Recognition with Bag-of-Words

(Borrowing heavily from Tutorial Slides by Li Fei-fei)
Recognition

- So far, we’ve worked on recognizing edges
- Now, we’ll work on recognizing objects
- We will use a bag-of-words approach
Object → Bag of ‘words’
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach our brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain, as if it were a movie projected onto a screen. However, through the discoveries of Hubel and Wiesel, we now know that the perception of the visual image undergoes a stepwise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a particular detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with 18% rise in imports to $660bn. This is likely to further annoy the US, which has long argued that China's exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needs to do more to boost domestic demand so more goods stay within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.
A clarification: definition of “BoW”

- Looser definition
 - Independent features
A clarification: definition of “BoW”

• Looser definition
 – Independent features

• Stricter definition
 • Independent features
 • histogram representation
learnin\[\text{g} \]

\text{feature detection \\
& representation}

\text{image representation}

\text{codewords dictionary}

\text{category models \\
(and/or) classifiers}

\text{recognition}

\text{category \ decision}
1. feature detection & representation

2. codewords dictionary

3.
1. Feature detection and representation
1. Feature detection and representation

Regular grid
Vogel & Schiele, 2003
Fei-Fei & Perona, 2005
1. Feature detection and representation

Regular grid
Vogel & Schiele, 2003
Fei-Fei & Perona, 2005

Interest point detector
Csurka, et al. 2004
Fei-Fei & Perona, 2005
Sivic, et al. 2005
1. Feature detection and representation

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

- Interest point detector
 - Csurka, Bray, Dance & Fan, 2004
 - Fei-Fei & Perona, 2005
 - Sivic, Russell, Efros, Freeman & Zisserman, 2005

- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation based patches (Barnard, Duygulu, Forsyth, de Freitas, Blei, Jordan, 2003)
1. Feature detection and representation

- Detect patches
 - [Mikojaczyk and Schmid '02]
 - [Mata, Chum, Urban & Pajdla, '02]
 - [Sivic & Zisserman, '03]

- Normalize patch

- Compute SIFT descriptor
 - [Lowe'99]
1. Feature detection and representation
2. Codewords dictionary formation
2. Codewords dictionary formation

Vector quantization

Slide credit: Josef Sivic
2. Codewords dictionary formation

Fei-Fei et al. 2005
Image patch examples of codewords
3. Image representation
Representation

1. feature detection & representation

2. codewords dictionary

3.
One of the keys to success is a good representation of features

- Just pixels is a bad representation
- Pixel intensities are affected by a lot of different things
 - Rotation, scaling, perspective
 - Illumination changes
 - Reordering of scenes
- We want a good way of characterizing image patches that is somewhat robust to these different effects
Scale-Invariant Local Features

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters
Advantages of invariant local features

- **Locality**: features are local, so robust to occlusion and clutter (no prior segmentation)
- **Distinctiveness**: individual features can be matched to a large database of objects
- **Quantity**: many features can be generated for even small objects
- **Efficiency**: close to real-time performance
- **Extensibility**: can easily be extended to wide range of differing feature types, with each adding robustness

(slide from Lowe)
Think Back to Bag of Words - Two Key Problems

- Problem 1: What parts of the image do I look at?
- Problem 2: How do I represent the patches of pixels
Build Scale-Space Pyramid

- All scales must be examined to identify scale-invariant features
- An efficient function is to compute the Difference of Gaussian (DOG) pyramid (Burt & Adelson, 1983)
Scale space processed one octave at a time

Scale (next octave)

Scale (first octave)

Gaussian

Difference of Gaussian (DOG)

(slide from Lowe)
Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
Sampling frequency for scale

More points are found as sampling frequency increases, but accuracy of matching decreases after 3 scales/octave
Select canonical orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)
Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures

(slide from Lowe)
Detecting Keypoints is not always better

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11 × 11 Pixel</td>
<td>64.0%</td>
<td>47.5%</td>
<td>45.5%</td>
<td>N/A</td>
</tr>
<tr>
<td>128-dim Sift</td>
<td>65.2%</td>
<td>60.7%</td>
<td>53.1%</td>
<td>52.5%</td>
</tr>
</tbody>
</table>

(From L. Fei-Fei and Perona)
SIFT vector formation

- Thresholded image gradients are sampled over a 16x16 array of locations in scale space.
- Create array of orientation histograms.
- 8 orientations x 4x4 histogram array = 128 dimensions.
Feature stability to noise

- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features

(slide from Lowe)
Feature stability to affine change

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features
Distinctiveness of features

- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match

(slide from Lowe)
Sony Aibo (Evolution Robotics)

SIFT usage:
- Recognize charging station
- Communicate with visual cards
SIFT is just the beginning

- Authors have proposed more feature point detectors
 - Harris-Laplace, ..

- Authors have proposed other feature descriptors
 - ColorSIFT
 - SURF

- The Koen executable implements many of this
Learning and Recognition

codewords dictionary

category models (and/or) classifiers

category decision
Learning and Recognition

1. Generative method:
 - graphical models

2. Discriminative method:
 - SVM
Learning and Recognition

1. Generative method:
 - graphical models

2. Discriminative method:
 - SVM

category models (and/or) classifiers
Discriminative methods based on ‘bag of words’ representation
Discriminative methods based on ‘bag of words’ representation

Grauman & Darrell, 2005, 2006: SVM w/ Pyramid Match kernels

Others

Csurka, Bray, Dance & Fan, 2004

Serre & Poggio, 2005
category decision

learning

feature detection & representation

image representation

codewords dictionary

category models
(and/or) classifiers

recognition

category decision
What about spatial info?
What about spatial info?

Feature level
Generative models
Discriminative methods
Lazebnik, Schmid & Ponce, 2006
Invariance issues

- Scale and rotation
 - Implicit
 - Detectors and descriptors

Kadir and Brady. 2003
Invariance issues

• Scale and rotation

• Occlusion
 • Implicit in the models
 • Codeword distribution: small variations
 • (In theory) Theme (z) distribution: different occlusion patterns
Invariance issues

• Scale and rotation
• Occlusion
• Translation

 • Encode (relative) location information
 – Sudderth, Torralba, Freeman & Willsky, 2005, 2006
 – Niebles & Fei-Fei, 2007
Invariance issues

- Scale and rotation
- Occlusion
- Translation
- View point (in theory)
 - Codewords: detector and descriptor
 - Theme distributions: different view points

Fergus, Fei-Fei, Perona & Zisserman, 2005
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach our brain through our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the cerebral cortex, much like a movie is projected onto a screen. Through the discoveries of Hubel and Wiesel, we now know that the perception of visual images is a considerably more complex process. By following the visual impulses along their route to the various cell layers of the optical cortex, Hubel and Wiesel have demonstrated that the message about the image falling on the retina undergoes a step-wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.
Model properties

- Intuitive
 - Analogy to documents
 - Analogy to human vision

Olshausen and Field, 2004, Fei-Fei and Perona, 2005
Model properties

- Intuitive
- generative models
 - Convenient for weakly- or unsupervised, incremental training
 - Prior information
 - Flexibility (e.g. HDP)

Sivic, Russell, Efros, Freeman, Zisserman, 2005

Li, Wang & Fei-Fei, CVPR 2007
Model properties

- Intuitive
- Generative models
- Discriminative method
 - Computationally efficient

Grauman et al. CVPR 2005
Model properties

- Intuitive
- Generative models
- Discriminative method
- Learning and recognition relatively fast
 - Compare to other methods
Weakness of the model

- No rigorous geometric information of the object components
- It’s intuitive to most of us that objects are made of parts – no such information
- Not extensively tested yet for
 - View point invariance
 - Scale invariance
- Segmentation and localization unclear