ξ T Ξ ≤ I .

In the following theorem, the proposed guaranteed-cost ILC
design is shown to be a problem of solving a linear matrix
inequality (LMI). Proof of the theorem requires a technical
lemma adopted from Xie (1996) and Schmitendorf and Stalford
(1997).

Lemma 1 (Xie, 1996). Consider the matrix inequality

F + HΞ S + ST Ξ T H T
≤ 0, (17)

where F is a symmetric matrix, matrices H, Ξ , and S are of
appropriate dimensions. Then, the above inequality holds for
all choices of Ξ satisfying Ξ T Ξ ≤ I if and only if there exists
a scalar ε > 0 such that

F + εH H T
+ ε−1ST S ≤ 0.

Theorem 2. Consider system (6) under Assumption 1. Then,
Vk = −Γ P Ek is a guaranteed-cost ILC if and only if there exist
scalar ε > 0 and gain matrix Γ such that, for a (given) positive
definite choice of performance matrix P, matrix inequality


εL LT

− P−1 P−1
− GΓ 0 0 0

P−T
− Γ T GT

−P−1
−Γ T MT P−1

−Γ T

0 −MΓ −ε I 0 0
0 P−1 0 −Θ−1

1 0
0 −Γ 0 0 −Θ−1

2

 ≤ 0

(18)

holds.
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Proof. To show that Vk = −Γ P Ek is a guaranteed-cost ILC,
consider Lyapunov function Lk = ET

k P Ek . It follows from
system (6) and performance index (7) that the cost inequality

ET
0 P E0 =

∞∑
k=0

[
Lk+1 − Lk

]
=

∞∑
k=0

ET
k

[
(I − GΓ P − ∆GΓ P)T

× P(I − GΓ P − ∆GΓ P) − P
]

Ek

≥

∞∑
k=0

ET
k

[
Θ1 + PΓ T Θ2Γ P

]
Ek = J

is ensured if and only if the following matrix inequality holds
for the class of uncertainties ∆G:

(I − GΓ P − ∆GΓ P)T P(I − GΓ P − ∆GΓ P)

+ P R P ≤ 0, (19)

where R , −P−1
+ P−1Θ1 P−1

+ Γ T Θ2Γ . It follows from
Schur complement (Boyd, Ghaoui, Feron, & Balakrishnan,
1994) that inequality (19) can be expressed in a matrix form
as[

−P−1 I − GΓ P − ∆GΓ P
(I − GΓ P − ∆GΓ P)T P R P

]
≤ 0.

Upon first multiplying both sides by positive definite symmetric
matrix diag{I, P−1

} and then invoking Eq. (16) of
Assumption 1, the above matrix inequality can be rewritten into
(17), where S = [0 − MΓ ],

F =

[
−P−1 P−1 I − GΓ

(P−1
− GΓ )T R

]
, and H =

[
L
0

]
.

Hence, we know from Lemma 1 that inequality (19) is
equivalent to[

εL LT
− P−1 P−1

− GΓ
(P−1

− GΓ )T R + ε−1Γ T MT MΓ

]
≤ 0.

Schur complement is again used to convert the above inequality
into inequality (18), which completes the proof. �

Usually, there are maybe more than one solutions for LMI
(18). And how to get the optimal one is investigated in the
following corollary.

Corollary 2. If there is a solution (ε∗, P∗,Γ ∗) for the
optimization problem:{

min
ε,P,Γ

{trace(P)}

s.t. (18) and ε > 0,
(20)

V ∗

k = −Γ ∗ P∗Ek is, in statistics, the optimal guaranteed-cost
ILC for system (6) with performance index (7).

Proof. According to Theorem 2, the corresponding value of
index (7) for system (6) under guaranteed-cost ILC Vk =

−Γ P Ek satisfies J < ET
0 P E0.

For E0 is the output error in the first trial, which varies
according to the control input U0 (selected subjectively in the
first trial). In statistics, assuming that E0 be a zero mean random
vector with expectation E{E0 ET

0 } = I . Then, the expectation
of index (7) satisfies

E{J } < E{ET
0 P E0} = trace(P).

Therefore, if solution (ε∗, P∗,Γ ∗) is obtained for problem (20),
E{ET

0 P∗E0} ≤ E{ET
0 P E0} is found for any P 6= P∗. That is

V ∗

k = −Γ ∗ P∗Ek is, in statistics, the optimal guaranteed-cost
ILC for system (6). �

5. Simulations

To demonstrate effectiveness of the proposed ILCs, consider
an uncertain system which is of form (1) with N = 20, whose
nominal dynamics are characterized by matrices

A =

 1 −0.3 0.2
0 1 0.2

0.7 0 0.6

 , B =

0.5 0
0 0.5

0.5 0

 ,

C =

[
1 1 0
0 1 1

]
, D = 0,

and whose uncertainties are defined by

∆A = 0, ∆B = δ1 B, ∆C = δ2C, ∆D = 0,

where δ1 and δ2 are unstructured and independent uncertain
elements bounded as |δ1| ≤ δ̄1, |δ2| ≤ δ̄2.

It is straightforward to verify that the nominal dynamics
of the above system are input–output controllable and that
the corresponding controllability index and relative degree are
γ = 2 and d = 1, respectively. It follows from (4) and (5) that,
for any j ≤ i ,

∆Gi j , G ′

i j − Gi j = δ̄ δ C Ai− j B,

where δ̄ = δ̄1 + δ̄2 + δ̄1δ̄2, δ = (δ1 +δ2 +δ1δ2)/δ̄. And Gi j , 0,
for any j > i . Hence, the lumped uncertainty ∆G is of the
form (16), where L = δ̄ I, Ξ = δ I , and M =

[
Mi j

]
with

Mi j = C Ai− j B if j ≤ i and Mi j = 0 if j > i .
In the simulations, the following choices are made:

weighting parameters are Θ1 = 3I and Θ2 = I ; upper bounds
on the uncertain elements are δ̄1 = δ̄2 = 0.20; the “uncertain”
elements are chosen in the simulation to be δ1 = 0.20 and
δ2 = 0.15; the desired output to track is

y∗(i) = [y∗

1 (i), y∗

2 (i)]T,

where

y∗

1 (i) = 5 sin(i/3) + i2/50, y∗

2 (i) = 15 + i2/30;

and the initial condition of the state is

xk(0) , [5 0 − 5]T , k = 0, 1, 2, . . . .

In what follows, ILCs (10) and (15) are simulated for the
case that the nominal dynamics are considered, and they are
compared to demonstrate the superior performance of ILC (10).
For the uncertain system, the guaranteed-cost ILC is simulated
to demonstrate its effectiveness.
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Fig. 1. Value of indices (8) and (9) for the nominal dynamics.

Fig. 2. Outputs at fifth trial and index (8) for uncertain system (1).

Simulation in the absence of unknown dynamics: In this case,
only the nominal dynamics are considered, they are defined by
matrices A, B, C, D given above. The corresponding values of
indices (8) and (9) of the nominal system with respect to the
iteration number are shown in Fig. 1. It is apparent that, after a
few trials, ILC (10) has better performance (as its index value
is smaller and converges faster than that under ILC (15)).

Simulation in the presence of unknown dynamics: In this
case, we consider system (1) whose uncertainties satisfy the
size bounds δ̄1 = δ̄2 = 0.20. It follows from Theorem 2
and Corollary 2 that the optimal guaranteed-cost ILC Vk =

−Γ ∗ P∗Ek can be solved using ε = ε∗
= 9.1376 × 10−5,

where the matrix solutions Γ ∗
∈ R40×38 and P∗

∈ R38×38 are
omitted here for briefness. The outputs during the fifth trial and
the corresponding values of performance index (8) under the
guaranteed-cost ILC are showed in Fig. 2, which demonstrates
its effectiveness.
6. Conclusions

In this paper, a novel design of ILCs is presented to optimize
an accumulative quadratic performance index over iterations.
Without considering uncertain dynamics, the proposed optimal
ILC is shown to have better performance than those under
existing designs (Amann et al., 1996a; Lee et al., 2000). For
uncertain systems, the proposed ILC design can be extended
to yield a guaranteed-cost ILC. Superior performance of the
proposed ILC design is demonstrated by simulation examples.
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