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Abstract: A cooperative control strategy was provided to regulate the active and reactive power outputs of multiple photovoltaic
(PV) generators installed on a distribution network. The proposed control strategy not only makes a group of PVs converge and
operate at the same ratio of available power, but also regulates the total active and reactive power outputs of the PVs such that the
active power across a concerned line and the voltage of a critical bus are kept to a referenced value. The stability of the closed-loop
dynamical system was analysed by considering some special properties of classical distribution networks, and the minimal
requirement of the communication topology among the PVs was provided. Simulations on a radial distribution power system
network were provided to verify the validness of the proposed control strategy.
1 Introduction

The world is approaching peak oil and the ability to produce
high-quality, inexpensive and economically extractable oil on
demand is diminishing. Therefore in recent years, there have
been an increasing amount of photovoltaics (PVs) integrated
into the modern distribution networks due to their clean and
renewable features, and the connection of a large amount of
PVs will have far reaching consequences in the distribution
network [1, 2].

As we know, if a distribution network with many PVs that
constitute a high level of penetration is considered, the
intermittence of PVs’ energy will result in some problems,
such as voltage fluctuation, frequency fluctuation and even
the voltage collapse [3]. Thus, it is necessary to control and
regulate the outputs of those PV units [3, 4] in accordance
with the requirement of distribution network. For example,
we should let those PVs provide some ancillary services
such as voltage and frequency regulation, which is very
useful for the distribution network to provide the reliable
power of high quality. However, it is very difficult to
control the outputs of the distributed PVs that may
eventually be thousands in number within a single
distribution network [5, 6].

Usually, there are three types of control modes to manage
the PVs’ outputs: the centralised mode, the decentralised
mode and the distributed mode. In the centralised mode, a
central controller sends its command, which is deliberately
calculated online or offline, to the PVs through the designed
communication channels. The methods based on the
optimal power flow (OPF) strategy [7–9] are of the
centralised mode, which were successfully applied in
distribution networks that have several distributed
generators (DGs) [10, 11]. This mode was also successfully
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used in some micro grids [12] in which the number of DGs
in those micro grids is not large. However, this mode needs
to collect system-wide information and sends command
globally. For a power system whose distribution networks
have numerous and geographically dispersed PVs, such
centralised control mode is too expensive to be
implemented and, even if it could be accomplished, the
resulting system is not robust or efficient due to the long
distance communication.

The decentralised mode is another choice. The control
strategies based on this mode include the constant PQ of
operation, the maximum photovoltaic power tracking, the
constant voltage and frequency (V–F ) with droop control
[13–15] and so on. The decentralised mode is robust since
all used information is from local measurement. However,
for many PVs with this control mode, it is difficult to
guarantee their appropriate operating point under varying
factors (such as the load changes) since those PVs cannot
change their outputs in accordance with the requirement of
the distribution network. Thus, the PVs which use the
decentralised control cannot easily provide appropriate
ancillary service (e.g. to maintain the voltage profile).
Consequently, when the number of PVs becomes too large
and their power outputs are intermittent, some necessary
tasks such as the power balance and voltage maintenance
will have to be done by traditional generators, which lead
to very expensive cost but ineffective results.

The third mode to dispatch a large amount of PVs is the
distributed control mode. It can use local communication
networks and combine the positive features of both
centralised and decentralised controls while limiting their
disadvantages [16–19]. That is to say, a PV will
incorporate the information from neighbouring units into its
control strategy. This type of control is actually a network
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control [17, 20, 21], which has been systematically studied in
the field of cooperative robotic control for many years [17,
18]. The distinctive feature of an appropriately designed
network control is that it allows local and changing
communication networks, is robust with respect to
intermittency and latency of its feedbacks and also tolerates
connection and disconnection of network components.

In fact, as the level of PV penetration increases,
intermittent changes of these PV outputs become too many
to consider, and hence it becomes intractable for either the
decentralised or centralised mode to adequately manage a
distribution network. Thus, given the advances in modern
communication, the distributed control mode is a practical
way to implement and also necessary to accommodate
various changes of PVs in a distribution network. For this
reason, a distributed mode-based control strategy is
provided to regulate multiple PVs’ power outputs in a
distribution network [6]. In that control strategy, the
cooperative control theory is used to make all PVs converge
to a uniform output ratio autonomously. The simulation
shows good feasibility, but the strict theories are not
provided. This shortcoming will be overcome in this paper,
and the sufficient conditions under which the method is
valid will be provided with considering several
characteristics in classical distribution power systems. The
minimal requirement of the communication networks under
which the control strategy is valid will also be presented.
The proposed control strategy has strong robustness to the
communication networks and to the time-varying operating
point in the distribution network. A radial distribution
system with several PVs is used to verify the proposed
control strategy.

This paper is organised as follows. Section 2 gives the
problem formulation. Section 3 gives the control strategies
and Section 4 discuss the requirement of the communication
networks among the PVs. Section 5 provides the sufficient
conditions under which the suggested cooperative control
strategy is valid by considering several characteristics of
classical distribution power networks. Simulations and
conclusions are provided in Sections 6 and 7, respectively.

2 Problem formulation

2.1 Dynamical model

Consider a distribution power system with n three-phase
inverter-based PVs, which use the decoupled d–q control
method via phase locked loops. The dynamical model on
the d-axis is shown in Fig. 1 [6, 22], and the model in the
q-axis is similar.

Under the d–q frame, the terminal voltage of the ith PV
generator satisfies Udi ¼ Ui and Uqi ¼ 0, where Ui denotes
the magnitude of the terminal voltage, so the power of the
ith PV generator can be expressed by

Pi = UiIdi, Qi = −UiIqi (1)

Fig. 1 Simplified diagram for a PV generator
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where the subscript ‘i ’ denotes the ith PV; Idi and Iqi are the
output currents in the d-axis and q-axis, respectively; Pi and
Qi are outputs of the active and reactive power.

The dynamics of the distribution system can be denoted by
the following differential–algebraic equations [6]

İ
ref
di = u1i (2)

İ
ref
qi = u2i (3)

Pi = UiI
ref
di , Qi = −UiI

ref
qi (4)

0 = g(P1, . . . , Pn, Q1, . . . , Qn, x, X) (5)

where (2) and (3) denote the d-loop and q-loop dynamics,
which will be used to control the active and reactive power
outputs, respectively; u1i and u2i are the input to be
designed; x is a vector of appropriate dimensions, which
denotes the internal dynamics of the distribution system
such as the state variables of the PV units, loads and
synchronised generators; X is a vector which denotes the
algebraic variables in the distribution network such as the
voltage of buses and so on; equation (5) denotes the power
flow equation of the distribution system.

It should be noted that the dynamics of x and the inner
dynamics of the PVs are not considered in system (2)–(5).
Because we are only interested in the PVs’ power outputs,
and the dynamics of the PVs’ outputs are much slower than
the dynamics of other variables (e.g. the internal state
variables in the PVs and the states in distribution network
are diminishing much faster compared to the dynamics of
the power outputs, and the dynamics of the outputs are
determined by our controller), thus the dynamics of x and
the inner dynamics of the PVs can be ignored. Therefore
the dynamical equations in accordance with those
fast variables can be represented by the algebraic equations
for simplicity. That is to say, Idi = I ref

di and Iqi = I ref
qi are

satisfied and the distribution power system network can be
represented by the power flow equation, as shown by the
algebraic (4) and (5). The idea of simplification is similar to
that in the problems of automatic generator control [23].

2.2 Problems to be solved

We are interested in regulating the output of those PVs such
that some service can be provided for the distribution
network. In fact, those n PVs can be considered to be a
group, and their total power outputs can be controlled
according to the requirement of the distribution network. As
was pointed out previously, for a distribution network with
many PVs, it is difficult to guarantee feasible operating
conditions under varying factors, if all of the PV units run
independently with traditional decentralised controls. On the
other hand, the centralised mode is neither practical nor
reliable, since it requires global information collection and
exchange. Thus, a more practical control strategy based on
the cooperative control theories will be provided to solve
this problem, which makes all PVs in a designated group
run at the same active and reactive power output ratios. One
of the problems to be solved can be stated as follows.

Problem 1: For the system given by (2)–(5), design the
controls for u1i and u2i (i ¼ 1, 2, . . . , n) such that at the
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equilibrium points there are

P1

P1 max

= P2

P2 max

= · · · = Pn

Pn max

= a0
P (6)

and

Q1

Q1 max

= Q2

Q2 max

= · · · = Qn

Qn max

= a0
Q (7)

where a0 = [a0
P, a0

Q]T is the given output ratio for the active
and reactive power for all PV generators; Pimax and Qimax are
the maximums of Pi and Qi, respectively; all Pimax have the
same sign and so do all Qimax.

It should be noted that in Problem 1, different weights can
be considered for some PVs by multiplying their maximums
with the weight coefficients in (6) and (7). In fact, in a
distribution network, different weights can be considered
for different services. For example, if a PV unit is far away
from the concerned bus (which will be discussed in
Problem 2), the weight can be chosen to be smaller when
the ancillary service is the voltage regulation. Without loss
of generality, the same weight will be considered for
simplicity. The uniform output ratio can consider the fair
utilisation for all PVs, which makes the fair ancillary duty
in the future grid. Readers can refer to [6, 24] for more
engineering background on Problem 1. In this paper, we
will pay more attention to the basic theories for the
validness of the method.

For many PVs, the distributed control mode is more practical
because it only use local communication networks and can
combine the positive features of both centralised and
decentralised controls while limiting their disadvantages. The
structure of the distributed control is shown in Fig. 2, in
which the dash arrows show the information flow among
PVs. The basic idea is that each PV can share its information
with some others. Thus, the cooperative control strategy for
each PV should be of the general form

ui = wi(si0y0, si1y1, si2y2, . . . , sinyn), i = 1, 2, . . . , n (8)

where y0 denotes the output of the high level control; yi,
i ¼ 1, 2, . . . , n, denotes the output variable of ith PV
generator; S ¼ (sij) is a time-variant matrix denoting the
communication topology, defined as

S =

s10(t) s11 · · · s1n(t)
s20(t) s21(t) s22 · · · s2n(t)

..

. ..
. . .

.

sn0(t) sn1(t) sn2(t) · · · snn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ [ Rn×(n+1) (9)

where sii(t) ; 1 is satisfied for all i; sij ¼ 1 if the output of the

Fig. 2 Distributed control mode in the distribution network (dash
arrows denote the information flow)
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jth PV generator is known to the ith PV generator at time t, and
sij(t) ¼ 0 otherwise; si0(t) ¼ 1 if the ith PV can get information
from the high level control (or remote control) and si0(t) ¼ 0
otherwise.

It should be noted that in (9) sii(t) ; 1 will always be satisfied
for each PV, which means that a PV can acquire its own
information. Whether other PVs’ information are used or not
is completely determined by a non-zero entry in the
communication matrix. In general, only a part of the
neighbouring information is necessary to ensure convergence.
In addition, the communication matrix is considered to be
time-varying in general, not a matrix of constants. It is
necessary to take this into consideration since communication
equipment may malfunction or some PVs could be out of
service due to environmental reasons [6]. This means that the
communication matrix is piecewise continuous. Specifically, let

t1:0 W {t0, t1, t2, . . . }, S1:0 W {S(t0), S(t1), . . . } (10)

which means matrix S changes at time ti (t0 ¼ 0), that is,
S(t) ¼ S(tk) [ S1:0 for t [ [tk,tk+1).

Clearly, it is much difficult to handle a time-varying
communication topology since the closed-loop dynamical
system will become a switched dynamical system. A
switchable system among several stable systems can be
unstable if the switch law is not appropriate; on the other
hand, a switchable system among several unstable systems
can be stable if some switch laws are used. Some properties
on the stability of switchable systems can be found in [19,
25] and the references therein. The sufficient condition for
designing a valid communication topology which keeps the
stability will be discussed later.

Once Problem 1 is solved, then those PVs can be
considered as a virtual generator with a larger capacity.
Now, for each virtual generator, only the operating ratios
need to be decided, resulting in a much simpler way to
design a high-level control for the ancillary services
problems, especially for large numbers of PVs. In this
paper, the distributed control to be designed will satisfy that
the reactive power is controlled to support the voltage of
some critical bus and keep the active power consumed by
loads in a concerned area or feeder to be constant. This
problem can be stated as

Problem 2: Based on the solutions of Problem 1, design an
additional control for (2)–(5) such that the voltage of a
critical bus can be kept constant. Similarly, control the
active power flow across some transmission line to be
constant. Namely, at the equilibrium we have

Ptran(·) = Pref (11)

Vc(·) = V ref (12)

where Pref and V ref are the given constants; Vc(.) and Ptran(.)
denote the voltage of the concerned bus and the active power
across the concerned line (these variables are functions of the
PVs’ output, so (.) is used to denote these relationships).

Upon the solutions to Problems 1 and 2 are found, all the
PVs are organised into a large group, and within the group,
the PV generators are controlled to satisfy the given
utilisation profile. Accordingly, the group of the PVs can be
viewed as a virtual generator with a larger capacity and an
aggregated output. The aggregated output of the virtual
generator would be dispatched to address ancillary service
1619
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issues, which will save much long-distance communication.
We will discuss how to design the control strategy and the
communication matrix in the following two sections.

3 Control strategy design

It follows from (2)–(4) that

Ṗi = U̇ iI
ref
di + Uiİ

ref
di = U̇ i

Ui

Pi + Uiu1i (13)

Q̇i = −U̇ iI
ref
qi − Uiİ

ref
qi = U̇ i

Ui

Qi − Uiu2i (14)

Using the cooperative control theory [19], we can choose the
control law for the ith PV to be

u1i =
K0Pi max

dz(Ui)
Di0a

0
P +

∑n

j=1

DijPj

Pj max

− Pi

Pi max

( )

− U̇ iPi

(dz(Ui))
2 (15)

u2i = −K0Qi max

dz(Ui)
D′

i0a
0
Q +

∑n

j=1

D′
ijQj

Qj max

− Qi

Qi max

( )

+ U̇ iQi

(dz(Ui))
2 (16)

where dz(Ui) = max {Ui, U} and U . 0 is a given constant;
K0 . 0 is the gain

Dij =
wijsij∑n

j=0
wijsij

, D′
ij =

w′
ijs

′
ij∑n

j=0
w′

ijs
′
ij

, i = 1, 2, . . . , n (17)

where W ¼ (wij) and W ′ = (w′
ij) denote the weight matrix

with positive elements (in this paper, those elements are set
to 1 for simplicity); sij and s′ij (i, j ¼ 1, 2, . . . , n) are
the entries of the communication matrix defined in (9); U
denotes the lower bound of the terminal voltage of the ith
PV, which guarantees the control has the ability of low
voltage ride through in extreme cases.

In addition, the control whose transfer function shown in
Fig. 3 is given for updating a0

Q, and its dynamical equation
can be written as [6]

ż′0 = Kv(Vref − Vc)

a0
Q = z′0

{
(18)

where Vc is the voltage of the critical bus of concern; Vref is
the referenced voltage of the concerned bus; a0

Q is the
output of this control and also the input for (16).

Similar control is used for the active power control, whose
transfer function is shown in Fig. 4. The corresponding
dynamical equation is

ż0 = KP(Pref − Ptran)

a0
P = z0

{
(19)

where Ptran is the active power across the line of concern; Pref
1620
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is the referenced power across the concerned line; a0
P is the

output and also the input for (15).

Remark: It should be noted that the active power flow Ptran to
be controlled is related to the positive direction. In this control,
Ptran should be an increasing function of z0 at the power flow
equilibrium, that is, increasing the output ratios of PV
generators can increase Ptran. Otherwise, the signs of Pref and
Ptran should be changed in Fig. 4. Therefore without any loss
of generality, it can be assumed that at the equilibrium Ptran

will increase when z0 is increased. This property will be used
in the stability analysis in the next section.

Intuitively, the physical meaning of the distributed high-
level control proposed above is that, if the bus voltage (or
real power transmission) is lower than its reference value, it
will command some of the PVs (through its local
communication network) to increase their reactive (or real)
power ratio and the rest of PVs will also cooperate towards
the same goal under their distributed cooperative controls.
Hence, an increase of a0

P should result in an increase of
Ptran till Ptran reaches its desired reference value of Pref.

To obtain the closed dynamical equations of compact
form, let

z0 = a0
P, zi =

Pi

Pi max

, z′0 = a0
Q, z′i =

Qi

Qi max

(20)

then by (13)–(19), the closed-loop dynamical equations can
be expressed by

ż0 = KP[Pref − Ptran(·)] (21)

ż′0 = Kv[Vref − Vc(·)] (22)

żi = K0 −zi + Di0z0 +
∑

j=1,2,...,n

Dijzj

[ ]
(23)

ż′i = K0 −z′i + Di0z′0 +
∑

j=1,2,...,n

D′
ijz

′
j

[ ]
(24)

g(z1, . . . , zn, z′1, . . . , z′n, x, X) = 0 (25)

where the variables are defined previously.

Fig. 4 Control for the instructed information of P

Fig. 3 Control for the instructed value of Q
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The stability of system (21)–(25) is related to the features
of the time-varying variables Dij(t) and D′

ij(t), so the design of
the communication topology is a key step for Problems 1 and 2.
The rule for designing the communication topology among the
PVs will be given in the next section following the network
control theories.

4 Communication topology design

In this section, we will give the design rule of the
communication topology that guarantees the validness of
the proposed control strategy, and some definitions on
positive matrix will be provided in order to describe the
communication topology.

4.1 Preliminary

Some preliminary will be given for the descriptions of
communication topology. Those definitions can also be
found in [16, 19].

Definition 1 (Row-stochastic matrix): A matrix D is said to be
row-stochastic if D [ Rn×n

+ and D1 ¼ 1, where 1 is the vector
with all 1 entries.

Definition 2 (Non-negative matrix): A matrix E [ Rn×n is
said to be non-negative if all entries in E are non-negative.

Definition 3 (Reducible and irreducible matrix): A non-
negative matrix E [ Rr×r with r ≥ 2 is said to be reducible
if the set of its indices, V W {1, 2, . . . , r}, can be divided
into two disjoint non-empty sets S W {i1, i2, . . . , im} and
Sc W V/S = {j1, j2, . . . , jv} (with m+ v ¼ r) such that
eiajb

= 0, where a ¼ 1, 2, . . . , m and b ¼ 1, 2, . . . , v.

Matrix is said to be irreducible if it is not reducible.

Definition 4 (Canonical form of a reducible matrix):
Consider matrix E [ Rr×r with r ≥ 2. If E is reducible,
there exists an integer p . 1 and a permutation matrix T
such that

TTET =

F11 0 · · · 0
F21 F22

..

. ..
. ..

.

Fp1 Fp2 · · · Fpp

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ W FD (26)

where Fii [ Rri×ri is either square and irreducible sub-
matrices of dimension higher than 1 or a scalar, and∑p

i=1 ri = r. The standard form of a reducible matrix
denotes the form of (26).

Definition 5 (Lower-triangularly complete): A reducible
matrix F is said to be lower triangular complete if, in its
canonical form of (26) and for every 1 ≤ i ≤ p, there exists
at least one j , i such that Fij = 0.

Definition 6 (Sequentially complete): Consider an infinite
countable series of non-negative matrices
{Ek :Ek [ Rn×n

+ , k [ N+}, where N+ is the set of positive
integers. E1:0 is said to be sequentially lower-triangular if
there exists one permutation matrix that is independent of k
and maps all Ek into the lower triangular canonical form of
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1617–1629
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(26). Sequence E1:0 is said to be sequentially lower
triangularly complete if it is sequentially lower-triangular
and if there exists a scalar strictly increasing sub-series
{ml [ N+:l [ N} such that products Eml :ml−1

(defined as
Ek:l W EkEk−1 . . .El+2El+1, k . l ) are all low triangularly
complete and diagonally positive and that both diagonal
positivity and lower-triangular completeness are uniform
with respect to l. Sequence E1:0 is sequentially
complete if it is lower-triangularly complete and if the
differences of ml 2 ml21 are all uniformly bounded with
respect to l.

The sequential completeness condition will play an
important role in the proposed distributed control. It is one
of the most advanced methods to characterise the properties
of a time-varying non-negative matrix such as the time-
varying communication matrix defined in (9). An easy
approach to verify the completeness condition is provided
in [16, 19]. That is, let

SL(h) W S(tkh+1−1) ^ S(tkh+1−2) ^ · · · S(tkh ) (27)

where S(ti) is defined in (10); ^ denotes the operation of
a binary product of two binary matrices, that is, (SL)ij ¼ 1
if there exists at least one St [ {S(tkh+1−1), S(tkh+1−2), . . .

S(tkh )} such that St
ij = 1 is satisfied; (SL)ij ¼ 0 otherwise.

If there exists an integer subsequence {kh: h [ N} such that
SL(h) is lower triangularly complete and kh 2 kh21 is
uniformly bounded, then sequence S1:0 ¼ {S(0), S(t1), . . .}
is sequentially complete.

An example is given for further explain this approach,
which can be found in [16].

Example 1: Consider communication sequence {S(tk): k [ N}
defined by S(tk) ¼ S1 if k is even and S(tk) ¼ S2 if k is odd,
where

Thus we have

(28)

Choose the integer subsequence {kh: h [ N} as h ¼ 2i
(i ¼ 0,1, . . . ,), then {kh: h [ N} ¼ {0, 2, 4, . . .} and
kh 2 kh21 is uniformly bounded. In addition, it follows
from Definition 5 that matrix SL(h) is lower-triangularly
complete. Thus, by this approach {S(k): k [ N} is a
sequentially complete sequence. A

A special case of the above method is that, if S(tk) is lower-
triangularly complete for every k ≥ 0, then its sequence is
sequentially complete. This case is shown in the next
example, in which the communication will also be used in
the simulation.
1621
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Example 2: Consider a communication matrix which can be
piecewise denoted by sequence {S(t0), S(t1), . . .} where S(tk)
is randomly chosen in {S0, S1, S2, S3} and

In those communication matrices, the elements S12(t), S23(t),
S31(t) and S50(t) are time-varying, but every possible matrix is
lower-triangularly complete, so the sequence {S(t0), S(t1), . . .}
is sequentially complete. A

4.2 Communication topology design rule

The communication matrix is designed according to the
following rule:

The communication topology among the PVs may
be intermitted (time-varying), but the communication matrix
S is piecewise continuous. Mathematically S1:0 ¼ {S(0),
S(t1), . . .} is sequentially complete.

The completeness condition is a strict method to show
the connection of a communication topology and its
cumulated effects in an interval. It gives the minimal
requirement of the communication network for a
distributed control. From Example 1, we can observe
that even none of possible matrix is a complete one, but
their cumulated effects make the communication network
connected. This property shows that an intermitted
communication is possible to satisfy this rule, so it is
very flexible for a control and it is very practically
useful for a real power system.

It should be noted that the communication network can
also be intuitively depicted by graphic theories, readers
can refer to [26] for more details. Moreover, this
property can be used to design and implement a
redundant local communication network which satisfies
the so-called rule of ‘N–n ’. Namely, supposing that the
total number of the communication channels is N, it is
said that the communication network satisfies N–n rule
if n communication channels cannot work properly, and
the communication matrix corresponding to the
remaining communication channels can still be complete.
However, the convergence rate of the closed-loop system
depends upon connectivity of the communication
network [27] (the numerical simulation will also
illustrate this phenomenon in Section 6), so it is
important to design a reasonably connected local
communication network within certain physical and
economic constraints.
1622
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5 Stability analysis for the closed-loop
system

5.1 Reduced dynamical models for stability
analysis

In Section 4, the communication topology and the control
among all PVs are given. The remaining problem is to
analyse the stability of the closed-loop dynamical system
(21)–(25). The answer is positive in the local region under
some trivial conditions.

It follows from (21)–(25) that the equilibrium of the
dynamical–algebraic equations satisfies

z0
1 = z0

2 = · · · = z0
n = a0

P, z′01 = z′02 = · · · = z′0n = a0
Q (29)

Pref = P0
tran, Vref = V 0

c (30)

g(z0
1, . . . , z0

1, z′01 , . . . , z′0n , x0, X′0) = 0 (31)

where the superscript ‘0’ denotes the variables evaluated at
the equilibrium.

If the equilibrium is a regular (non-singular) point of the
power flow equation, it follows from the inversed function
theorem that around the equilibrium there exist smooth
functions of appropriate dimensions, say w′

i(·), such that

X = w′
1(z1, . . . , zn, z′1, . . . , z′n)

x = w′
2(z1, . . . , zn, z′1, . . . , z′n)

{
(32)

satisfies the power flow equation, that is

g(z1, . . . , zn, z′1, . . . , z′n, w′
1(·), w′

2(·)) = 0

Thus, there exist wi(.) (i ¼ 1, 2) such that Ptran and Vc can be
expressed as

Ptran = w1(z1, . . . , zn, z′1, . . . , z′n) (33)

Vc = w2(z1, . . . , zn, z′1, . . . , z′n) (34)

Substituting (33) and (34) into (21)–(24), the reduced
ordinary dynamical equations can be expressed as

ż0 = KP[Pref − w1(z1, . . . , zn, z′1, . . . , z′n)] (35)

ż′0 = Kv[Vref − w2(z1, . . . , zn, z′1, . . . , z′n)] (36)

żi = K0 −zi + Di0z0 +
∑

j=1,2,...,n

Dijzj

[ ]
(37)

ż′i = K0 −z′i + Di0z′0 +
∑

j=1,2,...,n

D′
ijz

′
j

[ ]
(38)

Thus, the stability is completely determined by system (35)–
(38). It is noted that if z0 and z′0 are fixed, it follows from the
Theorem 5.6 in [19] that the trajectories of system (37) and
(38) satisfies |zi 2 zj| � 0 with (zi, z′i) � (z0, z′0) and
t � 1 for every i and j (i ¼ 1, 2, . . . , n). In that theorem,
z0 is considered to be a virtual leader and other variables
converge to the virtual leader under the condition that the
communication topology is sequentially complete. From
this result, one intuition is that if two small values are
chosen for Kp and Kv, which implies that the variables in
the virtual leader change slowly, then both zi and z′i will
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1617–1629
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converge to the corresponding variables in the virtual leader.
In the next subsection, this intuition will be proved to be valid
under some additional assumptions that are usually satisfied
in power systems.

Remark: In the above derivation, we use the condition that the
equilibrium is a non-singular point of the power flow
equation. If the equilibrium is a singular point, it means that
the equilibrium may be a bifurcation point of the power
flow equation. It is prohibited in power systems, since
bifurcation means a voltage collapse. Readers can refer to
[23, 28] for more details. In fact, in power systems, there
should be some margin between the operating point with
the singular point. In a word, the assumption is very trivial
in our derivation.

5.2 Basic properties for the stability analysis

For a general distribution network, the following facts can be
assumed to be satisfied:

Fact 1: Vc ¼ w2(.) is an increasing smooth function of the
injected reactive power (Qi = z′iQi max) and its sensitivity
with respect to Qi = z′iQi max is much larger than that of
active power Pi ¼ ziPimax, that is

∂w2(·)
∂Qi

. 0,
∂w2(·)
∂Qi

∣∣∣∣
∣∣∣∣≫ ∂w2(·)

∂Pi

∣∣∣∣
∣∣∣∣ (39)

Fact 2: The positive direction of Ptran is chosen to be the
increasing function of a0

P, so Psum ¼ w1(.) is an increasing
smooth function of the injected active power (Pi ¼ ziPimax)
of the ith PV, and its sensitivity with respect to Pi is much
larger than that of reactive power Qi = z′iQi max, that is

∂w1(·)
∂Pi

. 0,
∂w1(·)
∂Pi

∣∣∣∣
∣∣∣∣≫ ∂w1(·)

∂Qi

∣∣∣∣
∣∣∣∣ (40)

Fact 3: The angles at both sides of the transmission line of
concern satisfy that

| sin (d1 − d2)| ≪ | cos (d1 − d2)| (41)

where di (i ¼ 1, 2) denotes the angle of the concerned
transmission line.

Remarks:
1. In a general power system network, the voltage at a bus is
mainly determined by injected reactive power relative to the
active power at the same bus, so wi(.) has much larger
sensitivity with respect to Qi than that with respect to Pi.
That is to say, Fact 1 is usually satisfied in the
neighbourhood around the equilibrium of the power flow
equations.
2. Similarly, the phase angle of a bus is mainly determined
by the active power, so the sensitivity of the angle with
respect to the injected active power is relatively much larger than
that of reactive power. In addition, the active power of the line
of concern can be approximated by Psum ¼ V1V2sin(d1 2 d2)/Xl,
where Vi and di (i ¼ 1, 2) denote the voltage and the angle of
line of concern, Xl is the inductance of this line. Thus, it follows
from sin(d1 2 d2) ≪ (d1 2 d2) that Psum is mainly determined
by the injected active power. Namely, Fact 2 is satisfied in a
neighbourhood around the equilibrium.
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Next, we analyse the linearisation system of (35)–(38) based
on the above facts. The linearisation system at the equilibrium
(denoted by E0) can be written as

ż0 = −KP

∑n
j=1

(c1j(zj − aP0) + c′1j(z
′
j − aQ0))

ż′0 = −Kv

∑n
j=1

(c2j(zi − aP0) + c′2j(z
′
j − aQ0))

K−1
0 żi = −zi + Di0z0 +

∑
j=1,2,...,n

Dijzj

K−1
0 ż′i = −z′i + Di0z′0 +

∑
j=1,2,...,n

D′
ijz

′
j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where

c1j c′1j

c2j c′2j

[ ]
W

∂w1

∂zj

∂w1

∂z′j
∂w2

∂zj

∂w2

∂z′j

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

E0

Changing the equilibrium of (42) to the origin results in a
system with the same stability property as that of the
following system

ż0

ż′0

[ ]
= −K−1

0
KPcT

1 KPc′T1
KV cT

2 KV c′T2

[ ]
z
z′

[ ]
ż
ż′

[ ]
= D∗0

D′
∗0

[ ]
z0

z′0

[ ]
+ −I + D

−I + D′

[ ]
z
z′

[ ]
⎧⎪⎪⎨
⎪⎪⎩

(43)

where D∗0[D10, D20, . . . , Dn0]T, D′
∗0 = [D′

10, D′
20, . . . , D′

n0]T,
D and D′ are the nn matrices whose entries are Dij

and D′
ij, respectively; I is the identity matrix of appropriate

dimensions; c1[c11, c12, . . . , c1n]T, c′1 = [c′11, c′12, . . . , c′1n]T,
z[z1, z2, . . . , zn]T and z′ = [z′1, z′2, . . . , z′n]T.

Thus, the stability analysis of system (35)–(38) is locally
determined by system (43). If the gains Kp and Kv are very
small, the instructed information z0 and z′0 is slow. In
addition, the extended matrices [D∗0, D] and [D′

∗0, D′] are
row-stochastic, so if those matrices are constant (i.e. the
communication topology is kept to be fixed), it can be
easily shown that the fast boundary-layer system is
exponentially stable since its Jacobean matrix is Hurwitz
(from the fact that r(D)1 and r(D′)1 where r(.) denotes the
radium radius). However, the method based on the
eigenvalues is invalid to study the stability of system (43) if
D and D′ are time-varying. The network control theory will
be used to show that under some conditions similar
conclusions can be drawn.

Lemma 1: Suppose Facts 1–3 are satisfied, then for (43),
matrix

M W −
KPcT

1 1 KPc′T1 1

KV cT
2 1 KV c′T2 1

[ ]{ }
[ R2×2

is Hurwitz, where 1 ¼ [1, 1, . . . , 1]T.

Proof: As stated in Problem 1, all Pimax have the same sign
and all Qimax have the same sign. We only prove the case
for Pimax . 0 and Qimax . 0, but others are similar.
1623
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It follows from the definitions of ci and c′i (i ¼ 1, 2) that
there are

cT
1 1 =

∑n

j=1

∂w1

∂Pj

Pj max, c′T2 1 =
∑n

k=1

∂w2

∂Qk

Qk max (44)

c′T1 1 =
∑n

j=1

∂w1

∂Qj

Qj max ≤
∑n

j=1

∂w1

∂Qj

∣∣∣∣∣
∣∣∣∣∣Qj max (45)

cT
2 1 =

∑n

k=1

∂w2

∂Pk

Pk max ≤
∑n

k=1

∂w2

∂Pk

∣∣∣∣
∣∣∣∣Pk max (46)

where 1 ¼ [1, 1, . . . , 1]T.
It follows from (44)–(46) that

cT
2 1 × c′T1 1 ≤

∑n

k=1

∑n

j=1

∂w1

∂Qj

∣∣∣∣∣
∣∣∣∣∣ ∂w2

∂Pk

∣∣∣∣
∣∣∣∣Pk maxQj max (47)

cT
1 1 × c′T2 1 =

∑n

k=1

∂w1

∂Pk

Pk max ×
∑n

j=1

∂w2

∂Qj

Qj max

=
∑n

k=1

∑n

j=1

∂w2

∂Qj

∂w1

∂Pk

Pk maxQj max (48)

Taking Facts 1 and 2 into consideration, (47) and (48) leads to

cT
1 1 . 0, c′T2 1 . 0,

∂w1

∂Pi

. 0 and
∂w2

∂Qi

. 0 (49)

and

cT
1 1 × c′T2 1 =

∑n

k=1

∑n

j=1

∂w2

∂Qj

∂w1

∂Pk

Pk maxQj max

=
∑n

k=1

∑n

j=1

∂w2

∂Qj

∣∣∣∣∣
∣∣∣∣∣ ∂w1

∂Pk

∣∣∣∣
∣∣∣∣Pk maxQj max

≫
∑n

k=1

∑n

j=1

∂w2

∂Pj

∣∣∣∣∣
∣∣∣∣∣ ∂w1

∂Qk

∣∣∣∣
∣∣∣∣Pk maxQj max

≥ cT
2 1 × c′T1 1 (50)

It follows from (49) and (50) that both det(M ) . 0 and
trace(M ) , 0 are satisfied. Consequently, the conclusion of
this lemma is drawn. A

Lemma 2: Consider the following time-varying system

ẋ = 1(A11x + A12z + A′
12z′)

ż = D∗0(t)cTx + (−I + D(t))z

ż′ = D′
∗0(t)c′

T

x + (−I′ + D′(t))z′

⎧⎪⎨
⎪⎩ (51)

where x [ Rn1 , z [ Rn2 and z′ [ Rn3 are the states;
A11 [ Rn1×n1 , A12 [ Rn1×n2 , A′

12 [ Rn1×n3 , c [ Rn2 and
c′ [ Rn3 , are constant; 1 . 0 is a small constant; I and I′

are identities of appropriate dimensions; D∗0(t), D(t), D′
∗0(t)

and D′(t) are non-negative matrices with appropriate
dimensions.

Suppose that the following conditions are satisfied:

1. A11 + A121cT + A′
121c′T are Hurwitz;
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2. Expanded matrices De(t) ¼ [D∗
0(t), D(t)] and

D′
e(t) = [D′

∗0(t), D′(t)] are row-stochastic, piecewise
continuous matrices satisfying

De,k WDe(tk )= [D∗0(tk ), D(tk)], t [ [tk , tk+1), k = 0, 1, 2 . . .

D′
e,k WD′

e(tk )= [D′
∗0(t′k ), D′(t′k)], t [ [t′k , t′k+1), k = 0, 1, 2 . . .

and both {De,0, De,1, . . .} and {D′
e,0, D′

e,1, . . .} are sequentially
complete sequences.

Then system (51) is uniformly asymptotically stable if
1 . 0 is small enough.

Proof: See Appendix.
It follows from Lemmas 1 and 2 that the following result on

the stability of system (43) is satisfied.

Theorem 1: Consider system (43). Suppose that the following
conditions are satisfied:

1. KP and Kv are small enough;
2. Facts 1–3 are satisfied;
3. The communication among PVs satisfies the sequential
completeness condition.

Then system (43) is uniformly asymptotically stable.

Proof: Clearly, system (43) can be rewritten as the system
considered in Lemma 2. It follows from the given
conditions 1 and 2 and Lemma 1 that the condition 1 in
Lemma 2 is satisfied. The given condition 3 implies that the
condition 2 in Lemma 2 is also satisfied. Thus, system (43)
is uniformly and asymptotically stable. A

It follows from this theorem that the linearised system of
the closed-loop dynamical system is uniformly and
asymptotically stable, so there exists a neighbourhood
around the equilibrium such that if the initial states lie in
this neighbourhood, both the active and reactive outputs of
those PVs are asymptotically stable, that is, [z0, z1, . . . ,
zn]T � a0

P1 and [z′0, z′1, . . . , z′n]T � a0
Q1 are satisfied as the

time approach the infinity, where a0
P and a0

Q satisfy (11)
and (12). This theorem guarantees the convergence of the
designed controls, so it provides the solution and the
conditions for Problems 1 and 2.

It should be noted that the first condition of Theorem 1 is
used to guarantee that system (43) can be rewritten as a
singular perturbation system as studied in Lemma 2. Since
variables c′i and ci (i ¼ 1, 2) are very small in a practical
power network, thus the first condition indeed means that
Kp and Kv are not very large.

6 Simulation

In this section, a 50 Hz radial network will be used to show
the effectiveness of the proposed control strategy. The main
voltage in this network is 10 KV, and the topology is
shown in Fig. 5, where five PVs and six loads are
connected to the low-voltage network. The case was also
used in [24] and the detailed parameters are

† Every segment of the transmission line (from one bus to its
neighbouring bus) is 0.85 km; The impedance is
0.443 + j0.3 V/km.
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Fig. 5 Radial system with multiple PVs (the dash arrows among controllers represent the information flow)
† Transformer datum: the short-circuit voltage is 5%; the
capacity is 1 MVA; copper loss is 5 kW.
† Spot loads (balanced) are shown in Table 1 and the
constant impedance load models are considered.
† The external grid is considered to be an infinite bus whose
voltage is set to 1.05 p.u.
† The communication topology among PVs is represented
by the arrows among controllers in Fig. 5.
† The maximum of every PV is 0.2 MW + j0.04 MVAR and
the initial output is 0.15 MW + j0.0 MVAR.
† The parameters for the distributed control are K0 ¼ 20,
Kp ¼ Kv ¼ 1.

It follows from the information flow in Fig. 5 that the
communication topology can be represented by the
following matrix

S =

1 0 0 0 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 0 1 1 1 0
1 0 0 1 1 1
1 0 0 0 1 1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(52)

Clearly, it follows from Example 2 introduced in Section 4
that if the communication network is kept constant, then
its sequence is sequentially complete (it is a special case
of Example 2). In addition, a malfunction of any
communication channel between PVs will not affect the
completeness of the rule.

Suppose that the concerned line and bus (for Problem 2)
are chosen to be the objects which are measured by the
leader control, as shown in Fig. 5. The expected disturbance
is that all loads decrease 25% active power and increase
20% reactive power on their normal basis at 0 s.

Figs. 6–9 plot the dynamical responses of the proposed
distributed control and the PVs outputs. It follows from that

Table 1 Load information

Load Active power, KW Reactive power, KVAR

L1 346.28 92.34

L2 364.50 58.32

L3 473.85 97.20

L4 394.88 63.18

L5 413.10 121.5

L6 273.38 77.76
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the distributed control guarantees that the active power
outputs of PVs converge to the uniform ratio. Similar
conclusion can be drawn for reactive power from Fig. 7.
Thus, the requirement of Problem 1 is satisfied.

In addition, it follows from Fig. 8 that the active power
across the concerned line can converge to the desired value
and the voltage of the concerned bus can also converge to
the desired value. Thus, the requirements in Problem 2 are
also satisfied.

Fig. 6 Active power output ratios

Fig. 7 Reactive power output ratios
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It also follows from Figs. 8 and 9 that even if two entries
(s40(t) and s50(t)) in the communication matrix are time-
varying, the convergence of the proposed control is also
guaranteed. Fig. 10 shows the values of s40(t) and s50(t).
Note that when s40(t) and s50(t) are zero, the

Fig. 8 Active power across the concerned line

Fig. 9 Voltage of the concerned bus

Fig. 10 Time-varying entries s40(t) and s50(t) in the
communication matrix
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communication topology is not connected (i.e. it is not
lower-triangularly complete), but the communicative effect
makes the communication matrix complete. Thus, this
communication topology satisfies the completeness
condition provided in Section 4. Clearly, Figs. 8 and 9
imply that the convergence rate is related to the
communication topology.

7 Conclusion

A distributed control scheme is provided for the power output
control for a group of PVs in distribution networks, which
guarantees all PVs to run at the same output ratio and
autonomously adjust to a new point in accordance with the
ancillary service requirement when some disturbances
occur. The proposed control requires only intermittent
information sharing among neighbouring PV generators,
and allows topologies of local communication networks to
be time-varying. The minimal requirement of the
communication topology is given based on the sequential
completeness (of the matrix sequence) and a simple method
to verify the completeness condition is shown as well. As
long as the communication networks meet the minimum
information exchange requirement, the proposed control
ensures convergence by considering several trivial
assumptions in classical power systems. Numerical
simulations based on a classical distribution power system
network show the validity of the proposed method. The
proposed methodology is also applicable to distribution
networks with different types of DGs including solar, wind
and ocean-energy power generators.
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10 Appendix

To prove the Lemma 2, we first give two lemmas as follows:

Lemma 3: Suppose that D(tk) is row-stochastic matrix for
every k. The sequence {D(t0), D(t1), D(t2), . . .} is
sequentially complete, then there exist a constant m [ (0, 1)
and an integer k . 0 such that

l(Hk+k:k) = l
∏k+k

i=k

Hi

( )
≤ m, ∀k ≥ 0 (53)

l(E) ≤ 1, d(E) ≤ 1 (54)

d(EF) ≤ l(E)d(F), l(EF) ≤ l(E)l(F) (55)
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are satisfied uniformly for all k . 0, where

Hi W e−(I+Di)(ti+1−ti) (56)

l(E) = 1 − min
1≤i1,i2≤n

∑n

j=1

min (ei1j, ei2j) (57)

d(E) = max
1≤j≤n

max
1≤i1,i2≤n

|ei1j − ei2j| (58)

where E = (ei1j), both E and F are row-stochastic matrices
with appropriate dimensions.

Moreover, there exists a DT0 . 0 such that

tk+k − tk ≥ DT0 (59)

is uniformly satisfied for every k ≥ 0.

Proof: The results of (53)–(55) can be found in [19] (Lemma
4.41). Expression (53) implies that (59) is satisfied, otherwise,
there is t(k+1)k 2 tkk � 0, so ti+1 2 ti � 0 and thus Hi � I
for all i. Thus, it follows from the definition in (57) that
l(Hk+k:k) � 1 . m is satisfied. It is contradictory to
(53). A

Lemma 4: Consider a time-varying system as follows

ẋ = 1A11x + 1A12z
ż = D∗0(t)cTx + ( − I + D(t))z

{
(60)

where x [ Rn1 , z [ Rn2 are the states; c [ Rn1×1,
A11 [ Rn1×n1 and A12 [ Rn1×n2 are constants; 1 . 0 is a
constant; I [ Rn2×n2 is the identity; D∗0(t) [ Rn2×1 and
D(t) [ Rn2×n2 are non-negative piecewise continuous.

Suppose that the following conditions are satisfied:

1. A11 + A121cT is Hurwitz;
2. The expanded matrix De ¼ [D∗0, D] is row-stochastic,
piecewise continuous, which satisfies

De,k WDe(tk)= [D∗0(tk), D(tk )], t [ [tk , tk+1), k = 0, 1, 2, . . .

and sequence {De,0, De,1, . . .} is sequentially complete.

Then there exists an 10 . 0 such that system (60) is
uniformly asymptotically stable for every 1 [ (0, 10).

Proof: Perform the following coordinate transformation.

x
zf

[ ]
= I 0

−1cT I

[ ]
x
z

[ ]

Since the expanded matrix De ¼ [D∗0, D] is row-stochastic,
there is

D∗0cTx + ( − I + D)1cTx = (De1 − 1)cTx = 0

Thus, in the coordinate [x, zf], system (60) can be rewritten as

ẋ = 1(A11 + A121cT)x + 1A12zf (61)

żf = ( − I + D)zf + 1w (62)

where w = −1cT[(A11 + A121cT)x + A21zf ].
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Let

D̃k W D̃(tk ) =
1 0

D∗0(tk ) D(tk)

[ ]
, Ĩ W

1 0

0 I

[ ]
,

w̃ W
0

w

[ ]
, z̃f W

zf ,0

zf

[ ]

The solution of system (62) can be calculated by

˙̃zf = ( − Ĩ + D̃)z̃f + 1w̃
z̃f ,0(0) = 0

{
(63)

The sequential completeness of sequence {De,0, De,1, . . .}
implies that {D̃0, D̃1, . . . } is sequentially complete. In
addition, every D̃k is row-stochastic. Thus it follows from
Lemma 3 that there exists a constant m [ (0, 1) and an
integer k . 0 such that

l
∏k+k

i=k

e(−Ĩ+D̃i)(ti+1−ti)

( )
≤ m, ∀k ≥ 0 (64)

where l is defined in Lemma 3.
Let

N = [1/1] (65)

y(m) W max
t[[tmNk,t(m+1)Nk)

max
1≤i1,i2≤n

{z̃f ,i1
(t) − z̃f ,i2

(t)}, m ≥ 0

(66)

y′(m) W max
t[[tmNk ,t(m+1)Nk)

||x(t)||1, m ≥ 0 (67)

where [1/1] is the maximum integer less than 1/1.
Clearly, there exists two positive constants b1 and b2 such

that

||1w̃||1 ≤ 1b1||x||1 + 1b2||zf ||1
= 1b1||x||1 + 1b2||z̃f ,i − z̃f ,01||1
≤ 1b1||x||1 + 1b2 max

0≤i, j≤n
{|z̃f ,i − z̃f ,j|}

≤ 1b1y′(l) + 1b2y(l) (68)

Consider t [ [tlNk,t(l+1)Nk). The solution of (63) satisfies

z̃f (t) = w(t, 0)z̃f (0) +
∫t

0

w(t, t)w̃(t)dt

= w(t, tlNk)
∏l−1

i=0

∏N−1

j=0

w(t(iN+j+1)k, t(iN+j)k)zf (0)

+
∫t

tlNk

w(t, t)w̃(t)dt

+
∑l−1

i=0

∑N−1

j=0

∫t(iN+j+1)k

t(iN+j)k

w(t, t)w̃(t)dt (69)

where w(t, 0) = e(−Ĩ+D̃)t.
Substituting expression (68) into (69) and considering

expressions (54), (55) and (64), for every t [ [tlNk,t(l+1)Nk)
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there is

max
i, j

{|z̃f ,i(t) − z̃f ,j(t)|}

≤ mlN ||z̃f (0)||1 +
∫t

tlNk

l(w(t, t))||w̃(t)||1dt

+
∑l−1

i=0

∑N−1

i=0

∫t(iN+j+1)k

t(iN+i)k

l(w(tlNk, t))||w̃(t)||1dt

≤ mNl||z̃f (0)||1 +
∫t

tlNk

l(w(t, t))||w̃(t)||1dt

+
∑l−1

i=0

∑N−1

j=0

∫t(iN+j+1)k

t(iN+j)k

l(w(tlNk, t(iN+j+1)k))||w̃(t)||1dt

≤ mNl||z̃f (0)||1 + 1(b1y′(l) + b2y(l))

+ 1k
∑l−1

i=0

(b1y′(i) + b2y(i))
∑N−1

j=0

m(l−i)N−j−1

[ ]

≤ mNl||z̃f (0)||1 + 1(b1y′(l) + b2y(l))

+ 1km

1 − m

∑l−1

i=0

[mN (l−i−1)(b1y′(i) + b2y(i))]

(70)

Since the expression (70) is satisfied for all t [ [tlNk,t(l+1)Nk),
it follows that

y(l) ≤ mNl||z̃f (0)||1 + 1(b1y′(l) + b2y(l))

+ 1km

1 − m

∑l−1

i=0

[mN (l−i−1)(b1y′(i) + b2y(i))]

W a0�m
l + 1(b1y′(l) + b2y(l))

+ 1a3

∑l−1

i=0

[�m(l−i−1)(b1y′(i) + b2y(i))] (71)

where �m = mN , a0 = ||z̃f (0)||1 and a3 ¼ [(km)/(1 2 m)].
Next we perform the similar skills for the trajectories of

system (61).
For every t [ [tlNk,t(l+1)Nk), the trajectories of system (61)

satisfy

x(t) = e1(A11+A121cT)tx(0) + 1

∫t

0

e1(A11+A121cT)(t−t)A12zf (t)dt

= e1(A11+A121cT)tx(0) + 1

∫t

tlNk

e1(A11+A121cT)(t−t)A12zf (t)dt

+
∑l−1

i=0

∑N−1

j=0

∫t(iN+j+1)k

t(iN+j)k

e1(A11+A121cT)(t−t)A12zf (t)dt

(72)

Since A11 + A121cT is Hurwitz, there exist constants b3 . 0
and b4 . 0 such that

||e(A11+A121cT)t||1 ≤ b3e−b4t (73)

is satisfied for every t ≥ 0.
It follows from Lemma 3 that there exists a constant

DT0 . 0 such that tlk 2 tik ≥ (l 2 i)DT0 is satisfied. In
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1617–1629
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addition, it follows from the definition in expression (65) that
1N ≥ 1 is satisfied. Therefore there exists a constant m′

defined as

m′ W e−b4DT0 [ (0, 1)

such that

||e1(A11+A121cT)(tlNk−tiNk)||1
≤ b3e−1b4(tlNk−tiNk)

≤ b3e−1Nb4(l−i)DT0 ≤ b3m
′l−i (74)

is satisfied for every pair of {i, l} (l ≥ i).
Therefore it can follow from (72) and (74) that for all

t [ [tlNk,t(l+1)Nk), there is

||x(t)||1 ≤ ||e1(A11+A121cT)t||1||x(0)||1

+1

∫t

tlNk

||e1(A11+A121cT)(t−t)||1||A12zf (t)||1dt

+1
∑l−1

i=0

∑N−1

j=0

∫t(iN+j+1)k

t(iN+j)k

||e1(A11+A121cT)(t−t)||1

×||A12zf (t)||1dt

≤ ||e1(A11+A121cT)t||1||x(0)||1

+1

∫t

tlNk

||e1(A11+A121cT)(t−t)||1||A12zf (t)||1dt

×||e1(A11+A121cT)(tlNk−t(iN+j+1)k)||1||A12zf (t)||1dt

≤b3m
′l||x(0)||1 +1y(l)b3||A12||1

+1b3k||A12||1
∑l−1

i=0

[y(i)e−1b4DT0[(l−i)N−1]
∑N−1

j=0

e1b4DT0j

]

≤b3m
′l||x(0)||1 +1y(l)b3||A12||1

+1m′b3k||A12||1
1−m′

∑l−1

i=0

[y(i)m′1[(l−i)N−1]m′1(−N+1)]

W a′0m
′l +a′

2y(l)+1a′
3

∑l−1

i=0

m′l−i−1y(i)

(75)

where a′
0=b3||x(0)||1, a′

2 =b3||A12||1, a′
3={(m′b3k ||A12||1)/

(1 − m′)}.
Since (75) is satisfied for all t [ [tlNk,t(l+1)Nk), we have

y′(l) ≤ a′0m
′l + 1a′

2y(l) + 1a′
3

∑l−1

i=0

m′l−i−1y(i) (76)

Since 1 . 0 is considered to be small, N is a large integer and
�m , m′ is satisfied. Thus, simultaneously considering
expressions (71) and (76), we have

max{y(l), y′(l)}≤max{a0, a′0}m′l +1max{b1 +b2,a′
2}

max{y(l), y′(l)}+1max{a3b1 +a3b2,a′
3}

×
∑l−1

i=0

m′l−i−1 max{y(i), y′(i)}
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i.e.

m′−l�y(l)≤ �a0 +1m′−1 �M2

∑l−1

i=0

m′−i�y(i) (77)

where �y(i)=max{y(i), y′(i)}, �a0 = (1−1 �M1)−1 max{a0, a′
0},

�M1 =max{b1 +b2,a′
2}, �M2 = (1−1 �M1)−1 max{a3b1+

a3b2,a′
3}.

The Gronwall–Bellman inequality [29] states that if

x(n) ≤ b0 +
∑l−1

i=0

f (i)x(i)

is satisfied for all, where b0 . 0 and f (i) ≥ 0, then

x(n) ≤ b0

∏n−1

i=0

(1 + f (i))

is satisfied for all n.
Thus, applying the Gronwall–Bellman inequality into (77),

we have

�y(l) ≤ �a0m
′l 1 + 1m′−1 �M2

1 − 1 �M1

( )l

(78)

Clearly, it follows from (78) that if 1 . 0 is small enough
then �y(l) � 0 is satisfied as l � 1. Therefore y(l ) and y′(l )
are both convergent to zero and system (60) is
asymptotically stable in turn. A

This lemma shows that under the sequentially complete
condition, a singularly perturbed dynamical system can be
asymptotically stable although it is not an autonomous
system. Based on this result, we prove Lemma 2 as follows.

Proof of Lemma 2: Because the proof steps are similar to
those used in the Proof of Lemma 3, we only give some
critical steps.

Perform a coordinate transformation as

x
�zf

[ ]
= I 0

−1�cT �I

[ ]
x
�z

[ ]

where �zf = [zT
f , z′Tf ]T, �c = [cT, c′T]T, �z = [zT, z′T]T.

In the new coordinate, system (51) can be rewritten as

ẋ = 1(A11x + �A12�zf ) + 1�A12�zf

�̇zf = (−�I + �D(t))�zf + 1�w

{
(79)

where �A12 = [A12, A′
12], �D = diag{D, D′}, the expression of

�w is similar to that in (62).
The condition that {De,0, De,1, . . .} and {D′

e,0, D′
e,1, . . . } are

both sequentially complete cannot lead to the conclusion that
the expanded matrix �D(t) is sequentially complete. However,
it follows from Lemma 3 that the similar results as stated in
(53) and (59) can be obtained. Consequently, the result
shown in (77) can be derived by similar steps used in the
Proof of Lemma 3, thus the system is asymptotically stable
in turn.
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