Basic Info

Instructor Marshall Tappen
Office: HEC-230
Email: mtappen@cs.ucf.edu

Webpage http://www.cs.ucf.edu/~mtappen/cap5415/

Office Hours TTh 10:30AM –11:30AM

1 Course Description
This class is an introduction to the basic problems and techniques in computer vision. We will cover both the classic and modern approaches to the basic problems in computer vision. Several weeks will also be devoted to statistical techniques and models of images.

2 Text
We will not be following a particular text carefully, but references will be made to Computer Vision: Algorithms and Applications by Richard Szeliski. Pre-print drafts are available at http://szeliski.org/Book/

3 Coping with the Instructor
Please feel free to contact me with any questions or concerns about the course. This includes concerns such as

- Unclear Problem Set questions
- The pacing of material in the class
- Unclear explanations
- Any other complaints

Also, I have the tendency to speak quickly – especially when I get excited about something, and what’s more exciting than computer vision? I try to be conscious of this, but if you find me speaking too quickly, please do not be afraid to raise your hand and ask me to go over something again. Also, if I repeatedly speak too quickly, please don’t be afraid to send me an e-mail asking me to speak slower.

4 Grading
Grades will be assigned based on Problem Set score. The breakdown is:

<table>
<thead>
<tr>
<th>Problems sets</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo Problem Sets (3)</td>
<td>50%</td>
</tr>
</tbody>
</table>

4.1 Problem Sets
Problem sets will be assigned throughout the course of the semester, with around 6 problem sets total being assigned. Each problem set will be a mixture of programming and mathematical exercises. You are encouraged to collaborate on the problem sets. The solo problem sets are meant to test your individual knowledge. Students should not collaborate on solo problem sets.
4.2 Programming Environment

Students will be required to complete the programming portions of the problems sets with *an interpreted environment*, such as MATLAB, Octave, or Numerical Python. All exceptions must be cleared with the instructor.

4.3 Late Policy

All assignments are to be turned on the assigned day. If you cannot turn in an assignment on time, please contact me. I will generally be willing to let you turn in one assignment late. Even if you have already turned in a late assignment, please still contact me.