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ABSTRACT

In this paper we focus on detecting and clustering distinct group-

ings of domain names that are queried by numerous sets of infected

machines. We propose to analyze domain name system (DNS) traf-

fic, such as Non-Existent Domain (NXDomain) queries, at several

premier Top Level Domain (TLD) authoritative name servers to

identify strongly connected cliques of malware related domains.

We illustrate typical malware DNS lookup patterns when observed

on a global scale and utilize this insight to engineer a system ca-

pable of detecting and accurately clustering malware domains to a

particular variant or malware family without the need for obtaining

a malware sample. Finally, the experimental results of our system

will provide a unique perspective on the current state of globally

distributed malware, particularly the ones that use DNS.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General – Secu-

rity and Protection; C.4 [Performance of Systems]: Measurement

studies

Keywords

Malware, Clustering, Automatic Analysis, DNS.

1. INTRODUCTION
Malware domains now commonly utilize a technique called Do-

main Fast-Fluxing or a Domain Generation Algorithm (DGA) [23]

that enables the botmaster to more easily evade detection and their

botnet being disabled [15]. For example, an infected host will gen-

erate a set of pseudo-random domain names, typically based off the

system clock as a seed, and use them as points of rendezvous to re-

ceive their next set of instructions. This set of domains may vary in

the number of domains and be spread across multiple TLDs [18].

Embedding the DGA instead of a list of previously-generated do-

mains in the unobfuscated binary of the malware protects against

a strings dump that could be fed into a network blacklisting appli-

ance. This DGA/Fast-Flux technique was popularized by the Con-
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ficker malware family [19] and has grown in popularity with more

recent malware families such as FlashBack [20].

Due to the fact that the DGA is pseudo random, DNS traffic

lookup patterns will emerge as all infected hosts will request the

same set of domain names in a given epoch of time. Our research

will aim to identify these communities of malicious domains gen-

erated by DGAs. Specifically, we will look at traffic volume met-

rics and similar lookup patterns within a given set of domains to

possibly identify such malicious domains. As the nature of the

DGA is to create a large number of domains, yet the botmaster

will only register a small subset of these domains, a large portion

of the DNS traffic will fall into the NXDomain (Non-Existent Do-

main) [14]. We observe that NXDomains have a limited caching

characteristic, which make most of the queries concerning NXDo-

mains propagate to the registry DNS servers. We hope to identify

these domains and use that as a base of tracking the actively reg-

istered command and control domain in the YXDomain (Existent

Domain), non-NXDomain typically resulting in NOERROR DNS

responses.

To this end, the contribution of this paper is a first look at un-

derstanding the malware domain names of specific types through

the lenses of authoritative DNS servers and queries. Equipped with

observations on the malware and botnet domain names and their

request patterns, we devise a method for traffic similarity that high-

lights likely related hosts/domain names. Second, using real world

traces of DNS queries, including YXDomain and NXDomain traf-

fic of known malware domains, we show how to use the traffic

similarity metric for finding malicious domain names—those reg-

istered for the command and control of a botnet and variants.

The organization of the rest of this paper is as follows. In sec-

tion 2 we introduce DNS profile of DGA domains, highlighting

some background, context, and data. In section 4 we discuss a

method for botnet detection and clustering using traffic similarity

of the requesting recursive name servers (RNS) at the authoritative

resolution level. In section 5 we provide our insight into using the

method discussed earlier at a large scale using domain knowledge

and pre-processing (filtering). The related work is outlined in sec-

tion 6 followed by a conclusion in section 7.

2. DNS PROFILING OF DGA DOMAINS
A botnet is a group of infected machines controlled by a “bot

herder or botmaster" [13]. The botmaster sends commands and

malware updates through their command-and-control (C2) server,

which is commonly referenced through a layer of indirection via a

domain name. Accordingly, the C2 server plays an important role

in the botnet for sending instructions to infected computers and is

conceivably a single point of failure. Security researchers or law



Figure 1: An illustration of a botnet infrastructure, with a bot-

master, C2 servers, and Bots “zombies”.

enforcement agencies can potentially shut down the entire botnet

by making the C2 server unavailable [22].

Since DGAs are an effective way to evade detection systems re-

lying on blacklist [10] or signature filters [11], there is a growing

trend in malware development to implement DGAs. It can be found

in some of the most popular malware, such as Conflicker [21],

Srizbi [8], Torpig [22], and Zeus [16]. DGAs provide the capability

of generating pseudo-random domain names using a deterministic

algorithm and some form of a seed, typically the date. The domains

generated by the algorithm may vary in length and may be spread

over multiple TLDs. However, the algorithm must be constructed

in such a way that the domains generated are still available for reg-

istration. The malware author—who is fully aware of the domains

to be generated at a particular point in time—registers a subset of

the generated domains to serve as the C2 server prior to the do-

main’s generation date. The botmaster only requires one actively

registered domain for a given generation date to effectively com-

municate with their botnet. While, infected computers will gener-

ate the same set of domains at that particular period of time and

attempt to connect to those domain names, only the domain previ-

ously registered by the malware author will resolve and serve as the

C2 server while the remaining domains will fail to resolve.

A system for C2 detection: While the straightforward method to

capture the C2 using a pre-generated set of domain names is the

perhaps the most effective, the method has some cost associated

to it. First and foremost, one needs to reverse engineer the DGA

in order to pre-compute those domain names, and take actions in

advance to prevent malware propagation. This is however a time

consuming task, and may not always be possible. To this end,

the outcomes of this study look at alternatives for understanding

domain name names that are likely used for malicious activities,

namely those generated by DGA’s. The end result of this work is

that one can, with some confidence, rely on the traffic similarity

metric observed at the authoritative name servers, to identify mal-

ware families that use this piece of infrastructure for its operation.

One can also use inherent differences in the traffic pattern within

the same malware family to identify variants. Furthermore, this

passive measurement technique provides the capability of detecting

and organizing malicious domains solely based on the by-product

of DNS traffic queries from a piece of malware and does not require

any form of sandboxing specific malware samples.

3. DATA SETS
In this section, we describe the data used to analyze the be-

havior of malicious domains. The data described and referenced

Variant Domains / Day TLDs

A 250 biz, info, org, net, and com

B 250 biz, info, org, net, com, ws, cc, cn

C 50k 110 ccTLDs not including tv or cc

Table 1: Conficker DGA Profiling by Variant

herein was collected during July of 2012 from Verisign’s authori-

tative name servers for the COM, NET, TV and CC TLD authori-

tative name servers. As an operator of several of the largest TLDs,

Verisign is positioned with a unique global view of DNS traffic

that provides a distinctively alternative view of malware associated

DNS traffic, as opposed to smaller passive DNS analysis systems.

To that end, the type and source of data used in this study represent

one unique aspect that illuminate better insight and support for the

findings.

3.1 Malware Data
One of the most well known and widely distributed pieces of

malware to utilize a DGA function is Conficker. Originally discov-

ered in 2008, Conficker still infects thousands of computers world-

wide and has been mutated to at least five known variants dubbed

Conficker A, B, C, D, and E [21]. The Conficker Working Group, a

consortium of researchers and security professionals, have success-

fully reverse engineered the DGA and pre-calculated the domains

to be generated each day for variants A, B and C [1].

Table 1 shows the various TLDs for variants A, B and C and the

number of domains to be generated on a daily basis. Variants A and

B utilize the com, net and ccTLDs which are operated by Verisign

allowing us to analyze the DNS traffic for these domains. By April

of 2009, all domains generated by variant A of Conficker were suc-

cessfully locked or preemptively registered in order to mitigate the

proliferation and upgrade capabilities of the variant. Of the 15,500

domains to be generated by variants A and B in July of 2012 (which

corresponds to 500 domains per day—as shown in Table 1—over

31 days), 30 of the domains were registered in either com or net

with active name servers resulting in YXDomain traffic while the

remaining DGA domains resulted in NXDomain traffic.

3.2 NXDomain Data
NXDomain is a commonly used term for a domain name that

is unable to resolve because the domain name is not registered or

a name server problem occurred during resolution. The term was

originally used to represent DNS response code 3 and is formally

referenced in both RFC 1035 (Domain names - implementation

and specification) [14] and RFC 2308 (Negative Caching of DNS

Queries) [2]. All of the data below corresponds to the state of the

DNS resolution system operated by Verisign in middle of 2012. We

note that while we are not able to use DNS traffic for some of the

TLDs listed in Table 1, the ones using TLDs operated by Verisign

(cc, tv, net and com) were captured, measured and analyzed.

Figure 2 illustrates the daily NXDomain traffic as observed for

the com, net, tv and cc zones, whereas Figure 3 illustrates the num-

ber of second level domain names for the same set of TLDs over the

same period of time. A typical day within the com zone will consist

of over 2.5 billion NXDomain requests for more than 350 million

unique second-level domains ("secondlevel.com") while net

receives around 500 million NXDomain requests for more than 60

million unique second-level domains. However, smaller zones such

as tv and cc receive several magnitudes of less NXDomain traffic

than com and net.

While the daily volume of total requests and unique domains is



Figure 2: Daily NXDomain traffic volume – The total number

of queries per day over a period of month

Figure 3: Daily NXDomain Traffic Volumes – The number of

second level domain names per day

extremely high, the vast majority of individual NXDomains ob-

served receive very few requests within a given epoch of time. Fig-

ure 4 shows a cumulative distribution function of the number of re-

quests a given NXDomain receives within a 24 hour span of time.

As depicted, more than 95% of the unique second-level NXDo-

mains receive less than 10 requests within the 24 hour epoch.

We next measure the amount of churn within the second-level

NXDomains by measuring the number of days a unique second-

level domain is observed within a week. As Figure 5 shows, unique

NXDomains are typically only observed once within a week and

only a small percentage of them reoccurs over multiple days. The

large volume of NXDomain requests and low re-occurrence of unique

second-level domains suggests an extremely high rate of entropy

within the NXDomain DNS traffic ecosphere. This insight will

help us tune our system to filter and analyze only relevant subsets

of the NXDomain traffic and develop timely and performant sys-

tems using parallel computational techniques.

3.3 Conficker NXDomain DNS
As the vast majority of the domains generated by the Conficker

Figure 4: Global NXDomain traffic volumes
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Figure 5: Global NXDomain traffic volumes

DGA falls into the NXDomain category, a detailed analysis of the

NXDomain traffic patterns for those DGA domains was conducted.

We analyzed various aspects of the DNS traffic prior to the domains

generation date, the day of generation, and post generation in order

to better understand the lifecycle of a DGA domain in terms of DNS

traffic. Utilizing the 2012 Conficker Domain list of pre-calculated

DGA domains, we were able to group domains by their generation

date and measure their DNS traffic. Specifically, for a given domain

to be generated on day x, we measured the domain’s DNS traffic

on days x− 5 to x+ 5.
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Figure 6: Conficker DNS lookups – total number of requests

Figure 6 depicts the pre, during and post DNS traffic patterns

for Conficker’s variant B (and Figure 7 shows the number of /24

Recursive Name Servers). These figures utilize bar plots to better

depict the range of DNS traffic observed on a given day. It is evi-

dent that despite a specific generation date, DGA domains receive

significant volumes of traffic pre and post its specific generation

date. Contrasted to the whole population of NXDomain traffic ob-

served in figures 2 and 3, this volume and daily reoccurrence of

the domain makes DGA domains statistically abnormal. Signifi-

cant traffic uptake for a given DGA domain occurs both one day

prior and post the specific generation date. We believe this to be

a side effect of global clock skew. Traffic volumes on the exact

generation date soar several magnitudes higher than the +/- 5 days

baseline to 42, 887 unique /24 recursive name servers consisting of

199, 097 total NXDomain requests from 211 unique countries for

an average DGA domain. We note that /24 is used as a level of

aggregation because it is small enough not to mix various networks
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Figure 7: Conficker’s DNS lookup volume – /24 RNS requests

and traffic originated from them, and large enough to substantially

reduce the number of entities used later on for clustering and simi-

larity measurements.

4. DETECTION AND CLUSTERING
Before delving into the details of designing or operating a system

that detects malware based on the C2 domain names they use, we

explore the similarity aspects of traffic, and utilize this similarity

measure to cluster domains based on their traffic. The resulting

clusters may prove to be meaningful underpinnings in detecting

botnets, and their variants, once utilized operationally (§5).

4.1 Computing Traffic Similarity
Calculating similarity between two or more entities has several

standard approaches. The Jaccard index is a very simple measure

that reflects the intersection of two sets over their union and pro-

vides a convenient and simple metric reflecting the similarity of

two entities:

J(A,B) =
|A ∩B|

|A ∪B|
(1)

The end goal of the similarity measurement is to determine the

set of recursive name servers that have requested two domain names

at the same time. This is, let X and Y be two domain names with

the sets A and B being the sets of the distinct RNS that requested

the domain name over a period of time T . The model in (1) calcu-

lates a normalized value for the intersection of A and B.

Figure 8 shows the cumulative distribution function of the pair-

wise domain similarities for a set of DGA domains based on their

/24 RNS traffic for a given day. The domains on a specific DGA

generation date have very high similarity measures, most measur-

ing higher than 0.9. While the days prior and post the generation

have lower similarity patterns, they are still very significant when

contrasted to the whole NXDomain population’s DNS traffic.

A few of the domains generated by Conficker as described in

§3 were registered and had active name servers resulting in YX-

Domain traffic. These domains were compared on their specific

DGA generation date to the domains that received NXDomain traf-

fic. We found that the YXDomain traffic displayed a slightly less

pairwise similarity, with median similarity at about 0.7, as opposed

to 0.75 and 0.9 for NXDomains the days of registration and after-

wards. We hypothesize this may be influenced by DNS caching

differences of YXDomains and NXDomains at the recursive name

server level. However, this concept also validates the capability of

using the NXDomain similarity patterns of a given DGA to find the
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Figure 8: Conficker’s Traffic Similarity

active and registered C2 domain in the YXDomain traffic based on

DNS traffic similarities of /24 RNS.

4.2 Clustering
Hierarchical clustering is a popular technique in which a hierar-

chy of clusters is constructed by merging items into clusters based

on some measure of similarity—a typical similarity measure that

is widely used is the Jaccard index. Using such an approach could

potentially group domains from a specific DGA or piece of mal-

ware into distinctive clusters based on DNS traffic similarity pat-

terns. The general complexity of the algorithm is O(n3); however
more efficient techniques for single-linkage clustering can be ac-

complished in O(n2). The typical output of a hierarchical cluster-
ing algorithm can be depicted in the form of a dendrogram.
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Figure 9: Clustering Domains by Traffic Similarity

A subset of domains from variants A and B were extracted and

clustered via the single-linkage algorithm based on their traffic.

Figure 9 shows a heat map plotting the pairwise similarity of the do-

mains as well as a dendrogram which clustered the domains based

on their similarity. This figure clearly shows high similarity pat-

terns of domains within intra-variants (e.g. A to A and B to B) and

low similarity patterns for inter-variants (e.g. A to B). The result-

ing clusters grouped the DGA domains to distinctive clusters based

on their DNS traffic and contained only domains relevant to that

particular variant, thus supporting our hypothesis. Furthermore, by

not taking the visual into account, one can end up with multiple



clusters that vary based on the threshold used for the cutting phase

in the hierarchical clustering.

5. GLOBAL MALWARE DETECTION
Based on our analysis and understanding of DGA domains and

NXDomain traffic, we constructed a system that computes pairwise

DNS similarity measures and subsequently performs agglomerative

clustering. However, as shown in Figure 3, the number of unique

second-level domains observed within a day is several magnitudes

too large to fit within a pragmatic and operationally acceptable run-

ning time. Our understanding of DGA domains has shown that

wide spread malware will result in thousands of unique /24 RNS

requests for a given domain on its generation date. Accordingly, we

utilize this knowledge to apply some filtering techniques to the set

of domains over which our system will operate. Our initial thresh-

olding criteria was set at to a minimum of 1,000 unique /24 RNS

requests for a domain during a given day and resulted an average

daily count of 50,000 NXDomains.
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Figure 10: Number of clusters with various thresholds.
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Figure 11: Number of domains with various thresholds.

As mentioned earlier, setting the minimum threshold similarity

will dramatically affect the number of clusters created when per-

forming any type of clustering. Figure 10 illustrates the various

levels of a minimum similarity threshold and the corresponding

number of clusters formed in the entire resolution stream at the

authoritative level. The number of clusters experiences an increase

when the similarity threshold is set between the levels of 75% and

82%, after which the number of clusters decreases demonstrating

a convergence in the number to a fixed set of closely related types

of domain names. Alternatively, figure 11 measures the number of

domains that are contained in the set of clusters at various similar-

ity threshold levels. As expected, the number of domains increases

as the similarity threshold is decreased. The same growth pattern is

observed when the threshold level is set between 75% and 85%.

Labeling: Guided by some information on the a subset of do-

main in some of the clusters, one can extrapolate a label in a semi-

supervised learning system and determine their type: legit or mal-

ware serving domain names. We notice with high similarity, it was

easy to figure out the proper use of the domains and filter them out

without having to pre-compute malicious domains—it is enough to

use a previously known set of malicious domain names, see where

they are located in the clusters, and extrapolate the rest of them

with the proper label.

A temporal analysis of the clusters from day to day was con-

ducted to better understand the dynamics and makeup of the do-

mains within the identified clusters. For a set of domains identified

in a cluster on a given day x, we measured the percent of domains

observed on day x + i where i = 0 (i.e., that day) through 5. We

observe that the number of domain names in a cluster exhibit a

strong temporal pattern of decay as the time goes, but also 50% of

the domain names initially clustered in a cluster remain in that clus-

ter even after 5 days. This illustrates that the average half-life of a

domain name in a cluster is about 5 days, after which the cluster-

ing yields less meaningful results from its initial set. This tells that

one can perhaps compute the proper time parameter after which

not acting (by perhaps blocking malicious domain names) a C2’s

registration (by the botmaster) would be considered a success.
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Figure 12: Temporal Variance of Domain Clusters

Figure 13 shows the resulting clusters identified via our system

with a similarity threshold set to 0.9. This figure plots the number

of domains contained within the cluster against the average number

of unique /24 RNS requesting the domains within that cluster on a

log-log scale. The results show that many of the detected clusters

or malware samples/variants use a relatively small amount of do-

main names, observable in Verisign operated TLDs, in their DGA

cycle to be typically less than 10 — while a few samples generated

several hundreds of domains. This is interesting as the number of

domains generated may influence the evasiveness and resilience of

a botnet to a takedown. It is also interesting to note how prevalent

many of these clusters are with hundreds to thousands of distinct

/24 RNS addresses querying them, which may hint at the infection

rate and infection diversity of a specific piece of malware.
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Figure 13: Identified Clusters – the number of clusters vs the

diversity and number of querying recursive name servers.

6. RELATEDWORKS
Several systems have been previously constructed to detect DGA

based malware systems by analyzing passive DNS traffic collected

at smaller and more localized networks [23, 5, 3, 4, 9, 17, 7]. The

vast majority of these systems utilize various statistical features to

detect malicious domains using advanced machine learning algo-

rithms like binary classifiers (e.g., support vector machines, deci-

sion trees, etc). While effective, those systems do not scale to the

size of traffic observed at the authoritative resolution sites of a ma-

jor TLD operator, like com and net. Furthermore, algorithms used

in the prior literature fall under the supervised machine learning

category, which requires active training and labeling.

Most related to this work is the work of Jiang et al. [12], in which

the authors considered identifying malicious domain names in the

view point of an enterprise network, unlike our work which detects

malicious domains at the authoritative level. The work in [12] uses

all codes other than “NoError” [14] (code 0) in the DNS response

as an indicator of failure, while we use the “NXDomain” (code 3)

only as the indicator of failure. The dataset used in both works

differ in context and size. A similar idea is used in [6] utilizing

NXDomain traffic at the recursive level, which also gives a limited

visibility to the traffic originated for a given domain name.

7. CONCLUSION AND FUTUREWORK
In this paper we looked at a simple operational method of detect-

ing domain names used for the command and control of botnets.

We examined the unique characteristics of traffic sent by recursive

name servers to the authoritative name servers for pre-computed

C2 domain names of the Conficker malware family. We found that

one not only can characterize a C2 based on the similarity measure

of the requesting RNS’s, but also can find variants of a family us-

ing their C2 traffic patterns. In this paper we limited ourselves to

Conficker, which is among the most prevalent families. Our pre-

liminary studies show that findings reported in this work also apply

to other families, such as Flashback and other popular DGA based

malware families. Future work also includes designing a detection

system based on previously clustered known malware domains to

discover unknown botnets in their early phases that span both pos-

itive and negative DNS responses.
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