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Abstract

Action detection in video is a particularly difficult problem
because actions must not only be recognized correctly, but
must also be localized in the 3D spatio-temporal volume.
This paper introduces a technique that transforms the 3D
localization problem into a series of 2D detection tasks.
This is accomplished by dividing the video into overlapping
segments, then representing each segment with a 2D video
projection. The advantage of the 2D projection is that it
makes it convenient to apply the best techniques from object
detection to the action detection problem. Our experiments
show that video projection outperforms the latest results on
action detection in a direct comparison.

1. Introduction
As imaging systems become ubiquitous, the ability to

recognize human actions is becoming increasingly impor-
tant. Just as in the object detection and recognition litera-
ture, action recognition can be roughly divided into classi-
fication tasks, where the goal is to classify a video accord-
ing to the action depicted in the video, and detection tasks,
where the goal is to detect and localize a human performing
a particular action.

The detection task is particularly challenging because the
action must be detected and localized in a spatio-temporal
volume. In the worst case, the system must search a six-
dimensional space to locate the video volume. Recent work
has built on Lampert et al.’s Efficient Subwindow Search
method (ESS) [11] to make such searches efficient [3, 23].
While successful, these action detection methods are dis-
tinct from the popular techniques currently used for object
detection, localization and classification in images, since
the former employ mutual information or generative models
rather than discriminative classifiers over feature descrip-
tors.

In this paper, we show that actions can be localized with-
out explicitly searching through time. Instead, actions can
be detected by projecting chunks of the 3D spatio-temporal

volume into a 2D representation, then performing a 2D
search. The advantage of the proposed approach is that this
2D search can be performed using the same techniques that
have proven successful in object detection. As an example,
Section 3.3.1 shows how the Efficient Sub-Window Search
algorithm [11] for object detection can be directly applied
to action detection using this technique.

Section 3.3.2 also introduces a novel, straightforward
method for searching the 2D projection to localize actions,
termed TPSS. As shown in the experiments in Section 4,
this approach leads to improved results over the ESS algo-
rithm. In Section 3.4, we also show how these chunks can
be chained together to identify the entire extent of the ac-
tion.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the literature in video action recognition and
detection. Section 3 introduces the video projection method
and discusses two efficient search algorithms, ESS and the
novel TPSS algorithm. Section 4 describes our experimen-
tal methodology and shows a direct comparison against re-
cent work in action detection. Section 5 concludes the pa-
per.

2. Related Work
Our method is motivated by Schindler and van Gool’s

observation that action recognition can often be reliably
performed in short image sequences [18]. Human action
recognition is currently a very active topic (see [7, 17] for
recent surveys). The majority of current research, driven
by popular datasets such as KTH [19] and UCF YouTube
Actions [14], focuses on whole-clip forced-choice classi-
fication of video into one of several categories (such as
“jog”, “run” or “clap”). Bag of visual words techniques,
initially adapted from the text retrieval [13] and later the im-
age classification [4] domains apply naturally to this prob-
lem since it demands neither spatial nor temporal localiza-
tion. Video is represented as a count of discretized fea-
tures aggregated over the clip and then typically passed as
a high-dimensional feature vector to a discriminative clas-
sifier, such as an SVM; such methods and extensions re-
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port strong results (e.g. [5, 19, 20]). Unfortunately, as ob-
served by the object detection community, recognition with-
out localization is of limited utility, and strong approaches
to forced-choice recognition do not naturally transfer to de-
tection, due to the asymmetric nature of the detection prob-
lem (the prior probability that a given region contains the
object of interest is minute). We focus our review of related
work to action detection methods that find and localize ac-
tions in space and time.

Approaches to action localization are frequently related
to successful ideas in the object detection literature. Slid-
ing window approaches, such as [9] apply a cascade of
boosted classifiers [22]. Methods such as [1] treat actions
as spatio-temporal objects, while others [16] localize using
votes in space-time. Template-matching, either in motion-
history images [2] or directly against oversegmented space-
time volumes [10] has also shown promise. Flow-based [6]
and trajectory-based [15] methods exploit either the short-
or longer-term motion of points to detect actions.

Our work is strongly influenced by Yuan et al. [23] and
Cao et al. [3], where action detection is performed using
an efficient branch-and-bound search. Although we pro-
pose a fundamentally different representation and do not
explicitly support cross-dataset training, the goals of our
work are sufficiently close as to enable direct comparison.
Philosophically, our notion of a 2D video projection is also
related to concepts such as motion-history images [2] and
spin images [8], where 3D spatio-temporal or volumetric
data is transformed into a 2D space that enables efficient
search or recognition. Finally, one can view video pro-
jections as enabling spatial and temporal localization with
bag of visual words models by efficiently classifying spatio-
temporal subregions.

3. Method
The basic idea behind the proposed method is to treat

the action detection task as a series of parallel localization
subtasks, each examining a short chunk of the video. Each
subtask is transformed into a 2D problem using video pro-
jections and solved efficiently. Finally, we connect the local
detections in time using a chaining algorithm. The follow-
ing subsections detail each of these steps.

3.1. Video Representation

Following Laptev et al. [12], we extract spatio-temporal
interest points (STIPs) in each video and compute the HNF
feature descriptor for each STIP by combining histogram
of gradient (HoG) and histogram of flow (HoF) features.
These are quantized using a visual codebook constructed
over the training set, enabling us to represent each STIP pj
as the tuple (xj , yj , tj , cj), denoting that a STIP was ob-
served at (xj , yj) in the tj’th frame of video; the discrete
label cj corresponds to the codebook word nearest in fea-

Figure 1: We represent a video sequence as a collection of
overlapping video chunks and each video chunk by a col-
lection of STIPs. The goal of action detection is to localize
subvolumes that contain the action of interest.

ture space to pj’s descriptor. The core assumption behind
our approach (similar to that in [3, 12, 23]) is that one can
recognize whether a collection of STIPs corresponds to the
action of interest using a classifier that takes as its input a
histogram over these discrete labels. However, we do not
accumulate the features into a single histogram, as would
be typical in a bag of visual words model, but rather we
aggregate them in localized spatio-temporal subvolumes, as
described below.

We divide a given video sequence V into a series of over-
lapping video chunks {V1,V2,. . . ,VN} each with a tempo-
ral duration of F frames, as shown in Figure 1. Since each
STIP retains its spatio-temporal location, the goal of action
detection is to find those subvolumes that contain STIPs cor-
responding to the action of interest. More accurately, since
a given action of interest is likely to be span several chunks,
we aim to identify subvolumes within each chunk that are
likely to be parts of the action.

3.2. Reducing Action Localization to 2D Search

An action can be modeled as a spatio-temporal bounding
box (yellow volume in Figure 1). We refer to the subvolume
of the action that is contained within a single video chunk
as an action segment. Hence, we can consider an action
instance as a chain of action segments contained in consec-
utive video chunks.

We analyze each video chunk independently to deter-
mine whether it contains an action segment. Since a chunk
consists of only a small number of frames, we seek to lo-
calize the action segment only spatially within the chunk by
assuming that it extends temporally throughout the chunk.
Specifically, as shown in Figure 2, for each action segment
in the chunk, we seek a subvolume cuboid of duration F
frames that covers it. Since the classifier score of any cuboid
in the chunk is determined solely by the STIPs contained
within, we observe that rather than exhaustively considering
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Figure 2: We need only consider subvolumes in a video
chunk that touch a STIP on each face; through video pro-
jection, we model subvolumes as 2D rectangles.

every cuboid, we only need to consider cuboids that touch
STIPs on each face. Since all subvolumes are of duration
F , they can be modeled as a 2D rectangle.

Each subvolume is represented in the classifier by a his-
togram of the codebook counts for the STIPs contained
within, h = [h1, . . . , hK ], where hi is the number of STIPs
within the subvolume assigned to cluster center i.

hi =

N∑
j=1

lij where lij =

{
1 if cj = i,

0 if cj 6= i,
(1)

N is the number of STIPs within the subvolume and the cj
is the cluster index of the jth STIP in the subvolume. We
compute the histograms for ground truth action segments
that are extracted from the training videos and train a lin-
ear support vector machine (SVM) using the resulting his-
tograms.

We define the action detection and localization problem
within a video chunk as finding a subvolume that would
maximize the SVM classifier score, f , given by:

f = β +

K∑
i=1

wihi, (2)

where K is the number of cluster centers, hi is the count of
STIPs within the subvolume that belong to cluster center i,
and wi is the SVM weight corresponding to cluster center
i. Using Equations 1 and the linearity of the scalar product,
we can rewrite Equation 2 as follows:

f = β +

N∑
j=1

wcj , (3)

where N is the number of STIPs contained in the subvol-
ume and wcj is the SVM weight corresponding to the clus-
ter index cj . Equation 3 says that each STIP contributes to

(a) Video chunk as spatio-temporal volume.

(b) 2-D representation after video projection

Figure 3: Video projection converts subvolume localiza-
tion to 2D search problem. Blue (Red) points correspond
to STIPs with positive (negative) SVM weights.

the SVM score by its corresponding SVM weight wcj . In-
tuitively, some STIPs are positively associated with a given
action (their SVM scores are positive) while others are neg-
atively associated with the action (negative SVM score).
Thus, the goal is to identify subvolumes containing a high
sum of weights.

Since we are using fixed depth subvolumes with same
duration as the video chunk and the SVM score of the
subvolume depends only on the weight of each STIP
within the subvolume (Equation 3), we can redefine the
three-dimensional subvolume search problem as a two-
dimensional search problem by projecting the data along
the temporal dimension, as shown in Figure 3. Figure 3a
shows two candidate subvolumes in a video chunk: the blue
one has an SVM score greater than the threshold and red
one has an SVM score less than the threshold. Figure 3b
shows the corresponding subwindows with the same SVM
scores in the projected representation. Thus, the subvolume
search problem in a video chunk reduces to a subwindow
(rectangle) search problem in its 2D projection.

3.3. Subvolume Search in 2D Video Projection

The previous section showed how the subvolume search
problem in a video chunk could be reduced to a subwindow
search problem in the 2D projection of the video chunk. We
can use any two-dimensional search method to find rectan-
gular regions of interest whose SVM scores, as given by

36



Equation 3, would exceed a specified threshold. One ob-
vious candidate is Lampert et al.’s Efficient Subwindow
Search (ESS) algorithm [11]. However, given the sparsity of
STIP features in our chunks, we propose a new fast method,
Two-Point Subwindow Search (TPSS) that outperforms the
ESS strategy, as will be shown in Section 4.

3.3.1 Efficient Subwindow Search

Efficient Subwindow Search (ESS), as proposed by Lam-
pert et al., was designed for efficient object localization in
images. ESS uses a branch-and-bound algorithm to find the
rectangular region of interest with the highest SVM score
from Equation 3. In order to detect multiple action instances
within the same video chunk, the ESS search can be run
multiple times, removing the detected rectangle from I at
every iteration until the SVM score of the detected rectan-
gle falls below the threshold.

3.3.2 Two Point Subwindow Search

Even though, theoretically, the search space for an M ×N
image using the sliding window approach is M2N2, in
practice there are only sparse number of STIPs with non-
zero SVM weight and only a small fraction of those are
positive. Using this observation, we propose a new search
method called Two-Point Subwindow Search (TPSS). In
this search method, two STIPs with positive SVM weights
define a rectangle, with STIPs at opposite corners. The
SVM score of such rectangular regions can be efficiently
computed using an integral image [22]. Our proposed
search method has two stages: (1) we compute the SVM
score for all candidate rectangles that are defined by pairs of
STIPs, each with positive SVM weight, if the SVM score is
over a threshold, then the rectangle is considered as a detec-
tion; (2) we perform a non-maximum suppression algorithm
on the detection set to eliminate overlapping rectangles.

The primary benefit of the first stage is that the set of
candidates (rectangles defined by two STIPs with positive
SVM weights) is much smaller than the number of sliding
windows (or even rectangles defined by all STIPs). Intu-
itively, the TPSS algorithm restricts its search to promising
rectangles. For instance, consider a rectangle bounded by a
STIP with a negative score; shrinking such a rectangle so as
to exclude this STIP should result in improving the score.

The second stage performs non-maximum suppression
to reduce the number of redundant detections. During non-
maximum suppression, we first select the rectangle with
the highest SVM score, i.e., Rmax, from the detection set.
Then, we identify and remove all the rectangles from the
detection set that are connected to Rmax. Once the set of
rectangles that are connected to Rmax are found, we replace
Rmax with a bounding box that contains all rectangles that
are connected to Rmax, and push the updated Rmax to the

final detection list. We repeat the process by selecting the
next rectangle with the maximum SVM score from the re-
maining rectangles until no rectangles remain in the detec-
tion set. Thus, unlike ESS, TPSS does not require multiple
reruns to detect multiple action instances in a video chunk.

3.4. Chaining Subvolumes Across Time

In many applications, it is sufficient to detect and spa-
tially localize any actions occuring during a given interval.
If it is necessary to find the entire temporal extent, the de-
tected regions from consecutive video chunks can be assem-
bled into a complete action. We use a greedy strategy that
initializes the search with the first video chunk and selects
the detection with the highest SVM score. Then, we find all
the detections from the next video chunk that are connected
to the currently selected detection. We treat two detections
in adjacent video chunks as connected if their volume over-
laps by a sufficient threshold. We select the detection with
the highest SVM score from the connected detections list
and continue our search with the next video chunk until
there are no more connected detections left in subsequent
video chunks.

4. Experimental Results
Our experimental methodology follows that of Cao et

al. [3] to facilitate direct comparisons. We use the KTH [19]
and Microsoft Research Action Dataset II (MSR) [3] in our
experiments. The MSR data set contains three action types:
hand waving, hand clapping and boxing, performed in a
more challenging setting with multiple users in a cluttered
and dynamic scene. By design, the three actions in MSR
are the same as those in KTH, to explore cross-dataset per-
formance of action detection algorithm. The MSR dataset
contains 54 video clips, with each clip exhibiting several in-
stances of each action type (71 waving, 51 clapping and 81
boxing action instances).

Following [3], our training set consists of the waving,
clapping and boxing clips from KTH augmented with four
randomly-selected video clips from the MSR dataset. The
testing dataset consists of the remaining videos in MSR. We
first construct a standard vocabulary using K-means clus-
tering (K = 1000) on HNF descriptors computed at space-
time interest points (STIP) [12] extracted on the training
set, where the descriptors are a compound of HOG and
HOF [12] features.

Next, we train a set of linear one-vs-all SVM classifiers
using videos from KTH and the ground truth volumes from
the MSR training subset. For each, we extract overlap-
ping video chunks with durations of F frames and com-
pute a bag-of-video-words histogram by accumulating the
counts of HNF descriptors in the volume, quantized using
the above dictionary. Two factors affect the choice of the
frame size, F : classifier performance and localization per-

37



formance. Choosing too small an F could degrade classifier
performance since there would only be a few interest points
in a video chunk. On the other hand, choosing too large
a value for F could increase the localization error due to
quantization in the temporal domain. In our experiments
we set the F to 32 frames, which provides a good classi-
fication performance and acceptable localization error. We
employ randomly extracted video chunks of the same size
as negative examples and expand this negative sample set
using bootstrapping [21].

To compare our results to the ones in Cao et al. [3] we
use the same precision and recall criteria. For the precision
score, a detection is regarded as a true positive if at least
1/8 of its volume overlaps with that of the ground truth. For
recall, the ground truth label is regarded as retrieved if at
least 1/8 of its volume is covered by one of the detected
volumes. The precision and recall values are computed for
different SVM thresholds to generate the P-R curves shown
below.

4.1. Cross-Dataset Action Detection Comparisons

Figure 4 shows the precision-recall curves for Cao et
al. [3] and the two search variants of the proposed video
projection (VP) method: VP+ESS and VP+TPSS. We make
several observations. First, we see that in general, both
VP methods outperform [3], particularly in the high recall
regime. Second, we observe that the proposed two point
subwindow search (TPSS) appears to be slightly better than
ESS [11] on this task, in spite of its simplicity. Finally,
we note that even though our approach is not explicitly de-
signed with cross-dataset action detection in mind, it sur-
prisingly outperforms [3] on the task, prompting us to in-
vestigate this issue further.

4.2. Additional Results

Our last set of experiments explores a few remaining
questions, such as: how well does our method perform with
shorter-duration video chunks (smaller values of F )? Fig-
ure 5 shows the precision/recall curves for the waving action
(trained as in Section 4.1) for different chunk lengths. We
observe that while the performance is reduced for smaller
window sizes, it is still reasonable. This indicates that the
proposed approach should be suitable for online recognition
systems, where low latency is essential; in such settings, a
detection can be flagged using only a portion of the action
of interest.

Finally, Figure 6 shows examples of action detections on
the MSR Actions II dataset using VP+TPSS.

5. Conclusion

Detecting and localizing actions in video is daunting
when it is posed as finding an optimal 3D subvolume in a

Figure 5: VP+ESS on the waving action for different video
chunk sizes. The system performs best when longer chunks
are used, but performance is acceptable if smaller chunks
are needed, such as for on-line recognition.

much larger video volume. This paper demonstrates that ac-
tion detection and localization can instead be decomposed
into a series of independent localization subtasks on rela-
tively small chunks of video. Moreover, using video pro-
jections, we transform the detection task in each chunk into
a 2D search problem that can be efficiently solved.

As we have demonstrated, the primary benefit of this ap-
proach is that leading methods in object detection can be ap-
plied directly to the action detection problem. As shown in
our experiments, our proposed method is not only straight-
forward to implement, but also leads to improved results in
a direct comparison. In future work, we plan to leverage
the flexibility of our chained representation to tackle more
complex actions, such as those performed by moving actors
in dynamic scenes.
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